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Abstract
Let L be a linear differential operator with coefficients in some differential
field k of characteristic zero with algebraically closed field of constants. Let
ka be the algebraic closure of k. For a solution y0, Ly0 = 0, we determine
the linear differential operator of minimal degree L̃ and coefficients in ka , such
that L̃y0 = 0. This result is then applied to some Picard–Fuchs equations
which appear in the study of perturbations of plane polynomial vector fields of
Lotka–Volterra type.
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1. Introduction

Let y0 = y0(t) be a solution of the linear differential equation

a0(t)y
(n) + a1(t)y

(n−1) + · · · + an(t)y = 0, (1)

where ai ∈ k = C(t) are functions, rational in the independent variable t . We are interested
in determining the equation of minimal degree d ! n,

b0(t)y
(d) + b1(t)y

(d−1) + · · · + bd(t)y = 0 (2)

such that

• y0 is a solution,
• the coefficients bi are algebraic functions in t .

Recall that a function b(t) is said to be algebraic in t if there exists a polynomial P with
coefficients in k = C(t), such that P(b(t)) ≡ 0.

We shall suppose that, more generally, k is an arbitrary differential field of characteristic
zero with algebraically closed field of constants, ka is its algebraic closure, and ai ∈ k,
bj ∈ ka . To find equation (2) we consider the differential Galois group G of (1) and its
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2 M Bobieński and L Gavrilov

connected subgroup G0 containing the unit element of G. Our first result, theorem 1, says that
the orbit of y0 under the action of G0 spans the solution space of (2).

Particular attention is given further to the case in which (1) is of Fuchs or Picard–Fuchs
type. Recall that (1) is said to be of Fuchs type, if every singular point, including the one
at infinity, is a regular singularity. A Picard–Fuchs equation is a particular type of Fuchsian
equation, whose solutions are of ‘geometric origin’. The latter means here that the solutions
can be expressed as complete Abelian integrals of the form

y(t) =
∫

γ (t)

ω,

whereω is a polynomial one-form, and {γ (t)}t is a continuous family of closed loops, contained
in the level sets

{(x, y) ∈ C2 : F(x, y) = t}

of the polynomial F , see [2]. The Galois group of a Fuchs-type equation is a Zariski closure of
the monodromy group of the equation. Theorem 1 is re-formulated in terms of the action of
the corresponding monodromy groups in theorems 2 and 3.

In the last part of the paper, section 3, we apply the general theory to some Abelian
integrals appearing in the study of perturbations of the Lotka–Volterra system. These integrals
have the form

I (t) =
∫

γ (t)

ω,

where

γ (t) ⊂ {(x, y) ∈ C2 : F(x, y) = t}

is a continuous family of ovals,

F(x, y) = xpyp(1 − x − y) or F(x, y) = xp(y2 − x − 1)q, p, q ∈ N

and ω is a suitable rational one-form on C2. In the first case the Abelian integral satisfies
a Picard–Fuchs equation of order 2p + 2. It has been shown by van Gils and Horozov [4],
that I (t) satisfies also a second-order differential equation whose coefficients are functions
algebraic in t . This allows us to compute the zeros of I (t) (by the usual Rolle’s theorem for
differential equations) and finally, to estimate the number of limit cycles of the perturbed plane
foliation defined by

dF + εω̃ = 0,

where ω̃ is a real polynomial one-form on R2. By making use of theorem 1 we provide the
theoretical explanation of the phenomenon observed first in [4], see section 3.3. Another
interesting case, studied in the paper is when F(x, y) = xp(y2 − x − 1)q (p, q relatively
prime). The Abelian integral I (t) satisfies a Picard–Fuchs equation of order p + q + 1, which
is the dimension of the first homology group of the generic fibre F−1(t). We show that the
minimal order of equation (2) is p + q + 1 or p + q or p + q − 1, and that the coefficients
bi(t) are rational in t , see section 3.2. The meaning of this is that the differential Galois group
of the Picard–Fuchs equation is connected and, in contrast to [4], there is no reduction of the
degree, which may only drop by one or two, depending on whether ω has or has not residues
‘at infinity’.
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2. Statement of the result

Let k be a differential field of characteristic zero with algebraically closed field of constants C,
E ⊃ k be a Picard–Vessiot extension for the homogeneous monic linear differential operator L:

L(y) = y(n) + an−1y
(n−1) + · · · + a0y, ai ∈ k (3)

and y0 ∈ E a solution, L(y0) = 0. We denote by ka ⊃ k the algebraic closure of k which is
also a differential field.

Definition 1. A homogeneous monic linear differential operator L̃ with coefficients in ka is
said to be annihilator of y0, provided that L̃(y0) = 0. The annihilator L̃ is said to be minimal,
provided that its degree is minimal.

The definition has a sense, because the algebraic closure Ea of E is a differential field
which contains E and ka as differential subfields. The minimal annihilator obviously exists
and is unique, its degree is bounded by the degree of L which is an annihilator of y0.

We are interested in the following question
For a given solution y0 as above, find the corresponding minimal annihilator L̃.
To answer this, consider the differential Galois group G = Gal(E/k), which is the group

of differential automorphisms of E fixing k. Recall that G is an algebraic group over C,
and let G0 be the connected component of G, containing the unit element (the identity). The
intermediate field k̃ = EG0

, k ⊂ k̃ ⊂ E, of elements invariant under G0 is then a finite
algebraic extension of k. We denote it by k̃.

Let y0, y1, . . . , yd−1 be a basis of the C-vector space spanned by the orbit

G0y0 = {g(y0) : g ∈ G0} ⊂ E

and consider the Wronskian determinant in s variables

W(y1, y2, . . . , ys) = det





y1 y2 . . . ys

y ′
1 y ′

2 . . . y ′
s

...
...

. . .
...

y
(s−1)
1 y

(s−1)
2 . . . y

(s−1)
s−1




.

y0 satisfies the differential equation

W(y, y0, y1, . . . , yd−1) = 0 (4)

and because of the C-linear independence of yi

W(y0, y1, . . . , yd−1) '= 0.

Let L̃ be the monic linear differential operator defined by

L̃(y) = W(y, y0, y1, . . . , yd−1)

W(y0, y1, . . . , yd−1)
. (5)

Its coefficients are invariant under the action of G0, and hence they belong to the differential
field k̃ = EG0

.

Our first result is the following

Theorem 1. The differential operator L̃ (5) is the minimal annihilator of the solution y0.

Proof. Let Lmin be the unique differential operator of minimal degree with coefficients in
some algebraic extension kmin of k, such that Lmin(y0) = 0. Denote by Emin the Picard–
Vessiot extension for Lmin.
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As a first step, we shall show that Emin can be identified to a differential subfield of
the Picar–Vessiot extension E for L. The algebraic closure Ea of E is a differential field
which contains E and every algebraic extension of k (hence it contains kmin). Therefore the
compositum kmin E of kmin and E, that is to say the smallest field containing E and k̃, is well
defined [6]. The differential automorphisms group Gal(kmin E/k) acts on the compositum
kmin E and leaves E invariant. Therefore Gal(kmin E/kmin) ⊂ Gal(kmin E/k) leaves E invariant
too, and the orbit Gal(kmin E/kmin)y0 is contained in E. Let y0, y1, . . . , ym−1 be a basis of the
C-vector space spanned by this orbit. Then y0 satisfies the differential equation

W(y, y0, y1, . . . , ym−1)

W(y0, y1, . . . , ym−1)
= 0 (6)

and the coefficients of the corresponding monic linear homogeneous differential operator
belong to kmin.

Consider the ring of differential polynomials

kmin{Y } = kmin[Y (i) : i = 0, 1, 2, . . .]

in formal variables Y (i). Identifying differential operators on k̃ to polynomials (the derivatives
y(i) correspond to variables Y (i)), we may consider the ideal I generated by homogeneous
linear differential operators with coefficients in kmin which annihilate y0. This is obviously a
linear ideal which, according to the general theory (see [7, proposition 1.8] ), is principal in
the following sense. There exists a linear differential operator with coefficients in kmin, which
generates I . Clearly the generator of I is the operator Lmin defined above. It follows that the
solution space of Lmin can be identified to a C-vector subspace of the solution space of the
operator defined by (6), which implies

k ⊂ kmin ⊂ Emin ⊂ E (7)

(the first two inclusions hold by definition).
In the second step of the proof we shall show that deg Lmin = deg L̃. Indeed, the

automorphisms group G0 leaves fixed the elements of E which are algebraic on k. In particular,
the elements of kmin are fixed by G0 and hence G0 induces differential automorphisms of the
Picard–Vessiot extension Emin. This shows that the solution space of Lmin contains the solution
space of L̃ and

deg Lmin " deg L̃.

Reciprocally, if we consider (by the construction above) the ideal in k̃{Y } generated by
all linear homogeneous differential operators with coefficients in k̃, which annihilate y0, then
this ideal is linear and principal. The generator of the ideal corresponds to the operator Lmin,
and hence

deg Lmin ! deg L̃.

Theorem 1 is proved. #
Towards the end of this section we apply theorem 1 to Fuchs and Picard–Fuchs differential

operators. The minimal annihilator of a solution is described in terms of the action of the
monodromy group.

Let L be a Fuchsian differential operator of order n on the Riemann sphere P1, $ =
{t1, . . . , ts , ∞} be the set of its singular points. The field of constants is C = C, the coefficients
of L belong to the field of rational functions k = C(t). Denote by S ∼= Cn the complex vector
space of solutions of L = 0. The monodromy group M of L is the image of the homomorphism
(monodromy representation)

π1(P1 \ $, ∗) → GL(S),
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where ∗ is some fixed point on P1 \ $. The Zariski closure of M in GL(S) is the differential
Galois group G of L:

M = G.

A vector subspace V ⊂ S is invariant under the action of G if and only if it is invariant under
the action of M. A subspace V ⊂ S is said to be virtually invariant, provided that it is invariant
under the action of identity component G0 of G, or equivalently, under the action of M

⋂
G0.

For an automorphism g ∈ G the set g(V ) ⊂ S is a vector subspace of the same dimension.
Thus G acts on the Grassmannian space Gr(d, S)

G × Gr(d, S) → Gr(d, S) : (g, V ) -→ g(V ).

and for every plane V ∈ Gr(d, S) the orbit

G(V ) = {g(V ) : g ∈ G} ⊂ Gr(d, S)

is well defined.

Lemma 1. A plane V ∈ Gr(d, S) is virtually invariant, if and only if the orbit G(V ) ⊂
Gr(d, S) is finite.

Proof. We have

M(V ) = M(V ) = G(V ) ⊃ G0(V ).

If the orbit M(V ) is finite, then M(V ) = M(V ) and hence G0(V ) is finite. As G0 is a
connected Lie group, then G0(V ) = V and V is virtually invariant.

Suppose that V is virtually invariant. As G/G0 is a finite group, then G0(V ) = V

implies that the orbit M(V ) = G(V ) ⊂ Gr(d, S) is finite and hence M(V ) ⊂ M(V ) is
finite too. #

Let L be a Fuchsian differential operator as above, and y0 a solution, L(y0) = 0. The
minimal annihilator of y0 is a differential operator L̃ of minimal degree with coefficients in
some algebraic extension of C(t). Therefore, the coefficients of L̃ are meromorphic functions
on an appropriate Riemann surface, which is a finite covering of P1. Thus L̃ is a Fuchsian
operator too, but on a suitable compact Riemann surface realized as a finite covering of P1.
Let V1, V2 ⊂ S be two virtually invariant planes containing the solution y0. Then V1 ∩ V2 is a
virtually invariant plane containing y0. This shows the existence of a unique virtually invariant
plane V of minimal dimension, containing y0. We call such a plane minimal. According
to lemma 1 and theorem 1 the minimal annihilator of y0 is constructed as follows. Let
y0, y1, . . . , yd−1 be a basis of the minimal virtually invariant plane V containing y0. Consider
the Fuchsian differential operator defined as in formula (5).

Theorem 2. The differential operator L̃ is the minimal annihilator of the solution y0. The
degree of L̃ equals the dimension of the minimal virtually invariant plane containing y0.

Suppose finally that L is a linear differential operator of Picard–Fuchs (and hence of
Fuchs) type. We shall adapt theorem 2 to this particular setting.

Let F : C2 → C be a bivariate non-constant polynomial. It is known that there is a finite
number of atypical points $ = {t1, . . . , tn}, such that the fibration defined by F

F : C2 \ F−1($) → C \ $ (8)

is locally trivial. The fibres F−1(t), t '∈ $ are open Riemann surfaces, homotopy equivalent
to a bouquet of a finite number of circles. Consider also the associated homology and
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co-homology bundles with fibres H1(F
−1(t), C) and H 1(F−1(t), C), respectively. Both of

these vector bundles carry a canonical flat connection. Choose a locally constant section
γ (t) ∈ H1(F

−1(t), C) and consider the Abelian integral

I (t) =
∫

γ (t)

ω, (9)

where ω is a meromorphic one-form on C2 which restricts to a holomorphic one-form on the
complement C2 \ F−1($). The Milnor fibration (8) induces a representation

π1(C \ {$}, ∗) → Aut(H1(F
−1(t), C)) (10)

which implies the monodromy representation of the Abelian integral I (t).
Let Vt ⊂ H1(F

−1(t), C) be a continuous family of complex vector spaces obtained
by a parallel transport. The space Vt can be seen as a point of the Grassmannian variety
Gr(d, H1(F

−1(t), C)). Therefore the representation (10) induces an action of the fundamental
group π1(C \ {$}, ∗) on Gr(d, H1(F

−1(t), C)).

Definition 2. We say that a complex vector space Vt ⊂ H1(F
−1(t), C) of dimension d is

virtually invariant, provided that its orbit in the Grassmannian Gr(d, H1(F
−1(t), C)) under

the action of π1(C \ {$}, ∗) is finite. A virtually invariant space Vt is said to be irreducible, if
it does not contain non-trivial proper virtually invariant subspaces.

Let γ (t) be a locally constant section of the homology bundle defined by F . As the
intersection of virtually invariant vector spacesVt ⊂ H1(F

−1(t), C) containingγ (t) is virtually
invariant again, then such an intersection is the minimal virtually invariant space containing
γ (t). Clearly a virtually invariant minimal space containing γ (t) need not be irreducible: it
might contain a virtually invariant subspace not containing γ (t).

Consider the Abelian integral I (t) =
∫
γ (t)

ω, where γ (t) is a locally constant section of
the homology bundle and ω is a meromorphic one-form as above. Denote by Vt the minimal
virtually invariant vector space containing γ (t).

Theorem 3. If Vt is irreducible, then either the Abelian integral I (t) vanishes identically, or
its minimal annihilator is a linear differential operator of degree d = dim Vt .

Proof. Let St be the complex vector space of germs of analytic functions in a neighbourhood
of t , obtained from I (t) by analytic continuation along a closed path in C \ $. It suffices to
check that Vt is isomorphic to St . Equivalently, for every locally constant section δ(t) ∈ Vt

we must show that
∫
δ(t)

ω '≡ 0. Indeed, the vector space of all locally constant sections δ(t)
with

∫
δ(t)

ω ≡ 0 is an invariant subspace of Vt . As Vt is supposed to be irreducible, then this
space is trivial. Theorem 3 follows from theorem 2. #

The above theorem is easily generalized. For instance, the coefficients of the minimal
annihilator of I are rational functions of t if and only if the minimal virtually invariant space
Vt containing γ is monodromy invariant, i.e. its orbit in the Grassmannian consists of a single
point. Further, it might happen that Vt is reducible. Let V 0

t be a proper virtually invariant
subspace of Vt . If the factor space Vt/V 0

t is irreducible (does not contain proper virtually
invariant subspaces), then theorem 3 still holds true, but the minimal annihilator of I (t) is
of order equal to dim Vt − dim V 0

t . Multidimensional Abelian integrals (along k-cycles) are
studied in a similar way.



Reduction of degree of linear differential operators 7

3. Examples of Abelian integrals related to perturbation of the Lotka–Volterra system

Let F be a real polynomial and ω = P dx + Q dy a real polynomial differential one-form in
R2. Consider the perturbed real foliation in R2 defined by

dF + εω = 0. (11)

The infinitesimal 16th Hilbert problem asks for the maximal number of limit cycles of (11)
when ε ∼ 0 as a function of the degrees of F, P, Q. Let γ (t) ⊂ F−1(t) be a continuous family
of closed orbits of (11). The zeros of the Abelian integral I (t) =

∫
γ (t)

ω approximate limit
cycles (at least far from the atypical points of F ) in the following sense. If I (t0) = 0, I ′(t0) '= 0,
then a limit cycle of (11) tends to the oval γ (t0), when ε tends to t0. The question of explicit
computing the number of zeros of Abelian integrals remains open (although a substantial
progress has recently been achieved, see [3,5] and references therein). Generically an Abelian
integral satisfies a Picard–Fuchs differential equation

I (d) + a1I
(d−1) + · · · + adI = 0, ai ∈ R(t)

of order equal to the dimension of the homology group of the typical fibre F−1(t). We
are interested in the possibility of reducing the degree of this equation, assuming that the
coefficients of the equation are algebraic in t , ai ∈ C(t)a . The most interesting situation is
probably when the reduced degree equals two. Indeed, the zeros of the solutions of a second-
order equation are easily bounded, in terms of the zeros of the coefficients of this equation (by
Rolle’s theorem).

In this section we study Abelian integrals which appear in the perturbations of foliations
dF = 0 with F = xp(y2 + x − 1)q and F(x, y) = (xy)p(x + y − 1), where p, q are positive
integers. The corresponding foliation dF = 0 is a special Lotka–Volterra system.

3.1. Toy example F = xpyq

Consider first the fibration defined by the polynomial F = xpyq . We assume that p, q are
relatively prime. The base of the fibration is the punctured plane B = C \ {0}. Each fibre
is a sphere with two points removed. The homology bundle is one dimensional with trivial
monodromy representation. We investigate the monodromy representation on the relative
homology bundle. It will be a basic ingredient of the monodromy investigation in more
complicated cases.

Consider a set of marked points Bt on the complex fibre F−1(t):

Bt = (F−1(t) ∩ {x = L}) ∪ (F−1(t) ∩ {y = L}),
where L > 1 is a real number. The relative homology H1(F

−1(t), Bt ) is a free group with
p + q generators. A convenient model for the pair (F−1(t), Bt ) consists of a cylinder with
some strips attached; marked points are located at the ends of these strips.

Note that there exists a unique pair of positive integers (m, n) satisfying the following
relation:

p m + q n = 1, |m| < q, |n| < p. (12)

Let S ⊂ C be the strip in complex plane around the real segment [1, L]. Let C(r, R) ⊂ C be a
ring (homeomorphic to a cylinder) where radii r and R satisfy relations L−1 < r < 1 < R < L.
The model M is a surface constructed with three charts Ux , Uy , Uc:

Ux = {(x, ν) : x ∈ S, ν ∈ Z/q},
Uy = {(y, µ) : y ∈ S, µ ∈ Z/p},
Uc = {u ∈ C(r, R)}

(13)
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Figure 1. Monodromy transformation of the model surface M and a relative cycle γ .

with the following transition functions (strips Ux are attached to the external circle of radius
R and strips Uy are attached to the internal boundary of Uc):

u(x, ν) = x1/qe2π i/q (−νm), u(y, µ) = y−1/pe2π i/p (µn). (14)

The marked points are {x = L} and {y = L} at the end of strips. To construct a map ψt we
will use a bump function ϕ ∈ C∞([0, 1]) which is 0 near s = 0 and 1 near s = 1. The map
ψt : M → C2 reads

ψt :






ψt(x, ν) = (x, t1/qx−p/qe2π i/q ν)

ψt (y, µ) = (t1/py−q/pe2π i/p µ, y)

ψt (u) =
(

uq exp
(

log t

p
ϕ

( |u| − r

R − r

))
, t1/qu−p exp

(
− log t

q
ϕ

( |u| − r

R − r

)))
.

(15)

Lemma 2. The surface M and the map ψt provide model of fibre for fibration defined by
F = xpyq . The monodromy transformation M : M → M around t0 = 0 reads

M :






M(x, ν) = (x, ν + 1)

M(y, µ) = (y, µ + 1)

M(u) = u exp
(

2π i
(

−m

q
+

1
pq

ϕ

( |u| − r

R − r

))) (16)

The surface M and its monodromy transformation described in the above lemma are drawn
in figure 1.

Proof. Complex level curves F−1(t) intersect line at infinity in two points: [1 : 0 : 0] and
[0 : 1 : 0]. The neighbourhood of any of them is a punctured disc. Thus, there exists an
isotopy of the level curve F−1(t) shrinking it to the region {|x| ! R, |y| ! R} for sufficiently
big R.

We will assume that t is sufficiently close to 0. The intersection of F−1(t) with the
neighbourhood {|x| ! r, |y| ! r} of (0, 0) is a cylinder parametrized by the formula

u -→ (gq uq, g−p u−pt1/q), (17)

where g(t, u) is a function which will be fixed later.
The intersection of F−1(t) with set {|x| ! R, |y| ! R} \ {|x| ! r, |y| ! r} decomposes

into two connected components Vx and Vy ; one is located close to the x-plane and the other
to the y-plane, respectively. The component Vx is a graph of multi-valued (q-valued) function
y = t1/qx−p/q defined over the ring {r ! |x| ! R}. Marked points are images of point
x = L located on the real axis. We deform this domain by isotopy to the strip S along the real
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Figure 2. Deformation of domain to the strip S.

Figure 3. The model surface M with generators of the relative homology.

line, attached to a ‘small’ annulus, as in figure 2. The values (leaves) of function x−p/q are
numbered by ν ∈ Z/q. Thus, the domain Ux and the map ψt are defined as in lemma.

The model of Vy is constructed in an analogous way. To glue the above map together
with parametrization (17) of the disc around zero, we use the auxiliary function g. It must be
equal to 1 near the internal circle of the ring C(r, R) (i.e. |u| = r) and t1/pq near the exterior
boundary (|u| = R). It is easy to check that g = exp( 1

pq
log t ϕ( |u|−r

R−r
)) solves the problem.

Formula (16) for the monodromy around t = 0 is a direct consequence of
formula (15). #

A two-dimensional version of figure 1 presenting the model surface M is drawn in figure 3.
It is obtained from figure 1 by cutting the cylinder along a vertical line. We will use this planar
style of drawing models in subsequent, more complicated cases.

The cylinder shown in figure 1 is represented in figure 3 by a rectangle with upper and
lower sides identified. Strips Ux and Uy are enumerated by integers q

2π arg u and p
2π arg u,

respectively; the argument arg u is calculated in point u ∈ Uc which is glued with point 1 ∈ S

according to relations (14). Generators of the relative homology of M are also marked.

Proposition 1. The relative homology is H1(F
−1(t), Bt )of the complex fibre F−1(t) has

dimension p + q. It is generated by cycles

γ,$, Q0, . . . , Qq−1, P0, . . . , Pp−1
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Figure 4. Model of the level curve F−1(h) for F = xp(y2 + x − 1)q .

with the relations:

Q0 + · · · + Qq−1 = −$, P0 + · · · + Pp−1 = $.

The monodromy transfomation on the relative homology space reads

MQj = Qj−m, MPk = Pk+n, M$ = $

Mγ = γ + Q0 + · · · + Q−m+1 + P0 + · · · + Pn−1.
(18)

The proposition is a direct consequence of lemma 2.

3.2. The parabolic case

Consider the fibration given by a polynomial F = xp(y2 + x − 1)q , where p, q is a pair
of positive, relatively prime integer numbers. Thus, they satisfy relation (12) with a pair of
integers m, n. They must be of opposite signs; we assume m > 0 and so n ! 0.

The base of locally trivial fibration in this case is a plane with two points removed
B = C \ {0, c}, where c = ( p

p+q
)p( −q

p+q
)q corresponds to a centre ( p

p+q
, 0) of the Hamiltonian

vector field XF . The cycle γ (t) for t ∈ (0, c) is an oval (compact component) of the real level
curve F−1(t).

The model of the complex fibre is presented in figure 4. It consists of two cylinders
and p + q strips glued together as shown in the figure. Cylinders are drawn as rectangles,
with horizontal sides identified. To simplify the combinatorial structure, there are opposite
orientations on these two cylinders. Vertical, dotted lines mark another identification.

Lemma 3. The surface shown in the figure 4 provides a model M for the complex fibre
F−1(t). The homology group H1(M) has dimension p + q + 1 and is generated by cycles
γ,$1,$2, Q0, . . . , Qq−1, P0, . . . , Pp−1 with the following relations:

Q0 + · · · + Qq−1 = $2 − $1, P0 + · · · + Pp−1 = $1 − $2. (19)
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Figure 5. Deformation of domain Ul to the strip S.

Intersection indices of γ and other generators of the homology group read

γ · Q0 = −1, γ · Qq−1 = −1, γ · Qj = 0, for j = 1, . . . , q − 2,

γ · P0 = +1, γ · Pp−1 = +1, γ · Pj = 0, for j = 1, . . . , p − 2,

γ · $1 = +1, γ · $2 = −1.

(20)

The monodromy transformation associated with the critical value 0 ∈ C takes the form:

M0Qj = Qj+m, M0Pk = Pk−n, M0$j = $j

M0γ = γ + Q0 + · · · + Qm−1 + P0 + · · · + P−n+1.
(21)

Proof. The idea of proof is similar to the proof of lemma 2. We shrink the level curve F−1(t)

by isotopy to the region {|x| ! R, |y| ! R}. We take the value of t sufficiently close to 0. The
intersections of F−1(t) with neighbourhoods of saddle points (0, 1), (0, −1) are cylinders; we
parametrize them by formulae similar to (17). The remaining part of the fibre F−1(t) splits into
two pieces: Vl and Vp, located close to the line x = 0 and close to the parabola y2 + x − 1 = 0,
respectively. The part Vl is the graph of p-valued function x = t1/p(y2 + x − 1)−q/p defined
over the disc of radius R with small discs around points y = ±1 removed:

Ul = {y : |y| ! R, |y − 1| " r, |y + 1| " r}.

We deform the domain Ul to the strip S along the real segment—see figure 5. Leaves of
function over the strip S are numbered by µ ∈ Z/p. In an analogous way we deform Vp to
the graph of the q-valued function defined over the strip along a real segment of the parabola
{y2 + x − 1 = 0}. Leaves of the function are numbered by ν ∈ Z/q.

We glue together both collections of strips with two cylinders in a way analogous to the toy
example. Indeed, in sufficiently small neighbourhood of the point (0, 1) the pair of functions
(x, y2 + x − 1) defines a holomorphic chart. In this chart the function F takes the form as in
the toy example. The same is true for the other saddle (0, −1). Both cylinders are glued by
p strips going along the line x = 0 and q strips going along the parabola y2 + x − 1. The
monodromy around zero permutes strips according to the rule ν -→ ν + 1, µ -→ µ+ 1, which is
compatible with formula (16) for monodromy in the toy example case. Thus, the monodromy
acts on both cylinders around saddles as in the toy example.

The surface shown in figure 4 provides a model for the complex fibre F−1(t). Formulae
(21) follow from the respective formulae (18) in the toy example. One can read relations (19)
and intersection indices (20) from figure 4. #

Corollary 1.

Mpq
0 γ = γ + $2 − $1.
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The critical value t = c corresponds to a Morse critical point of F . The monodromy operator
Mc around c is therefore described by the usual Picard–Lefschetz formula. Let γ = γ (t) be
the continuous family of cycles, vanishing c.

Corollary 2.

McQ0 = Q0 − γ, McQq−1 = Qq−1 − γ,

McQj = Qj, for j = 1, . . . , q − 2,

McP0 = P0 + γ, McPp−1 = Pp−1 + γ,

McPj = Pj , for j = 1, . . . , p − 2,

Mc$1 = $1 + γ, Mc$2 = $2 − γ.

(22)

Theorem 4. The related Abelian integral I =
∫
γ
ω is either identically zero, or it does not

satisfy any differential equation with algebraic coefficients of order k < p + q − 1.

Proof. The proof is based on theorem 3. Let H be a k-dimensional subspace of the (complex)
homology space H1 = H1(F

−1(t), C) and γ ∈ H . Assume that the monodromy orbit
of H in the Grassmannian Gk(H1) is finite. We show that the dimension of H satisfies
dim H " p + q.

Let M0 be the operator of monodromy around t = 0 (i.e. along a loop winding
once around t = 0); let Mc be a monodromy around the centre t = c. It follows
formulae (22) that the Mc − Id is a nilpotent operator and its image is one dimensional,
generated by γ . The homology space H1 splits into two-dimensional Mc-invariant subspace
N and (dim H1 − 2)-dimensional; the monodromy Mc restricted to the latter one is the
identity. The matrix of the restricted monodromy operator Mc|N in a basis (γ, δ) has
the form

[Mc|N ](γ,δ) =
(

1 1
0 1

)
.

Note that the subspace N is not defined uniquely. It is spanned by γ and any element δ ∈ H1

such that γ · δ '= 0.
Consider the intersection H ∩N . The property that H has a finite π1 orbit (see theorem 3)

implies that the Mc-orbit of Mk
0H , k ∈ Z, is finite. Thus, the intersection HNk = (Mk

0H)∩N

has also finite Mc orbit in N . The form of Mc|N implies that there are only three subspaces
with a finite orbit:

HNk = {0}, HNk = C γ, HNk = N. (23)

Note that all these subspaces are Mc-invariant.

Lemma 4. Assume that the monodromy orbit of H in Gk(H1) is finite. If u · γ '= 0 for an
element u ∈ Ml

0H , l ∈ Z, then γ ∈ Ml
0H .

Proof. Take δ = u and consider two-dimensional, Mc invariant space N spanned by γ and δ.
The Mc orbit of the Ml

0H space is finite, so the intersection HNl = N ∩ Ml
0H has one of

the three forms listed in (23). Since δ ∈ HNl then HNl = N and so γ ∈ Ml
0H . #
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Consider the M0-orbit of γ ∈ H . Lemma 4 (for l = −m) and the property that the
intersection number is preserved by the monodromy imply the following condition:

γ · Mm
0 γ '= 0 ⇒ Mm

0 γ ∈ H. (24)

Consider an element Mpq
0 γ = γ +($2−$1). Since γ ·($2−$1) = −2, then ($2−$1) ∈ H .

Consider elements Ml
0γ for l = 1, . . . , pq. The intersection index |γ · (Ml

0γ )| ! N . So, the
cycles

Mpq N+q l
0 γ = γ + (N + lm) ($2 − $1) +

p∑

j=0

aj (l)Pj , l = 1, . . . , p (25)

have non-zero intersection indices with γ . Since p, q are relatively prime the space spanned
sums

∑p
j=0 aj (l)Pj , l = 1, . . . , p coincide with the space generated by (P0 + · · · + P−n−1),

(P−n +· · ·+P−2n−1),. . . ; the latter one is the full space generated by P0, . . . , Pp−1. Both claims
follow the fact that p and n are also relatively prime (see (12)) and the following observation.

Lemma 5. Let V be a vector space of dimension p and let q be an integer. Assume that p, q

are relatively prime. Let e0, . . . , ep−1 be a basis of V . Then the following sums

(e0 + · · · + eq−1), (eq + · · · + e2q−1), . . . (e(p−1)q + · · · + epq−1) (26)

(all indices mod p assumed) generate the whole space V .

The proof of this lemma is based on the following observations. Since p, q are relatively
prime, any sum of length q appears in a sequence (26). The difference of two sums has the form
ej − ej+q , j = 0, . . . , p − 1; they generate a hyperplane orthogonal to vector e0 + · · · + ep−1.
Since the scalar product (e0 + · · ·+ ep−1) · (e0 + · · ·+ eq−1) = q, the space generated by vectors
(26) is a whole V .

Thus, it is proved that the subspace H must contain the subspace generated by
P0, . . . , Pp−1. In a similar way we show that H contains the subspace generated by
Q0, . . . , Qq−1.

We have shown that the subspace of the homology group containing γ , with finite π1-orbit
must be necessarily π1-invariant hyperplane in the homology space H1. It proves the theorem
for a generic 1-form ω (when the zero subspace Zω = {0}). To finish the proof we show that
either dim Zω ! 1 or Zω = H .

Consider an element

H ∩ Zω 1 v = a γ +
p−1∑

j=0

αjPj +
q−1∑

i=0

βiQi

and its images under the monodromy around t = 0: Ml
0v. Since Zω is monodromy invariant,

all elements Ml
0v ∈ Zω. If the intersection index γ · Ml0

0 v '= 0, then monodromy around the
centre t = c adds a multiple of γ , so γ ∈ Zω. Then, it follows from the previous analysis
that Zω = H . Assume now that all intersection indices γ · Ml

0v = 0. The coefficient a

must vanish then, otherwise Mpq
0 adds the cycle $2 − $1 which realizes intersection index

−2. Consider monodromies Mql
0 v, l = 0, . . . , p − 1. It preserves the expression

∑q−1
i=0 βiQi .

Vanishing of the intersection indices γ · Mql
0 v implies equations

αj + αj+1 = β0 + βq−1, j = 0, 1, . . . , p − 1. (27)

The solution of (27) depends on the parity of p. If p is odd then all coefficients αj are equal:
αj = α = 1

2 (β0 + βq−1). If p is even the solution of (27) reads

α2l = α0, α2l+1 = α1, α0 + α1 = β0 + βq−1.
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We repeat then the analogous analysis with iterations of Mp
0 . We obtain the following form

of Zω:

Zω ∩ H ⊂






{0} for p, q odd,

Span(2
∑p/2

j=1 P2j + ($2 − $1)) for p even and q odd,

Span(2
∑q/2

j=1 Q2j − ($2 − $1)) for q even and p odd,

(28)

Thus, dim Zω ∩ H ! 1 and so the theorem is proved. #

Corollary 3. We have actually shown that the Abelian integral does not satisfy any differential
equation with algebraic coefficients of order lower than the Fuchs-type equation with rational
coefficients which follows the general theory.

3.3. The special Lotka–Volterra case

Consider a fibration given by a polynomial F(x, y) = (xy)p(x + y − 1). It defines a
locally trivial fibration defined over plane with two points removed B = C \ {0, c}, where
c = F( p

1+2p
, p

1+2p
) corresponds to a centre. The cycle γt for t ∈ (0, c) is an oval (compact

component) of the real level curve F−1(t). Note, that the fibration has a Morse-type singularity
at t = c and γt is a vanishing cycle at the centre.

Below we investigate the fibration and the monodromy representation on the sufficiently
small neighbourhood of t = 0: |t | < ε0. The monodromy around centre t = c follows the
Picard–Lefshetz formula. Thus, to determine the monodromy representation it is enough to
investigate the monodromy around t = 0 and intersection indices with the cycle γ .

The model of complex fibre is presented in figure 6 which should be understood as follows.
Each rectangle represents a cylinder, with sides pasted according to the arrows. Another
identification is assumed on vertical, dotted lines.

Lemma 6. The complex level curve F−1(t) is a surface of genus p − 1 with 3 points removed
(intersection with the line at infinity). The surface shown in figure 6 provides a model M

for F−1(t). The homology group H1(M) has dimension 2p + 2; it is generated by cycles
γ,$1,$2, P0, . . . , Pp−1, δ0, . . . , δp−1 with the following relation:

P0 + · · · + Pp−1 = $1 − $2 + δ0.

Intersection indices of γ with other generators of the homology group read

γ · Pp−1 = −1, γ · Pj = 0, for j = 0, . . . , p − 2,

γ · δ0 = −1, γ · δj = 0, for j = 1, . . . , p − 1,

γ · $1 = −1, γ · $2 = −1.

(29)

The monodromy transformation associated with the singular value 0 ∈ C acts as follows:

M$j = $j, Mδj = δj+1, Mγ = γ + P0,

MPj = Pj+1, for j = 0, . . . , p − 2,

MPp−1 = P0 + δ1 − δ0.

(30)

Proof. The proof is analogous to the proofs of lemmas 2 and 3. We modify the level curve
F−1(t) by isotopy to the part contained in the compact region |x| ! R, |y| ! R. We consider
points t sufficiently close to 0. We cut the level curve F−1(t) into pieces lying close to lines
x = 0, y = 0, x + y − 1 = 0 and close to saddles (0, 0), (1, 0), (0, 1). The analysis of pieces
of level curve F−1(t) close to the saddles (1, 0) and (0, 1) and close to the line x + y − 1 = 0
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Figure 6. Model of the level curve F−1(h) for F = (xy)p(x + y − 1).

is completely analogous to the parabola case—see the proof of lemma 3. The model of this
part of the level curve consists of two cylinders joined by a single strip.

Now we consider the region which is at a finite distance from the line x + y − 1 = 0.
The level curve F−1(t) outside the line x + y − 1 = 0 splits into p components defined by the
equation

xy (x + y − 1)1/p = t1/pενp, ν = 0, 1, . . . , p − 1.

Any of these components coincide with the toy example with p = q = 1. Thus, it is isotopic to
the cylinder with two strips attached. As t winds around zero t -→ e2π it we rotate components
according to the rule ν -→ ν + 1 mod p. The pth power of the monodromy (winding p times
around zero) Mp corresponds to the usual monodromy in the toy example; it follows from
formula (18) (for p = q = 1) that Mp adds the generator δj .

It proves that the combinatorial structure of model of the level curve F−1(t), defining how
cylinders and strips are glued, must be as that shown in figure 6. #

Proposition 2. Let H be the following two-dimensional subspace

H = Span(γ, $1 − $2 + δ0)

of the (complex) homology space H1(F
−1(t)). The orbit of H under the monodromy

representation π1 · H in Grassmannian Gr2(H1) consists of p elements and hence is finite.

Proof. Denote by M and Mc the monodromy around t = 0 and around the centre critical
value t = c. By lemma 6, we have

MkH =
{

Span
(
γ + P0 + · · · + Pk−1, $1 − $2 + δk

)
for k = 1, . . . , p − 1

Span
(
γ + $1 − $2 + δ0, $1 − $2 + δ0

)
= H for k = p.

(31)
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The crucial observation is that subspaces MkH for k ∈ Z are Mc-invariant. Indeed, the
subspace H is Mc-invariant since γ ∈ H is a vanishing cycle corresponding to the centre
critical value t = c. We calculate (using formulae (29)) the intersection indices of γ and
generators of MkH for k = 1, . . . , p − 1:

γ ·
(
γ + (P0 + · · · + Pk−1)

)
= 0, γ ·

(
$1 − $2 + δk)

)
= 0.

Thus, both generators are Mc-invariant. This proves that the orbit π1 · H in Grassmannian
Gr2(H1) consists of p subspaces given in formula (31). #

Corollary 4. Proposition 2 provides a geometric explanation of the phenomenon described
in [4]. According to the general theory given in theorem 3 and calculations of monodromy given
in lemma 6 and proposition 2 the Abelian integral along cycle γ satisfies a linear second-order
equation with algebraic coefficients in variable t .
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