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Abstract
Let � be an open, relatively compact period annulus of real analytic vector field X0 on
an analytic surface. We prove that the maximal number of limit cycles which bifurcate
from � under a given multiparameter analytic deformation Xλ of X0 is finite provided
that X0 is either a Hamiltonian or generic Darbouxian vector field.

1. Statement of the result
Let S be a real analytic surface without border (compact or not), and let X0 be a real
analytic vector field on it. An open period annulus of X0 is a union of period orbits of
X0 which is bianalytic to the standard annulus S1 × (0, 1), the image of each circle
S1 × {u} being a periodic orbit of X0.

Let Xλ, λ ∈ (Rn, 0) be an analytic family of analytic vector fields on S, and let
� be an open period annulus of X0. The cyclicity Cycl(�, Xλ) of � with respect to
the deformation Xλ is the maximal number of limit cycles of Xλ which tend to �

as λ tends to zero (see Definition 2). Clearly the vector field X0 has an analytic first
integral f in the period annulus � which has no critical points. In what follows, we
suppose that the open period annulus � is relatively compact (i.e., its closure �̄ ⊂ S

is compact).

Definition 1
We say that X0 is a Hamiltonian vector field provided that it has a first integral with
isolated critical points in a complex neighborhood of �̄. We say that X0 is a generic
Darbouxian vector field provided that all singular points of X0 in a neighborhood of
�̄ are orbitally analytically equivalent to linear saddles ẋ = λx, ẏ = −y with λ > 0.

Remark 1
Note that if X0 is a plane vector field with a first integral H as above, then

X0 = H1

(
Hy

∂

∂x
− Hx

∂

∂y

)
,
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where H1 is a nonvanishing real-analytic function in some complex neighborhood of
�. In the case when X0 is a generic Darbouxian vector field, as we see in Section 2, it
can be covered by a planar Darbouxian vector field with a first integral of the Darboux
type H = ∏n

i=1 P
λi

i for some analytic functions Pi in a complex neighborhood
of �.

The main results of the article are the following.

THEOREM 1
The cyclicity Cycl(�, Xλ) of the open period annulus � of a Hamiltonian vector field
X0 is finite.

THEOREM 2
The cyclicity Cycl(�, Xλ) of the open period annulus � of a generic Darbouxian
vector field X0 is finite.

The above theorems are a particular case of Roussarie’s conjecture (see [17],
[19, p. 23]), which claims that the cyclicity Cycl(�, Xλ) of every compact invariant
set � of X0 is finite. Indeed, Cycl(�, Xλ) ≤ Cycl(�̄, Xλ).

It is worthwhile to underline that the present article does not prove the finite
cyclicity of the closed period annulus �̄. Indeed, for this we would need to prove
the finite cyclicity of polycycles � ⊂ �̄ \ � at the boundary of the open annulus �,
which is beyond the scope of the article. If the analytic family of analytic vector fields
Xλ, λ ∈ (Rn, 0), is generic (in appropriate sense) and the period annulus is bounded
by a homoclinic loop (or one-saddle cycle), then the Roussarie’s theorem (see [16,
Theorem C], [6, Theorem 4]) implies

Cycl(�̄, Xλ) = Cycl(�, Xλ). (1)

It seems natural to expect that things would always work out this way. A counterex-
ample to (1) was given recently by Dumortier and Roussarie [6]. They constructed a
generic analytic deformation Xλ, λ ∈ (R4, 0), of a Hamiltonian vector field X0 with
a period annulus � bounded from one side by a heteroclinic loop (two-saddle cycle)
and such that

Cycl(�, Xλ) = 3 < 4 = Cycl(�̄, Xλ).

The inequality is due to the presence of an alien limit cycle that does not correspond
to a zero of the Poincaré-Pontryagin function Mk (see (2)).

To prove the finite cyclicity of the open annulus, we note first that it suffices to
show its finite cyclicity with respect to a given one-parameter deformation Xε. This
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argument is based on Hironaka’s desingularization theorem (see [20], [8]). Consider
the first return map associated to � and a one-parameter deformation Xε:

t → t + εkMk(t) + · · · , t ∈ (0, 1), ε ∼ 0, k ≥ 1. (2)

The cyclicity of the open period annulus � is finite if and only if the Poincaré-
Pontryagin function Mk has a finite number of zeros in (0, 1). Of course, we do not
suppose that k = 1 (in which case M1 is an Abelian integral and the result is well
known). It has been shown in [7] that Mk , k ≥ 1, allows an integral representation as
a linear combination of iterated path integrals along the ovals of � of length at most
k. The finite cyclicity follows then from the nonaccumulation of zeros of such iterated
integrals at 0 and 1. The proof of this fact is different in the Hamiltonian and in the
generic Darbouxian case.

In the Hamiltonian case we observe that Mk satisfies a Fuchsian equation (see
[9], [7]). We prove in Section 4 that the associated monodromy representation is
quasi-unipotent, which implies the desired property.

In the Darbouxian case the above argument does not apply. (There is no Fuchsian
equation satisfied by Mk .) We prove the nonoscillation property of an iterated integral
by making use of its Mellin transformation, along the lines of [14]. It seems to be
difficult to remove the genericity assumption in the Darbouxian case. (Without this
the Hamiltonian case is a subcase of the Darbouxian one.)

Theorem 2 should be considered in the context of recent results dealing with gen-
eralization of the Varchenko-Khovanskii result (see [22], [13]) to integrable systems
with generalized Darboux integral. The ultimate goal is to prove that for the pseudo-
Abelian integrals corresponding to Darboux integrable systems with the first integral
being the product of real powers of polynomials of degree at most m, the number of
zeros is bounded from above by a constant depending only on m and degree of the
form ω.

The main result of [14] (see also [3]) claims local boundedness of the num-
ber of zeros of pseudo-Abelian integrals for generic Darboux integrable systems,
where genericity conditions are exactly the same as in Theorem 2. Generalization
of this result to perturbations of various degeneracies of Darboux systems would
imply global boundedness of the number of zeros of pseudo-Abelian integrals for the
aforementioned class of Darboux integrable systems. In [4] this is proved for gener-
alized Darboux integrable systems with the first integral of type eQ

∏
P

λi

i of generic
type.

Recently the existential upper bound in the Varchenko-Khovanskii theorem was
replaced by a constructive double exponential one (see [2]). There is no hope at the
moment of providing any effective upper bound for the number of zeros of pseudo-
Abelian integrals.
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The full generalization of the result of [14] to iterated pseudo-Abelian integrals
should claim uniform boundedness of the number of zeros of an iterated integral
corresponding to an analytic family of Darboux integrable systems. Unfortunately, it
cannot be achieved by simple generalizations of the above arguments: unlike pseudo-
Abelian integrals, iterated pseudo-Abelian integrals are not annihilated by a finite
number of applications of Petrov operators. This can be immediately seen from the
fact that poles of the Mellin transforms of iterated integrals do not form a finite union
of arithmetic progressions. We strongly believe that the local boundedness holds, but
it seems that the tools available at the moment do not provide this result.

The article is organized as follows. In Section 2 we recall the definition of cyclicity
and the reduction of multiparameter to one-parameter deformations. In Section 3 we
reduce the case of a vector field on a surface to the case of a plane vector field.

Theorems 1 and 2 are proved in Sections 4 and 5, respectively.

2. Cyclicity and nonoscillation of the Poincaré-Pontryagin-Melnikov function

Definition 2
Let Xλ be a family of analytic real vector fields on a surface S, depending analytically
on a parameter λ ∈ (Rn, 0), and let K ⊂ S be a compact invariant set of Xλ0 . We
say that the pair (K, Xλ0 ) has cyclicity N = Cycl((K, Xλ0 ), Xλ) with respect to the
deformation Xλ, provided that N is the smallest integer having the property; there exist
ε0 > 0 and a neighborhood VK of K , such that for every λ such that ‖λ−λ0‖ < ε0, the
vector field Xλ has no more than N limit cycles contained in VK . If K̃ is an invariant
set of Xλ0 (possibly noncompact), then the cyclicity of the pair (K̃, Xλ0 ) with respect
to the deformation Xλ is

Cycl
(
(K̃, Xλ0 ), Xλ

) = sup
{
Cycl((K, Xλ0 ), Xλ) : K ⊂ K̃, K is a compact

}
.

The above definition implies that when K̃ is an open invariant set, then its cyclicity
Cycl((K̃, Xλ0 ), Xλ) is the maximal number of limit cycles which tend to K̃ as λ tends
to zero. To simplify the notation, and if there is no danger of confusion, we write
Cycl(K, Xλ) in place of Cycl((K, Xλ0 ), Xλ).

Example 1
Let fε(t) = εe−1/t (tsin(1/t) − ε), fε(0) = 0. One can easily see that fε(t) = 0 has a
finite number of isolated positive zeros for each ε, and this number tends to infinity as
ε → 0. Below we construct a germ Xε of a vector field having a monodromic planar
singular point at the origin, with a return map x → x + fε(x). Since isolated singular
points of the return map correspond to limit cycles, we see that the vector field Xε has
a finite number of limit cycles for each ε, and this number tends to infinity as ε tends
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to zero. So the cyclicity of the open period annulus � = R2 \ {0} is infinity. Note,
however, that the vector field Xε is not analytic at the origin.

Here is a construction. On the strip S = [0, δ] × R, consider the equivalence
relation (r, φ) ∼ (r + fε(r), φ − 2π). Let p : S → S/ ∼ be the corresponding
projection, and define X̃ε = p∗(∂φ). One can check that for δ small enough, a thus-
defined X̃ε is a blowup of a smooth vector field Xε defined near the origin, and the
return map of Xε is as prescribed by construction.

Let � ⊂ S be a cross-section of the period annulus � which can be identified to the
interval (0, 1). Choose a local parameter u on �. Let u 
→ P (u, λ) be the first return
map, and let δ(u, λ) = P (u, λ) − u be the displacement function of Xλ. For every
closed interval [a, b] ⊂ �, there exists ε0 > 0 such that the displacement function
δ(u, λ) is well defined and analytic in {(u, λ) : a − ε0 < u < b + ε0, ‖λ‖ < ε0}. For
every fixed λ there is a one-to-one correspondance between isolated zeros of δ(u, λ)
and limit cycles of the vector field Xλ.

Let u0 ∈ �, and let us expand

δ(u, λ) =
∞∑
i=0

ai(λ)(u − u0)i .

Definition 3 (Bautin ideal; [18, Section 2], [19, Section 4.3.1])
We define the Bautin ideal I of Xλ to be the ideal generated by the germs ãi of ai in
the local ring O0(Rn) of analytic germs of functions at 0 ∈ Rn.

This ideal is Noetherian. Let ϕ̃1, ϕ̃2, . . . , ϕ̃p be a minimal system of its generators,
where p = dimR I/MI and M is the maximal ideal of the local ring O0(Rn). Let
ϕ1, ϕ2, . . . , ϕp be analytic functions representing the generators of the Bautin ideal in
a neighborhood of the origin in Rn.

PROPOSITION 1 (Roussarie [19, Section 4.3.2])
The Bautin ideal does not depend on the point u0 ∈ �. For every [a, b] ⊂ �, there is
an open neighborhood U of [a, b] × {0} in R × Rn and analytic functions hi(u, λ) in
U , such that

δ(u, λ) =
p∑

i=0

ϕi(λ)hi(u, λ). (3)

The real vector space generated by the functions hi(u, 0), u ∈ [a, b] is of dimension
p.
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Suppose that the Bautin ideal is principal and generated by ϕ(λ). Then

δ(u, λ) = ϕ(λ)h(u, λ), (4)

where h(u, 0) �≡ 0. The maximal number of the isolated zeros of h(u, λ) on a closed
interval [a, b] ⊂ (0, 1) for sufficiently small |λ| is bounded by the number of the zeros
of h(u, 0), counted with multiplicity, on [a, b]. This follows from the Weierstrass
preparation theorem, properly applied (see [8]). Therefore, to prove the finite cyclicity
of � it is enough to show that h(u, 0) has a finite number of zeros on (0, 1). Consider a
germ of analytic curve ξ : ε 
→ λ(ε), λ(0) = 0, as well as the analytic one-parameter
family of vector fields Xλ(ε). The Bautin ideal is principal, δ(u, ε) = ϕ(ε)h(u, ε), and

δ
(
u, λ(ε)

) = εkMk(u) + . . . , Mk(u) = c h(u, 0), c �= 0,

where the dots stay for terms containing εi , i > k. Mk is the so-called kth-order higher
Poincaré-Pontryagin-Melnikov function associated to the one-parameter deformation
Xλ(ε) of the vector field X0. Therefore, if the cyclicity of the open period annulus is
infinite, then Mk has an infinite number of zeros on the interval (0, 1).

Of course, in general the Bautin ideal is not principal. However, by making use
of the Hironaka’s theorem, we can always principalize it. More precisely, after several
blowups of the origin of the parameter space, we can replace the Bautin ideal by an
ideal sheaf that is principal (see [8] for details). This proves the following.

PROPOSITION 2
If the cyclicity Cycl(�, Xλ) of the open period annulus � is infinite, then there exists
a one-parameter deformation λ = λ(ε), such that the corresponding higher-order
Poincaré-Pontryagin-Melnikov function Mk has an infinite number of zeros on the
interval (0, 1).

In Sections 3 and 4 we prove the nonoscillation property of Mk in the Hamiltonian
and the Darbouxian cases (under the restrictions stated in Theorem 2).

3. Reduction to the planar vector field case
Let X0 be a real analytic vector field on a real analytic surface S. Let � be an open
period annulus of X0 with compact closure. Let the map

τ : � → S1 × (0, 1)

be a bianalytic isomorphism such that δt = τ−1(S1 × {t}) is a closed orbit of X0. We
assume that X0 is either Hamiltonian or generalized Darbouxian in some neighborhood
of the closure �̄ of �. Theorems 1 and 2 claim that cyclicity of � in any family of
analytic deformation Xλ of X0 is finite.
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This section is devoted to the reduction of this general situation to the case of
a vector field X0 on R2 of Hamiltonian or Darboux type near its polycycle. Then
Theorems 1 and 2 follow from Theorems 3 and 4.

First, note that it is enough to prove finite cyclicity of τ−1(S1 × (0, ε)) only.
Indeed, finite cyclicity of τ−1(S1 × [ε, 1 − ε]) follows from Gabrielov’s theorem, and
finite cyclicity of τ−1(S1 × (1 − ε, 1)) can be reduced to the above by replacing t by
1 − t .

Consider the Hausdorf limit � = limt→0 τ−1(S1 × {t}). It is a connected union
of several fixed points a1, . . . , an of X0 (not necessarily pairwise different) and orbits
�1, . . . , �n of X0 such that �i exits from ai and enters ai+1 (where an+1 denotes a1).

From now on we consider only a sufficiently small neighborhood U of �. We
assume that U ∩ � = τ−1(S1 × (0, ε)), and we denote this intersection again by �.
We consider first the Darbouxian case. Note that � cannot consist of just one singular
point of X0 by assumptions about linearizability of singular points of X0 in this case.

LEMMA 1
Assume that Theorem 2 holds if U is orientable and all ai are different. Then Theorem 2
holds in full generality.

Proof
Assume that for some real analytic surface Ũ there is an analytic mapping π : Ũ → U

which is a finite covering on �. Then the cyclicity of � for Xλ is the same as the
cyclicity of π−1(�) for the lifting Xλ to Ũ . The claim of the lemma follows from this
principle applied to two types of coverings.

First, taking a double covering of U as Ũ , we can assume that U is orientable.
Second, let U be represented as a union of neighborhoods Ui of ai together

with neighborhoods Vi of �i . Glue Ũ as Ũ = Ũ1 ∪ Ṽ1 ∪ · · · ∪ Ṽn, where Ũi are
bianalytically equivalent to Ui and disjoint, and Ṽi are bianalytically equivalent to Vi ,
with natural glueing of Ũi to Ṽi , of Ṽi to ˜Ui+1, and of Ũ1 to Ṽn (see Figure 1). In other
words, π : Ũ → U is one-to-one away from ai and ki-to-one in a neighborhood of ai

if ai appears ki times in the list {a1, . . . , an}. Evidently, π is one-to-one on � and so
is bianalytic. �

We now define a first integral H of X0 in U . Take any smooth point a on some side
γ1 of �, and let H be a local first integral of X0 in a neighborhood Ua of a such that
H (a) = 0 and dH (a) �= 0. Since U is orientable, � lies from one side of �, and
we can assume that intersection of Ua with each cycle δt is connected. This allows us
to extend H to a first integral of X0 defined on � ∩ U . Changing the sign of H if
necessary, we can assume that H > 0 on �∩Ua . We define H (�) = 0 by continuity.
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a2

a1

a1 � a2

π

Figure 1. Proof of Lemma 1

LEMMA 2
Extension of H to �∩U by flow of X0 can be extended to a multivalued holomorphic
function defined in a neighborhood of � in a complexification of U .

Proof
First, H is analytic in some neighborhood of �1, as it is an analytic function extended
by analytic flow of X0. Choose local linearizing coordinates (x, y) near a2 in such a
way that �1 = {y = 0}. By assumption, yxμ is the local first integral of X0 near a2.
Therefore H = f (yxμ), and restricting to a transversal x = x0 � 1, one can see that
f is analytic and invertible. Therefore H can be extended to a neighborhood of a2.
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Moreover, (f −1(H ))1/μ is an analytic local first integral near the point y = 1
of �2. Therefore it can be extended to a neighborhood of �2 (here we use that U is
orientable, so �2 is different from �1) and, as above, to a neighborhood of a3 (here we
use that a2 �= a3), and so on. �

Note that from the above construction it follows that near each �i the first integral
H is equal, up to an invertible function, to xλi , where {x = 0} is a local equation of
γi . Also, near any singular point of � the first integral H is equal, up to an invertible
function, to xλyμ.

COROLLARY 1
The one-form dH

H
is a meromorphic one-form in U with logarithmic singularities only.

Assume that n ≥ 3. One can easily construct a C∞-isomorphism of a sufficiently
small neighborhood U of � with a neighborhood of a regular n-gon in R2 in such a
way that the image of � ∩ U lies inside the n-gon and image of � coincides with the
n-gon. Due to [10], some neighborhood UC of U in its complexification is a Stein
manifold. This implies that this isomorphism can be chosen to be bianalytic. Similarly,
for n = 2 one can map bianalytically a neighborhood of U to a union of two arcs
{x2 + (|y| + 1)2 = 2} ⊂ R2 (which, for the rest of the article, is called a regular
2-gon).

We transfer everything to the plane using this isomorphism and denote the images
on the plane of the previously defined objects by the same letters. The first integral
H takes the form H = H1

∏n

i=1 P
λi

i , where Pi are analytic functions in U with
{Pi = 0} = �i , H1 is an analytic function nonvanishing in its neighborhood U , and
λi > 0. Note that H > 0 in the part of U lying inside the n-gon. Further, we assume
that H1 ≡ 1, so H = ∏

P
λi

i . (One can achieve this by, e.g., taking P1H
1/λ1

1 instead
of P1.)

The family Xλ becomes a family of planar analytic vector fields defined in a
neighborhood U of a regular n-gon � ⊂ R2, and X0 has a first integral H of Darboux
type in U . Let Xε = Xλ(ε) be a one-parametric deformation of X0 as in Proposition 2.
Define meromorphic forms ω2, ωε as

ω2(X0, ·) = dH

H
, ω2(Xε, ·) = X0 + ωε. (5)

According to [7, Theorem 2.1], Mk can be represented as a linear combination of
iterated integrals over {H = t} of forms which are combinations of Gauss-Manin
derivatives of ωε.

Recall that the Gauss-Manin derivative of a form η is defined as a form η′ such
that dη = d(log H )∧η′. In general, η′ cannot be uniquely defined from this equation,
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though its restrictions to {H = t} are defined unambiguously. However, since UC is
Stein, in our situation one can choose a meromorphic in U representative of η′, with
poles on �̆ only (where �̆ is the union of lines containing sides of �).

Therefore Theorem 2 follows from the next claim.

THEOREM 3
Let H = ∏n

i=1 P
λi

i be as above, and let γ (t) ⊂ {H = t} be the connected component
of its level set lying inside �. Zeros of polynomials in iterated integrals I (t) =∫

γ (t) ω1 · · · ωk corresponding to meromorphic one-forms ω1, . . . , ωk with poles in �̆

cannot accumulate to zero.

From the above discussion it is clear that Theorem 1 follows in its turn from the
following.

THEOREM 4
Let

X0 = Hy

∂

∂x
− Hx

∂

∂y
,

where H is a real analytic function with isolated singularities in some complex
neighborhood of the closed period annulus �̄ = {γ (t) : 0 ≤ t ≤ 1}, where γ (t) ⊂
{H = t} is the connected component of the level set of H lying inside �. Zeros
of the first nonvanishing Poincaré-Pontryagin function Mk corresponding to a one-
parameter analytic deformation Xε of X0 cannot accumulate to zero.

4. Nonoscillation in the Hamiltonian case
Theorem 4 follows from the next two results.

THEOREM 5 ([7], [9, Theorem 2])
The Poincaré-Pontryagin function Mk satisfies a linear differential equation of Fuchs
type in a suitable complex neighborhood of 0 ∈ C.

THEOREM 6
The local monodromy operator at the origin of the Fuchs equation mentioned in
Theorem 5 is quasi-unipotent.

Let us recall that an endomorphism is called unipotent if all its eigenvalues are
equal to 1 and called quasi-unipotent if all of them are roots of the unity. The above
theorems imply that the Poincaré-Pontryagin-Melnikov function has a representation
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in a neighborhood of u = 0:

Mk(u) =
N∑

i=0

N∑
j=0

uμi
(
log(u)

)j
fij (u),

where N ∈ N, μj ∈ Q, and fij are functions analytic in a neighborhood of u = 0.
This shows that the zeros of Mk|(0,1) do not accumulate to zero. Of course, similar
arguments hold in a neighborhood of u = 1, so Mk has a finite number of zeros on
(0, 1). This completes the proof of Theorem 2 in the Hamiltonian case. To the end
of the section we prove Theorem 6. The open real surface S is analytic and hence
possesses a canonical complexification. Similarly, any analytic family of analytic
vector fields Xλ is extended to a complex family of vector fields, depending on a
complex parameter. In this section, by abuse of notation, the base field is C. A real
object and its complexification are denoted by the same letter.

Let U ⊃ �̄ be an open complex neighborhood of �̄ in which the complexified
vector field X0 has an analytic first integral f with isolated critical points. The
restriction of f on the interval (0, 1) (after identifying � to S1 × (0, 1)) is a local
variable with finite limits at 0 and 1. Therefore we may suppose that f (0) = 0,
f (1) = 1, and the restriction of f to (0, 1) is the canonical local variable on (0, 1) ⊂ R.
The function f defines a locally trivial Milnor fibration in a neighborhood of every
isolated critical point. There exists a complex neighborhood U of �̄ in which F has
only isolated critical points. Moreover, the compactness of �̄ implies that there exists
a complex neighborhood D ⊂ C of the origin, homeomorphic to a disk, such that the
fibration

U ∩ {f −1(D \ {0})} f→ D \ {0} (6)

is locally trivial, and the fibers f −1(t) ∩ U are open Riemann surfaces homotopy
equivalent to a bouquet of a finite number of circles. Consider a one-parameter analytic
deformation Xε of the vector field X0. As f is a first integral of X0, there exists a
unique symplectic two-form ω2, such that

ω2(X0, ·) = df.

Indeed, if in local coordinates

X0 = a
∂

∂x
+ b

∂

∂y
,
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then X0 · df = 0 implies (a, b) = λ(fy, −fx), where λ is analytic in U and nonvan-
ishing in �. It follows that

ω2 = dx ∧ dy

λ
.

Define a unique meromorphic one-form ωε by the formula

ω2(Xε, ·) = df + ωε.

The one-form ωε is meromorphic in U , depends analytically on ε, and ω0 = 0. Its
pole divisor does not depend on ε. Indeed, in the local variables above, it is defined
by λ = 0. Therefore ωε = ∑

i≥1 εiωi , where ωi are given meromorphic one-forms
in U with a common pole divisor which does not intersect the period annulus �. In
the complement of the singular locus of Xε, the vector field Xε and the one-form
df + ωε define the same foliation and therefore define the same first return map
associated to �. Denote this map by P (t, ε), where t ∈ (0, 1) is the restriction of f

to a cross-section of the period annulus �. (This does not depend on the choice of the
cross-section.) We have

P (t, ε) = t +
∑
k≥1

εkMk(t).

On each leaf of the foliation defined by Xε, we have df = −ωε, which implies

M1(t) =
∫

γt

ω1,

where {γt}t is the family of periodic orbits (with appropriate orientation) of X0,
� = ∪t∈(0,1)γt (see [15]). Thus the first Poincaré-Pontryagin-Melnikov function is an
Abelian integral, and its monodromy representation is straightforward. Namely, the
meromorphic one-form ω1 restricts to a meromorphic one-form on the fibers of the
Minlor fibration (6). We may also suppose that ω1|f −1(t) has a finite number of poles
{Pi(t)}i (after choosing appropriately the domain U ). Denote

�t = U ∩ {
f −1(t) \ {Pi(t)}i

}
.

The Milnor fibration (6) induces a representation

Z = π1(D \ {0}, ∗) → Aut
(
H1(�t, Z)

)
, (7)

which implies the monodromy representation of M1. Suppose first that ω1 is analytic
in U . It is well known that the operator of the classical monodromy of an isolated
critical point of an analytic function is quasi-unipotent (see, e.g., [12]). Therefore the
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representation in Aut(H1(U∩{f −1(t)}, Z)) of a small loop about zero in π1(D\{0}, ∗)
is quasi-unipotent. More generally, let ω1 be meromorphic one-form with a finite
number of poles on the fibers U ∩ {f −1(t)}. A monodromy operator permutes the
poles, and hence an appropriate power of it leaves the poles fixed. Therefore this
operator is quasi-unipotent too, and Theorem 5 is proved in the case M1 �= 0. Of
course, it is well known that an Abelian integral has a finite number of zeros (see [13],
[22]).

Let Mk be the first nonzero Poincaré-Pontryagin-Melnikov function. Its universal
monodromy representation was constructed in [9, Section 2.1]. For the convenience
of the reader, we reproduce it here. Recall first that Mk(t) does not depend on the
choice of cross-section of the period annulus and that the first return map P (t, ε) does
not have this property. Equivalently, Mk(t) depends on the free homotopy class of
the loop γt in π1(�t ) and the fact that this property does not hold true for the first
return map P (t, ε) (which depends on the homotopy class of γt in π1(�t, ∗), with a
fixed initial point). Let F = π1(�t, ∗) be the fundamental group of �t . It is a finitely
generated free group. Let O ⊂ π1(�t ) be the orbit of the loop γt under the action of
Z = π1(D \ {0}, ∗) induced by (6). The preimage of the set O under the canonical
map

F = π1(�t, ∗) → π1(�t )

is a normal subgroup of F which we denote by G. The commutator subgroup (G, F ) ⊂
F is the normal subgroup of F generated by commutators (g, f ) = g−1f −1gf . The
Milnor fibration (6) induces a representation

Z = π1(D \ {0}, ∗) → Aut
(
G/(G, F )

)
. (8)

According to [9, Theorem 1], the monodromy representation of Mk is a subrepresen-
tation of the monodromy representation dual to (8). Unfortunately the free Abelian
group F/(G, F ) is not necessarily of finite dimension. To obtain a finite-dimensional
representation, we use the fundamental fact that Mk has an integral representation as
an iterated path integral of length k (see [7, Theorem 2.1]).

To use this, define by induction Fi+1 = (Fi, F ), F1 = F . We later consider the
associated graded group

grF =
∞⊕
i=1

griF, griF = Fi/Fi+1. (9)

It is well known that an iterated integral of length k along a loop contained in Fk+1

vanishes identically. Therefore, to study the monodromy representation of Mk , we
truncate with respect to Fk+1 and obtain a finite-dimensional representation. Namely,



14 GAVRILOV and NOVIKOV

for every subgroup H ⊂ F we denote

H̃ = (H ∪ Fk+1)/Fk+1.

The representation (8) induces a homomorphism

π1(C \ D, ∗) → Aut
(
G̃/(G̃, F̃ )

)
, (10)

and the monodromy representation of Mk is a subrepresentation of the representation
dual to (10) (see [7]). The Abelian group G̃/(G̃, F̃ ) is, however, finitely generated.
Indeed, the lower central series of F̃ = F̃1 is

F̃1 ⊇ F̃2 ⊇ · · · F̃k ⊇ {id},

and hence F̃ is a finitely generated nilpotent group. Each subgroup of such a group is
finitely generated too (see, e.g., [11]).

The central result of this section is the following proposition, from which Theorem
6 follows immediately.

PROPOSITION 3
The monodromy representation (10) is quasi-unipotent.

Indeed, Mk satisfies a Fuchsian equation on D, whose monodromy representation
is a subrepresentation of the representation dual to (10) (see [7, Theorem 1.1], [9,
Theorem 1]). To prove Proposition 3 we recall first some basic facts from the theory
of free groups (see, e.g., Serre [21], Hall [11]). The graded group grF (9) associated
to the free finitely generated group F is a Lie algebra with a bracket induced by the
commutator (·, ·) on F . The Milnor fibration (6) induces a representation

Z = π1(D \ {0}, ∗) → AutLie(grF ), (11)

where AutLie(grF ) is the group of Lie algebra automorphisms of grF . Let l be a
generator of π1(D \ {0}, ∗). It induces automorphisms l∗ ∈ AutLie(grF ) and l∗|grkF ∈
Aut(grkF ). We note that gr1F = H1(�t, Z), and hence l∗|gr1F is quasi-unipotent.

PROPOSITION 4
Let l∗ ∈ AutLie(grF ) be such that l∗|gr1F is quasi-unipotent. Then for every k ≥ 1, the
automorphism l∗|grkF is quasi-unipotent.

Let X = {x1, x2, . . . , xμ} be the free generators of F , and consider the free Lie
algebra LX on X. It is a Lie subalgebra of the associative noncommutative algebra of
polynomials in the variables xi with a Lie bracket [x, y] = xy − yx. The canonical
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map (x, y) 
→ [x, y] induces an isomorphism of Lie algebras grF → LX (see [21,
Theorem 6.1]). Let Lk

X ⊂ LX be the graded piece of degree k. We show that l∗|Lk
X

is quasi-unipotent. The proof is by induction. Suppose that the restriction of l∗ on
gr1F = L1

X = H1(�t, Z) is quasi-unipotent; that is, for some p, q, the restriction of
(lp∗ − id)q on gr1F is zero. The operator Var∗ = lp∗ − id is a linear automorphism but
not a Lie algebra automorphism. The identity

Var∗[x, y] = (lp∗ − id)(xy − yx) = lp∗ xlp∗ y − lp∗ ylp∗ x − xy + yx

= [Var∗x, Var∗y] + [Var∗x, y] + [x, Var∗y]

shows that the restriction of Var2q on L2
X vanishes identically. Therefore the auto-

morphism l∗ restricted to L2
X or gr2F is quasi-unipotent. The case k ≥ 3 is similar.

Proposition 4 is proved. �

According to the above proposition, for every k ∈ N there are integers mk, nk , such
that the polynomial pk(z) = (zmk − 1)nk annihilates l∗|grkF . Proposition 3 follows in
turn from the following.

PROPOSITION 5
The polynomial p = ∏k

i=1 pi annihilates l∗ ∈ Aut(G̃/(G̃, F̃ )).

Proof
Let l ∈ π1(D \ {0}, ∗). It induces an automorphism of the Abelian groups
G/(G, F ), G ∩ Fi/(G ∩ Fi, F ), Fi/Fi+1 denoted, by abuse of notation, by l∗. We
denote by pi(l∗) = (lmi∗ − id)ni the corresponding homomorphisms. It follows from
the definitions that the diagram (12) of Abelian groups is commutative. (The vertical
arrows are induced by the canonical projections.) Therefore if an equivalence class
[γ ] ∈ G/(G, F ) can be represented by a closed loop γ ∈ Fi , then pi(l∗)[γ ] can
be represented by a closed loop in Fi+1. Therefore, for every [γ ] ∈ G/(G, F ), the
equivalence class p(l∗) can be represented by a closed loop in Fk+1. In other words
p(l∗) induces the zero automorphism of Aut(G̃/(G̃, F̃ )):

Fi/(Fi, F )
pi (l∗)

�� Fi/(Fi, F )

G ∩ Fi/(G ∩ Fi, F )
pi (l∗)

��

π2

��

π1

��

G ∩ Fi/(G ∩ Fi, F )

π2

��

π1

��
G/(G, F )

pi (l∗)
�� G/(G, F )

(12)

�



16 GAVRILOV and NOVIKOV

1

1

Figure 2. Covering polycycle by linearizing charts

5. Nonoscillation in the Darboux case
In this section we prove Theorem 3. First, we consider elementary iterated integrals,
that is, the iterated integrals over the piece of the cycle lying in the linearizing charts of
the saddles. We give a representation of the Mellin transform of the elementary iterated
integral as a converging multiple series. This representation provides an asymptotic
series for the elementary iterated integral with some explicit estimate of the error (see
Theorem 7).

The general iterated integral of length k turns out to be a polynomial (depending
on X0 and k only) in elementary iterated integrals by Lemma 3. We give an analogue
of the estimates of Theorem 7 for such polynomials. This allows us to prove a quasi-
analyticity property: if the asymptotic series corresponding to the iterated integral is
zero, then the integral itself is zero. This implies Theorem 3 since the zeros of the
partial sums of the asymptotic series do not accumulate to zero (see Corollary 3).

5.1. Iterated integral as a polynomial in elementary iterated integrals
Take a neighborhood of the polycycle �, and suppose that it is so small that it can be
covered by linearizing charts of saddles and linearizing charts of saddle connections.
We fix linearizing coordinates near each saddle, and for each saddle we take two
transversals given by {x = 1} and {y = 1} in linearizing coordinates (see Figure 2).

Let γ (u), u ∈ [0, 1], be a parameterization of a cycle γ = γt ⊂ {H = t}. (We fix
some sufficiently small t > 0 for a moment.) The above transversals cut γ into several
pieces γj : those lying near the sides of the polycycle and those near the vertices.
We call these pieces elementary. Let us call the iterated integral over an elementary
piece γj an elementary iterated integral. Our immediate goal is to prove the following
lemma.

LEMMA 3
An iterated integral is a polynomial with integer coefficients in elementary iterated
integrals. The polynomial depends on the length of the iterated integral and on the
number of vertices of the polycycle only.
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Proof
Let 0 = v0 < v1 < · · · < vm < 1 be the parameterization of the ends of these pieces,
that is, of points of intersections of γt with the transversals. The iterated integral in
the parameterized form is equal to

∫
�

g1(u1) · · · gk(uk) du1 · · · duk,

where � = {0 ≤ u1 ≤ · · · ≤ uk ≤ 1} ⊂ Rk is a simplex.
Consider connected components of the complement of � to the union of hyper-

planes
⋃

i,j {uj = vi}. Each connected component can be defined as

{0 ≤ u1 ≤ · · · ≤ ui1 < v1 < ui1+1 ≤ · · · < vm < uim+1 ≤ · · · ≤ uk ≤ 1},

that is, a product �1 × · · · × �m of several simplices of smaller dimension of the
form �j = {vj < uij+1 ≤ · · · ≤ uij+1 < vj+1}. Therefore, by the Fubini theorem, the
integral of g1(u1) · · · gk(uk) over this connected component is equal to the product of
integrals

∫
�j

gij+1 · · · gij+1 duij+1 · · · duij+1 , that is, to the product of iterated elementary

integrals
∫

γj
ωij+1 · · · ωij+1 . �

5.2. Mellin transform of elementary iterated integrals
There are two types of elementary pieces: those lying in linearizing charts covering
sides of the polycycle and those lying in linearizing charts covering saddles.

Evidently, the elementary iterated integrals corresponding to the pieces of the first
type are just meromorphic functions of the parameter on the transversal, that is, of t1/λi .
We can represent these elementary integrals as a converging sum

∑
m∈Z>−M

cmtm/λi ,
and, eventually, after rescaling t , we can assume that |cm| ≤ 2−mC, where C > 0 is
some constant.

From this moment we assume that the elementary piece γ (t) lies near the saddle
{P1 = P2 = 0}. Our goal is to describe the Mellin transforms of iterated integrals∫

γ (t) ω1 · · ·ωl .
Recall that the Mellin transform of a function f (t) on the interval [0, 1] is defined

as

Mf (s) =
∫ 1

0
t s−1f (t) dt. (13)

To describe the Mellin transform of the elementary iterated integrals over γ (t), let us
introduce a generalized compensator. For l ∈ N and α = (m1, n1, . . . , ml, nl) ∈ Z2l ,
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we define �l
α(s; λ1, λ2) as

�l
α(s; λ1, λ2) =

l∏
j=0

(
s + λ−1

1

j∑
i=1

mi + λ−1
2

l∑
i=j+1

ni

)−1
. (14)

We call M−1�l
α(s; λ1, λ2) a generalized compensator. The particular case of l = 1

corresponds to the Ecalle-Roussarie compensator. The generalized compensator is a
finite linear combination of monomials of type tμ(log t)l

′
for l′ ≤ l.

The λ1, λ2 are the same until the end of this section, so for brevity we omit them
from the notation of a generalized compensator.

LEMMA 4
After some rescaling of t , the Mellin transform of an elementary iterated integral is
defined for � s big enough and is given by the formula

M

∫
ω1 · · ·ωl =

∑
α

cα�
l
α, α ∈ (Z>−M )2l

, (15)

where M is an upper bound for the order of poles of ωi on �. Moreover, |cα| ≤ 2−|α|C.

This is a straightforward generalization of the construction of [14], which corresponds
to l = 1.

Proof
In the linearizing coordinates the first integral is written as H = xλ1yλ2 , and γ (t) =
{xλ1yλ2 = t} ∩ {0 ≤ x, y ≤ 1}. The Mellin transform of the iterated integral can be
computed explicitly for monomial forms ωi = xmi−1yni dx:

M

∫
ω1 · · ·ωl

=
∫ 1

0
t s−1

∫ 1

t1/λ1

x
m1−1
1 y

n1
1

∫ 1

x1

x
m2−1
2 y

n2
2

∫ 1

x2

· · ·
∫ 1

xl−1

x
ml−1
l ynl dxl · · · dx1dt

=
∫ 1

0
t (n1+···+nl )/λ2 t s−1

∫ 1

t1/λ1

x
m1−1−n1μ

1

∫ 1

x1

· · ·
∫ 1

xl−1

x
ml−1−nlμ

l dxl · · · dx1dt

=
∫ 1

0
x

ml−1−nlμ

l

∫ xl

0
x

ml−1−1−nl−1μ

l−1 · · ·
∫ x

λ1
1

0
t (n1+···+nl )/λ2+s−1 dt · · · dxl

= λ−l
1

l∏
j=0

(
s + λ−1

1

j∑
i=1

mi + λ−1
2

l∑
i=j+1

ni

)−1
= λ−l

1 �l
α. (16)

A similar formula holds for other choices of monomial forms ωi .
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After rescaling H , we can assume that the linearizing chart covers the bidisk
{0 ≤ |x|, |y| ≤ 2}. Then the coefficients of the forms ωi are meromorphic in the
bidisk, with poles on {xy = 0} of order at most M . So ωi can be represented as a
convergent power series

ωi =
∑

m,n∈Z>−M

(
c′
i,m,nx

m−1yn dx + c′′
i,m,nx

myn−1 dy
)

(17)

with coefficients c′
i,m,n, c

′′
i,m,n decreasing as O(2−m−n). Therefore the elementary it-

erated integral can be represented as 2l sums (according to 2l choices of monomial
forms xm−1yn dx or xmyn−1 dy in (17)) of type

∑
m1,n1,...,ml ,nl∈Z

2l
>−M

(c′
1,m1,n1

· · · c′
l,ml ,nl

∫
xm1−1yn1 dx · · · xml−1ynl dx, (18)

which is a converging multiple sum of elementary iterated integrals of monomial
forms as in (16), with coefficients being products of c′

i,m,n, c
′′
i,m,n, i = 1, . . . , l and

m, n ∈ Z>−M . From (16) one gets upper bounds for the elementary iterated integrals
of monomial forms, which implies that for � s big enough one can perform the Mellin
transform termwise (due to uniform convergence of the series under the integral sign
in (13)), and we get the required formula. �

The formula (15) defines the analytic continuation of the Mellin transform of I to
the whole complex plane as a meromorphic function with poles in � = �(I ) =(−λ−1

1

)
Z>−M + (−λ−1

2

)
Z>−M . We denote it by MI as well.

For any s ∈ C, denote by ρ(s) the minimal distance from S to the set of poles
�(I ) of MI . The following estimate is the keystone of the proof since it allows us to
estimate the difference between the elementary iterated integral and the partial sum of
its asymptotic series.

LEMMA 5
Let I = ∫

ω1 · · ·ωl be an elementary iterated integral, and let C be defined as in
Lemma 4. Then |MI (s)| ≤ Cρ(s)−l .

Proof
Indeed, the absolute value of each term in the sum in (15) can be estimated from above
as |cα|ρ(s)−l , and the estimate follows from |cα| < 2−|α|C. �

Usually the inverse Mellin transform is defined as

M−1g = 1

2πi

∫
M+iR

t−sg(s) ds.
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However, for Mellin transforms of iterated integrals one can choose the contour of
integration as the boundary of {� s ≤ M < +∞, |� s| ≤ 1}, where the fast decreasing
of t−s allows us to circumvent all analytic difficulties.

LEMMA 6
The inverse Mellin transform of Mellin transforms of elementary iterated integrals
can be defined for t ∈ (0, 1) as

M−1g = 1

2πi

∫
∂�

t−sg(s) ds, � = {� s ≤ M < +∞, |� s| ≤ 1}, (19)

where M is sufficiently big.

Proof
Indeed, |�l

α(s)| ≤ 1 on �, so (15) converges uniformly on this contour, and one can
apply the transformation (19) termwise due to exponential decreasing of t−s on ∂�.
However, for each generalized compensator the transformation (19) does define the
inverse Mellin transform, as each generalized compensator is just a rational function
in s. �

COROLLARY 2
An elementary iterated integral can be represented as a convergent sum

∫
ω1 · · ·ωl =

∑
α

cαM−1�l
α, (20)

where α, cα are as in Lemma 4.

5.3. Asymptotic series of elementary iterated integrals
The inverse Mellin transform of �l

α is a linear combination of monomials of the type
tμ(log t)j , where μ ∈ λ−1

1 Z+λ−1
2 Z and 0 ≤ j ≤ l. Collecting together similar terms

in the expression for the elementary iterated integral I , we get a formal series Î :

Î =
∑
μ,j

ĉμ,j t
μ(log t)j , where μ ∈ λ1Z>−M + λ2Z>−M, 0 ≤ j ≤ l. (21)

Convergence of this series depends on arithmetic properties of the tuple {λi} (see [3]
for a discussion of this phenomena in the case of pseudo-Abelian integrals).

We prove below that Î is an asymptotic series of I . While it is not true that all
partial sums of Î approximate well the elementary iterated integral, some partial sums
do, and this is the crucial observation.
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THEOREM 7
Î is an asymptotic series of I . Moreover, for each p ∈ N there exists sp ∈ [p, p + 1]
such that the partial sums Î p = ∑

j,μ<sp
ĉμ,j t

μ(log t)j of Î satisfy the following:

|I (t) − Î p(t)| ≤ Csl
pt sp , t ∈ [0, 1], (22)

where C depends on I but not on p.

Proof
Poles of MI are of the form −λ−1

1 m−λ−1
2 n, where mi, ni ∈ Z>−M . Since λ1, λ2 > 0,

there are O(p) poles on the interval Jp = [−p − 1, −p], p ∈ N. Therefore on each
interval Jp one can find a point −sp such that ρ(−sp) > O(p−1) = O(s−1

p ).
For each p ∈ N, let us split the contour of integration ∂� into two parts: the

boundary of �′
p = {−sp ≤ � s ≤ M, |� s| ≤ 1} and the boundary of �p = {� s ≤

−sp, |� s| ≤ 1}. The inverse Mellin transform (19) is then split into two integrals:

M−1g = 1

2πi

∫
∂�′

p

t−sg(s) ds + 1

2πi

∫
∂�p

t−sg(s) ds. (23)

In the compact domain �′
p, the function MI has finitely many poles, so the

integral (1/2πi)
∫

∂�′
p
t−sMI ds depends only on the Laurent parts of MI at these

poles. Now, any Laurent coefficient of MI is a multiple sum of corresponding Laurent
coefficients of terms of (15). (Convergence is guaranteed due to the fast decreasing
of cα .) This implies that the Mellin transform of the partial sum Î p(t) is a rational
function of s with the same poles and the same Laurent parts at these poles as MI in
�′

p. Therefore the first integral in (23) is exactly the partial sum Î p(t) of Î as defined
above.

Therefore I (t) − Î p(t) = (1/2πi)
∫

∂�p
t−sMI ds. By Lemma 5, |MI (s)| ≤

O(pl) on ∂�p, and (22) follows. �

5.4. Iterated integrals
Here we extend Theorem 7 to the algebra A generated by elementary iterated integrals.

Let f = P (I1, . . . , Ik) ∈ A be an element in A, where P ∈ C[u1, . . . , uk] and
I1, . . . , Ik are elementary integrals. Substitution of convergent series from (20) instead
of I1, . . . , Ik gives a representation of f as a converging multiple sum of products (of
length at most k) of generalized compensators. Collecting similar terms, we obtain a
formal series f̂ similar to (21), probably divergent.
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THEOREM 8
For any p ∈ N, there exists sp ∈ [p, p +1] such that the partial sum f̂ p of f̂ satisfies
the following:

|f − f̂ p| ≤ Csd
ptsp (24)

for some C, d independent of p.

Before proof of Theorem 8, let us show that it implies Theorem 3.

COROLLARY 3
Let f ∈ A. If f̂ = 0, then f ≡ 0 on [0, 1). Also, isolated zeros of f cannot
accumulate to zero.

Proof
To prove the first claim, take a limit as sp → +∞ in (24).

Now, if f �≡ 0, then for some μ we have |f − tμP (log t)| = o(tμ) with some
nonzero polynomial P (where −μ is the rightmost pole of Mf ). This implies the
second claim. �

The proof of Theorem 8 occupies the rest of the article.

5.4.1. Mellin transform of a product of several generalized compensators
For V = (v1, . . . , vn) ∈ Rn, define �v(s) = ∏n

i=1(s+vi)−1. Let V j = (vj

1 , . . . , v
j
nj

) ∈
Rnj , j = 1, . . . , k, and define �(V 1, . . . , V k)(s) = M

[∏k

j=1

(
M−1�V j

)]
.

This is a rational function of s. We want to show that it depends polynomially
on {V j }. Let K denote the set of functions κ : {1, . . . , k} → Z with the condition
κ(j ) ∈ {1, . . . , nj }, and define wκ = v1

κ(1) + · · · + vk
κ(k).

LEMMA 7
Let S = S(V 1, . . . , V k) = ∏

κ∈K(s+wκ ) be a polynomial in R[V 1, . . . , V k; s]. There
exists a polynomial R = Rn1,...,nk

∈ R[V 1, . . . , V k; s] such that �(V 1, . . . , V k)(s) =
RS−1, degsR < degs S.

Proof
By continuity of both sides, it is enough to prove this for a dense subset of

⊕k

j=1 Rnj

consisting of nonresonant tuples (V 1, . . . , V k), namely, for those tuples for which all
wκ are different.
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Let C∞(s) be the ring of rational functions in s vanishing at infinity, and define
the convolution f1 ∗ f2 for f1, f2 ∈ C∞(s) by extending the rule

1

s + a
∗ 1

s + b
= 1

s + a + b

by linearity and continuity to the whole C∞(s) (in particular, (s + a)−k ∗ (s + b)−l =
(s + a + b)−k−l+1). The thus-defined convolution is Mellin dual to the usual product.
Therefore �(V 1, . . . , V k)(s) = �V 1 ∗ · · · ∗ �V k . Decomposing each factor into simple
fractions

�V j =
∑

i

� sv
j

i
�

j

V

s + v
j

i

, � sv
j

i
�

j

V =
( ∏

i ′ �=i

(vj

i − v
j

i ′)
)−1

,

and opening brackets, we see that

�(V 1, . . . , V k)(s) =
∑
κ∈K

∏k

j=1 � sv
j

κ(j )
�

j

V

s + wκ

.

Reducing to a common denominator, we see that �(V 1, . . . , V k)(s) is a rational
function in v

j

i , s, with denominator dividing S
∏

i,i ′,j (vj

i − v
j

i ′).

We claim that the factors (vj

i − v
j

i ′) do not enter the denominator of
�(V 1, . . . , V k)(s). Indeed, the presence of such factor would mean that for each fixed
s ∈ C, �(V 1, . . . , V k)(s) becomes unbounded as v

j

i tends to v
j

i ′ . This is evidently
not true; for any tuple (V 1, . . . , V k) and every sufficiently big s ∈ R, the function
�(V 1, . . . , V k)(s) is locally bounded near (V 1, . . . , V k, s). �

5.5. Mellin transform of a product of elementary iterated integrals
Let I = I1 . . . Ik be a product of several elementary iterated integrals, and let the order
of Ij be lj . Then using the representation (20) for Ij and opening brackets, we see that

MI =
∑

α1,...,αk

cα1 · · · cαk
�l1

α1
∗ · · · ∗ �lk

αk
), (25)

where αj ∈ (Z>−M )2lj and |cαj
| ≤ 2−|αj |Cj . We do not assume that the pairs (λj1, λj2),

j = 1, . . . , k, are the same for all iterated integrals Ij .

LEMMA 8
The Mellin transform of a product of elementary iterated integrals can be con-
tinued to the whole complex plane C as a meromorphic function with poles in
− ∑k

i=1

∑
j=1,2 λ−1

ij Z>−M .
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Let ρ(s) be the distance from s to the set of poles of MI . Then

|MI (s)| ≤ C
(
ρ(s)

)− ∏
lj (|s| + 1)d (26)

for some d > 0.
Moreover, the inverse Mellin transform defined in Lemma 6 gives the inverse

Mellin transform of MI .

Proof
Let us estimate from above the terms �l1

α1
∗ · · · ∗�lk

αk
from (25). By Lemma 7, it is equal

to R(V 1, . . . , V k; s)/S(V 1, . . . , V k; s), where V j = (vj

1 , . . . , v
j

lj
) is defined by

v
j

i = −λ−1
j1

i∑
p=1

mj
p − λ−1

j2

lj∑
p=i+1

nj
p, αj = (mj

1, . . . , n
j

lj
) ∈ Z

2lj
>−M,

as in (14). This means that V j = Ljαj for some linear map Lj : Rlj → Rlj . Therefore
R is a polynomial in (s; α1, . . . , αk), and

|R(s)| ≤ const(1 + s)d(1 +
∑

|αj |)d for d = deg R ≥ 0.

From the other side, S is a monic polynomial in s of degree
∏

lj with roots in the
poles of MI , so |S(s)| ≥ (ρ(s))

∏
lj . Taken together, this means that

∣∣�l1
α1

∗ · · · ∗ �lk
αk

)
∣∣ ≤ const

(
ρ(s)

)− ∏
lj (1 + s)d

(
1 +

∑
|αj |

)d

. (27)

Using |cαj
| ≤ 2−|α|C by Lemma 4, we estimate |MI (s)| from above as

|MI (s)| ≤ const
(
ρ(s)

)−∏
lj (1 + s)d

∑
α1,...,αk

2−∑ |αj |
(

1 +
∑

|αj |
)d

, (28)

which, by convergence of the last series, proves (26).
Moreover, for t ∈ (0, 1) the function t−s decreases exponentially on ∂�, so (27)

implies that in the integral

1

2πi

∫
∂�

t−s
∑

α1,...,αk

cα1 · · · cαk
�l1

α1
∗ · · · ∗ �lk

αk
),

one can perform integration termwise. However, for each term the above integral gives
the inverse Mellin transform, as each term is just a rational function of s. This finishes
proof of the lemma. �
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5.5.1. Proof of Theorem 8
Let I now be a polynomial in several elementary iterated integrals, I = P (I1, . . . , Ik).
The set of poles of the Mellin transform MI of I is the union of sets of poles of Mellin
transforms of each monomial of P , so the number of poles of MI on an interval
Jp = [−p − 1, −p] grows as some power of p.

This means that for each p ∈ N, one can find sp ∈ Jp such that the distance
ρ(sp) from p to the set of poles of MI is bigger than |sp|−d ′

for some d ′ > 0. Then,
splitting the contour of integration of the inverse Mellin transform as in Theorem 7,
we conclude from Lemma 8 that |MI | < C|sp|d ′′

on the ∂�p for some fixed d ′′ > 0,
and the claim follows. �
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