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We study the stratum in the set of all quadratic differential systems ẋ = P2(x, y), ẏ =
Q 2(x, y) with a center, known as the codimension-four case Q 4. It has a center and a node
and a rational first integral. The limit cycles under small quadratic perturbations in the
system are determined by the zeros of the first Poincaré–Pontryagin–Melnikov integral I .
We show that the orbits of the unperturbed system are elliptic curves, and I is a complete
elliptic integral. Then using Picard–Fuchs equations and the Petrov’s method (based on
the argument principle), we set an upper bound of eight for the number of limit cycles
produced from the period annulus around the center.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The conditions for a plane polynomial quadratic vector field to have a center are known since the beginning of the last
century (Dulac (1908), Kapteyn (1912)). In the space of all quadratic systems, the systems with a center form a union of
four irreducible affine algebraic sets:

• Hamiltonian (Q H
3 );

• reversible (Q R
3 );

• generalized Lotka–Volterra (Q LV
3 );

• codimension-four set (Q 4)

(the subscripts indicate the co-dimension of each algebraic subset), see Żoła̧dek [11] for a modern proof. Strictly speaking,
the above classification concerns only the centers themselves. There are quadratic systems with two centers, one of them
in Q R

3 and the other in Q R
3 ∩ Q LV

3 , see [7, p. 148]. In the present paper we are interested in the maximal number of limit
cycles which can emerge from the periodic orbits of a quadratic system with a center, after a small quadratic perturbation.
The corresponding number is the cyclicity of the related open period annulus. A quadratic center is said to be generic,
if it does not belong simultaneously to two of the above algebraic sets. The cyclicity of the period annulus of a generic
center depends on the number of the zeros of the first Poincaré–Pontryagin–Melnikov function, while in the general case a
higher-order analysis is needed. The corresponding higher-order functions were determined in Iliev [7].

The cyclicity of the open annuli in the generic Lotka–Volterra case (Q LV
3 ) has been studied by Żoła̧dek [11], and in

the generic Hamiltonian case (Q H
3 ) by Horozov–Iliev [6] and Gavrilov [4] (for the codimension-one generic cases from

the bifurcation diagram of Q H
3 see [1] and the references therein). Almost nothing is known about the generic reversible
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case (Q R
3 ) and nothing about the generic codimension-four one (Q 4). In the present paper we place an upper bound on the

cyclicity of the (unique) period annulus in the generic codimension-four case (Q 4).

Theorem 1. The cyclicity of the open period annulus surrounding the center of any generic codimension-four plane quadratic system
is less than or equal to eight.

The conjectural exact upper bound, as it is well known, is three [7,11]. To the end of this Introduction we briefly sketch
our proof. A codimension-four plane quadratic system with a center has a well-known rational first integral H . Using this
one may check that the generic complexified orbit {(x, y) ∈ C

2: H(x, y) = h} of the system is an affine elliptic curve, and
the corresponding Poincaré–Pontryagin–Melnikov function I = I(h) is a complete elliptic integral on it. This remarkable fact
(it seems to have gone unnoticed by the specialists) is the starting point of the paper. Still, a direct application of standard
techniques like in [3,4,6,9,10] does not work. Indeed, the Poincaré–Pontryagin–Melnikov function involves differential of the
third kind with residues algebraic in the parameter h (and not only polynomial, as in the usual cases). On the other hand,
it turns out that I satisfies a Picard–Fuchs equation of the form

M2 ◦ L2 ◦ L1(I) = 0

in which L1 = h d
dh −1 and L2, M2 are suitable second-order Picard–Fuchs differential operators. The role of L1 and L2 in our

approach is to annihilate the residues of the differentials involved in I . It is easy to see that I has at most as many zeros
as G = L1(I) on the interval of consideration. We shall prove further that the solution space of L2 is a Chebyshev space
(Proposition 14). This on its turn implies that if R is a function with k zeros, then each solution G of the non-homogeneous
equation L2(G) = R has at most k + 2 zeros (Proposition 2). As R = L2 ◦ L1(I) = L2(G) is in the kernel of the second-order
Picard–Fuchs operator M2, it remains to show that R has at most 6 zeros which is achieved in a standard way by making
use of the Petrov method [10], see Proposition 4.

2. Remarks about the codimension-four case

In complex coordinate z = x + iy, the system corresponding to the generic codimension-four case with a center placed
at the origin becomes

ż = −iz + 4z2 + 2|z|2 + α z̄2, α ∈ C \ R, |α| = 2.

It is well known that the codimension-four case has a first integral of the form

H(x, y) = [ϕ(x, y)]2

[ψ(x, y)]3

where ϕ and ψ are polynomials of degree tree and two, respectively. Taking α = b + ic and denoting for short

Y = cx − (2 + b)y, κ = 4

2 + b
> 1,

one can easily find the explicit form of the first integral, namely

H = [8y(1 + Y ) − 2
3 (1 + κY 3)]2

[1 − 8y + κY 2]3
.

Therefore, ϕ = 0 defines a trident curve and ψ = 0 is a parabola. Since ϕ(0,0) = − 2
3 , ψ(0,0) = 1, the period annulus

around the center is placed inside the domain Ω determined by ϕ < 0 < ψ . Taking X2 = ψ = 1 − 8y + κY 2, X > 0, then in
(x̄, ȳ) = (X, Y ) coordinates, the system has in Ω a first integral of the form

H(x̄, ȳ) = x̄−3

8(2 − b)

(
1

3
κ ȳ3 + κ ȳ2 + (

1 − x̄2) ȳ − x̄2 + 1

3

)
. (1)

(Compare to [7], where an additional rotation of the very initial coordinates takes place.) Although the change of the
variables

(x, y) �→ (x̄, ȳ)

does not define a bi-rational projective transformation (but a double ramified covering), it induces a bi-rational map
{
(x, y):

[ϕ(x, y)]2

[ψ(x, y)]3
= t

}
→ {

(x̄, ȳ): H(x̄, ȳ) = t
}
.

It is seen that the level sets of the first integral H(x̄, ȳ) are cubic plane curves and hence they are (generically) elliptic.
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For convenience, from now on, the bars over the variables x, y will be omitted. The generating function I(t),
whose zeroes correspond to limit cycles in the perturbed system, are given by the following complete elliptic integral
(cf. [7, Theorem 2(iii)])

I(t) =
∫ ∫

H(x,y)<t

x−6[μ1 + μ2 y + μ3 y3 + μ4
(
κ2 y4 − x4)]dx dy. (2)

Our main purpose in this paper is to study how many zeroes the integral I(t) can have in the open interval corresponding
to the period annulus around (1,0).

3. Picard–Fuchs systems

In this section we derive several equations satisfied by the entries of (2). We also apply several reductions to express
these integrals in the form we need. In particular, we calculate explicitly G , L2 and R we mentioned in the introduction.

We begin by introducing new variables y = y1 − 1, h = 8(2 − b)t . Then the equation H(x, y) = t where H is given by (1)
becomes (we will omit the subscript in y1)

H(x, y,h) = κ

3
y3 − x2 y − hx3 − (κ − 1)y + 2

3
(κ − 1) = 0. (3)

By using (3), it is not hard to verify that the period annulus around the center at (1,1) corresponds to the levels h from
the interval (− 2

3 ,− 2
3
√

κ
).

Let us denote for i, j ∈ Z

Ii, j(h) =
∫ ∫

H(x,y,h)<0

xi y j dx dy, h ∈
(

−2

3
,− 2

3
√

κ

)
.

Then multiplying (3) by xi y j+1 dx, respectively by xi+1 y j dy and integrating, we obtain the identities

κ

3
( j + 4)Ii, j+3 − ( j + 2)Ii+2, j+1 − h( j + 1)Ii+3, j − (κ − 1)( j + 2)Ii, j+1 + 2

3
(κ − 1)( j + 1)Ii, j = 0, (4)

κ

3
(i + 1)Ii, j+3 − (i + 3)Ii+2, j+1 − h(i + 4)Ii+3, j − (κ − 1)(i + 1)Ii, j+1 + 2

3
(κ − 1)(i + 1)Ii, j = 0. (5)

Multiplying (4) by i + 4 and (5) by j + 1 and subtracting, we come to

κ(i + j + 5)Ii, j+3 − (i + j + 5)Ii+2, j+1 − (κ − 1)(i + 3 j + 7)Ii, j+1 + 2(κ − 1)( j + 1)Ii, j = 0.

In particular, for i = −6 and j = 1 one obtains I−6,2 = I−6,1. Therefore, the function in (2) takes the form

I(h) = μ1 I−6,0 + μ2 I−6,1 + μ3 I−6,3 + μ4
(
κ2 I−6,4 − I−2,0

)
(6)

with all constants μi ∈ R independent.
Let us apply to (3) and (6) the change of variables (x, y) → (x−1, yx−1). Then (3) reduces to

H(x, y) ≡ 2

3
(κ − 1)x3 − (κ − 1)x2 y + κ

3
y3 − y = h, (7)

Ii, j(h) becomes −I−i− j−3, j(h) and (6) becomes

I(h) =
∫ ∫

H(x,y)<h

(
μ1x3 + μ2x2 y + μ3 y3 + μ4

(
κ2 y4 − 1

x

))
dx dy. (8)

By (7), H(x, y) = −H(−x,−y), therefore the phase portrait of the related Hamiltonian system has a central symmetry with
respect to the origin.

Next, we can use the following identities:

I1,2 = I2,1 = 3h

10
I0,0 + I1,0 + 1

5
I0,1,

I3,0 = 3κh

10(κ − 1)
I0,0 + I1,0 + κ

5(κ − 1)
I0,1,

I0,3 = 3(κ + 1)h

10κ
I0,0 + κ − 1

κ
I1,0 + κ + 6

5κ
I0,1,

I−1,4 = 6h

5κ
I−1,1 + 9

5κ2
I−1,0 + 9(κ − 1)

5κ2
I1,0 + κ − 1

κ
I1,2
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to transform (8) into

I(h) = μ1hI0,0(h) + μ2 I1,0(h) + μ3 I0,1(h) + μ4
[
2I−1,0(h) + 3κhI−1,1(h)

]
. (9)

Following the standard way [6], one can derive a Picard–Fuchs system for the entries in (9). Its explicit form is as follows.

I0,0 = 3h

2
I ′0,0 + I ′0,1,

I1,0 = hI ′1,0 + 2

3
I ′1,1,

I0,1 = 2

3κ
I ′0,0 + hI ′0,1 + 2(κ − 1)

3κ
I ′1,1,

I1,1 = 3h

8
I ′0,0 + 1

2
I ′1,0 + 1

4
I ′0,1 + 3h

4
I ′1,1,

I−1,0 = 3hI ′−1,0 + 2I ′−1,1,

I−1,1 = κ − 1

κ
I ′1,0 + 1

κ
I ′−1,0 + 3h

2
I ′−1,1.

By using the above system, we see that

hI ′ − I = G(h), G(h) = (
μ1h2 + μ3

)
I ′0,0 + μ2 I ′1,1 + μ4

[−4hI ′−1,0 + (
3κh2 − 4

)
I ′−1,1

]
.

Therefore

I(h) = h

h∫

− 2
3

ξ−2G(ξ)dξ

and I(h) has at most as much zeroes as G(h) in (− 2
3 ,− 2

3
√

κ
). By the same system, the integrals I ′0,0 and I ′1,1 satisfy

−3κhI ′0,0 = (
9κh2 − 4

)
I ′′0,0 − 4(κ − 1)I ′′1,1,

−3κhI ′1,1 = (
9κh2 − 4

)(
I ′′0,0 − I ′′1,1

)
, (10)

and the integrals I ′−1,0 and I ′−1,1 satisfy

I ′−1,0 = −3h

2
I ′′−1,0 − I ′′−1,1,

I ′−1,1 = − 2

κ
I ′′−1,0 − 3hI ′′−1,1 + 4(κ − 1)

3κh
I ′′1,1.

Hence, the integral J = −4hI ′−1,0 + (3κh2 − 4)I ′−1,1 satisfies the second-order equation

L2(h) J = 4

3
(κ − 1)

[
h
(
9κh2 − 4

)
I ′′′1,1 + (

6κh2 + 8
)

I ′′1,1

]
,

with

L2(h) = 5κh − (
9κh2 − 8

) d

dh
+ h

(
9κh2 − 4

) d2

dh2
.

Therefore, a similar equation L2(h)G = R (with a right-hand side R depending linearly on μi , I ′0,0 and I ′1,1) also holds. To
calculate R explicitly, we first use (10) to obtain the identities

I ′′0,0 = −3h(9κh2 − 4)I ′0,0 + 12(κ − 1)hI ′1,1

(9h2 − 4)(9κh2 − 4)
,

I ′′1,1 = −3hI ′0,0 + 3hI ′1,1

9h2 − 4
,

I ′′′0,0 = 324κh4 + (72κ − 108)h2 − 48

(9h2 − 4)2(9κh2 − 4)
I ′0,0 − 12(κ − 1)[243κh4 − 36(κ + 1)h2 − 16]

(9h2 − 4)2(9κh2 − 4)2
I ′1,1,

I ′′′1,1 = 27h2 + 12

(9h2 − 4)2
I ′0,0 − 162κh4 + (144κ − 108)h2 − 48

(9h2 − 4)2(9κh2 − 4)
I ′1,1.

A direct calculation then yields

R(h) = h[(a0 + a1h2 + a2h4 + a3h6)I ′0,0 + (b0 + b1h2 + b2h4)I ′1,1]
(9h2 − 4)2(9κh2 − 4)

, (11)
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with some constants a j , b j depending linearly on μi . Below, we shall use the explicit formulas for G , R , L2 just derived in
order to prove our main result.

4. Proof of Theorem 1

The proof of Theorem 1 follows from the next four propositions, the first two of them being probably known. Let V be
a finite-dimensional vector space of functions, real-analytic on an open interval (a,b).

Definition 1. We say that V is a Chebyshev space, provided that each non-zero function in V has at most dim(V )− 1 zeros,
counted with multiplicity.

Let S be the solutions space of a second-order linear analytic differential equation

x′′ + a1(t)x′ + a2(t)x = 0 (12)

on an open interval (a,b).

Proposition 1. The solution space S of (12) is a Chebyshev space on the interval (a,b) if and only if there exists a nowhere vanishing
solution x0 ∈ S (x0(t) �= 0, ∀t ∈ (a,b)).

Remark 1. The question of existence of a non-vanishing solution is a recurrent question in many papers concerning zeros of
Abelian integrals, see e.g. [2,5,9]. A Chebyshev space V in our sense is sometimes called an extended Chebyshev space, and it
is said to be an extended complete Chebyshev space, provided that it has a complete flag of extended Chebyshev sub-spaces,
see e.g. [8]. In the case when dim(V ) = 2 the Chebyshev space V (in our sense) is an extended complete Chebyshev one
if and only if it has a nowhere vanishing function. Therefore the notions of Chebyshev space (in our sense) and extended
complete Chebyshev space (in the sense of [8]), as far as applied to the solution space of (12), coincide.

Proposition 2. Suppose the solution space of the homogeneous equation (12) is a Chebyshev space and let R be an analytic function
on (a,b) having k zeros (counted with multiplicity). Then every solution x(t) of the non-homogeneous equation

x′′ + a1(t)x′ + a2(t)x = R(t) (13)

has at most k + 2 zeros on (a,b).

Proposition 3. The solution space S associated to the differential operator

L2(h) = 5κh − (
9κh2 − 8

) d

dh
+ h

(
9κh2 − 4

) d2

dh2
, κ > 1, (14)

is a Chebyshev system on the interval (−∞,− 2
3
√

κ
).

Let R = L2 ◦ L1(I), where I is the Abelian integral (9) and L1 = h d
dh − 1. A suitable for our purposes expression for R is

obtained in (11).

Proposition 4. The Abelian integral R(h) has at most 6 zeros (counted with multiplicity) on the interval (− 2
3 ,− 2

3
√

κ
), κ > 1.

Proof of Theorem 1, assuming Propositions 1–4. The Abelian integral L1(I), I given by (9), is a solution of the non-
homogeneous equation L2(G) = R . According to Proposition 4, Proposition 3 and Proposition 2 the integral L1(I)(h) has
at most 8 zeros on the interval (−∞,− 2

3
√

κ
). The integral I(h) has the same number of zeros as L1(I)(h) on the same

interval. Finally, the functions (9), (8), (6) and (2) have the same number of zeros in the respective intervals. �
To the end of the paper we prove the above Propositions 1–4.

Proof of Proposition 1. Let (x1, x2) be a fundamental set of solutions of (12) and consider the map

p : (a,b) → S1 = P
1
R: t �→ [

x1(t) : x2(t)
]
.

As the Wronskian of x1, x2 is non-vanishing, then the map p is non-degenerate (dp(t) �= 0) and hence monotonous.
The solution space of (12) is Chebyshev if and only if the map p is injective. The solution space of (12) contains a

nowhere vanishing solution if and only if the map p is not surjective.
As the circle is not homeomorphic to an open interval, then the monotonous differentiable map p cannot be surjective

and injective at the same time. It follows that if p is injective then it is not surjective. If, on the contrary, p is not surjective,
then the monotonicity of p implies that the image of (a,b) under p is an open subinterval of S1 and p is injective. �
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Proof of Proposition 2. Let (x1, x2) be a fundamental set of solutions of (12), such that x1(t) is a nowhere vanishing solu-
tion. The change of the variables x → x/x1(t) does not change the number of the zeros of the solutions of (12), which is
transformed to a linear equation with a fundamental system of solutions {1,

x2(t)
x1(t) }. As the vector space spanned by x1, x2

is Chebyshev, then the function x2(t)
x1(t) is strictly monotonous on (a,b). The change of the independent variable t → τ = x2(t)

x1(t)
is therefore regular and transforms further the above linear equation to an equation with a fundamental system of solu-
tions {1, τ }. Therefore the corresponding differential operator is a multiple of d2

dτ 2 . More precisely, the regular change of
variables

(x, t) �→ (y, τ ), y = x

x1(t)
, τ = x2(t)

x1(t)

transforms Eq. (13) to

x1

(
d

dt

x2(t)

x1(t)

)2 d2

dτ 2
y = R

(
t(τ )

)

and hence each solution of the non-homogeneous equation (13) has at most k + 2 zeros on (a,b) (counted with multiplic-
ity). �
Proof of Proposition 3. Let {δ(h): h ∈ (− 2

3 ,− 2
3
√

κ
)} be the continuous family of periodic orbits defined by {H = h}, with H

in the form (7). Then G(h) = ∫
δ(h)

ω where ω is a linear combination of elliptic differentials of the first and second kind.
Therefore the residues of ω are solutions of L2. The only residues of ω are at (0, y) where y is one of the roots of
κ
3 y3 − y = h and they are easily computed:

Res(0,y)ω = −4h + (3κh2 − 4)y

κ y2 − 1
.

For h < − 2
3
√

κ
the polynomial κ

3 y3 − y −h has one real root which we denote by y0. We shall show that the solution f (h) =
Res(0,y0)ω of L2x = 0 does not vanish in the interval (−∞,− 2

3
√

κ
). Indeed, on this interval y0(h) is a strictly increasing

function and y0(h) < −
√

5
κ = y0(− 2

3
√

κ
). It remains to show that −4h + (3κh2 − 4)y0 �= 0. The identity

−4h + (
3κh2 − 4

)
y0 = −4

(
κ

3
y3

0 − y0

)
+ (

3κh2 − 4
)

y0 = κ y0

(
3h2 − 4

3
y2

0

)

implies that f (h) = 0 on (−∞,− 2
3
√

κ
) if and only if h = 2y0/3. Now

κ

3
y3

0 − y0 = h = 2

3
y0

gives y0 = ±
√

5
κ . But y0 = y0(h) is a strictly increasing function in (−∞,− 2

3
√

κ
] and y0(− 2

3
√

κ
) = −

√
5
κ which is the

needed contradiction. Thus the solution space of L on (−∞,− 2
3
√

κ
) contains a nowhere vanishing function and hence is

a Chebyshev system. �
The above result cannot be improved, as shown by the example L = d2

dt2 .

Proof of Proposition 4. According to (11), it suffices to show that any linear combination of the form P3(h2)I ′0,0(h) +
Q 2(h2)I ′1,1(h) where P3, Q 2 are real polynomials of degree at most three and two, has at most 6 zeros. We note that
I ′0,0, I ′1,1 are complete elliptic integrals of the first and second kind respectively, satisfying the second-order Picard–Fuchs
system (10).

We introduce a new variable s ∈ (1, κ) through h = − 2
3

√
s/κ and denote by dot the differentiation with respect to s.

Also, denote for a convenience J1(s) = I ′0,0(h(s)), J2(s) = I ′1,1(h(s)). By (14) and (11), we obtain the equation

L2G ≡
[

s(1 − s)
d2

ds2
− 1

2

d

ds
− 5

36

]
G(s) = P3(s) J1(s) + Q 2(s) J2(s)

(s − κ)2(s − 1)
.

Hence, we will need information about the zeroes of the right-hand side in the interval (1, κ) ⊂ (1,∞). Eq. (10) implies
that J (s) = ( J1(s), J2(s))� satisfies the system of hypergeometric type

J (s) = 6

(
1 − s κ − 1
1 − s s − 1

)
J̇ (s)
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or equivalently

6(s − 1)(s − κ) J̇ (s) =
(

1 − s κ − 1
1 − s s − 1

)
J (s). (15)

Let us consider for any n ∈ N the vector space

Vn = {
Pn. J1 + Q n−1. J2: Pn, Q n−1 ∈ R[h], deg Pm, Q m � m

}
.

Proposition 4 follows from the following more general result.

Proposition 5. The vector space Vn is Chebyshev on the interval (1, κ): each element has at most dim Vn − 1 = 2n zeros (counted
with multiplicity).

Proof of Proposition 5. We use the Petrov method in the complex domain D = C \ (−∞,1), see [9,10]. The characteristic
exponents of (15) at 1, κ,∞ are equal to {0,0}, {0,0}, {− 1

6 , 1
6 }, respectively. The function Pn. J1 + Q n−1. J2 is holomorphic

in a neighborhood of s = κ (this value corresponds to the center of the system dH = 0, with H the symmetric Hamiltonian
given by (7)), and has a logarithmic singularity in a neighborhood of s = 1 (which corresponds to the saddle point of the
symmetric Hamiltonian system). The function J1 is a complete elliptic integral of the first kind and therefore does not
vanish. Consider the function

F (s) = Pn(s). J1(s) + Q n−1(s). J2(s)

J1(s)

which is real-analytic in the complex domain D. We apply the argument principle to the smaller domain

Dε = D ∩ {
s: |s − 1| > ε

} ∩
{

s: |s| < 1

ε

}
.

For this purpose, we consider the increase (or decrease) of the argument of F when s makes one turn along the boundary
of Dε in a positive direction. The following facts are easily deduced from the asymptotic expansions of J near the singular
points of the Fuchs system (15).

1. Along the boundary of the small disc {|s − 1| = ε} the increase of the argument of F is bounded by a value close to
zero.

2. Along the boundary of the big disc {|s| = 1
ε } the increase of the argument of F is bounded by a value close to 2πn =

2π max{n,n − 1 + 2
6 }.

3. Along the interval (−∞,1), the imaginary part of F equals

Q n−1(s) Im
J2(s)

J1(s)
= Q n−1(s)

det W (s)

| J1(s)|2
where

W (s) =
(

J1(s) J̃1(s)

J2(s) J̃2(s)

)

is a fundamental matrix of (15).
4. The determinant of the fundamental matrix W is a rational function in s and in fact a non-zero constant.

Summing up the above facts we conclude that the increase of the argument of F along the boundary of Dε is bounded
by 2n. Therefore F , and hence Pn(s). J1(s)+ Q n−1(s). J2(s) has at most 2n zeros (counted with multiplicity) in D, and hence
in (1, κ). Proposition 5, and hence Proposition 4 are proved. �

This also finishes the proof of Theorem 1.
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