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Higher order Poincaré-Pontryagin functions
and iterated path integrals(∗)

Lubomir Gavrilov (1)

ABSTRACT. — We prove that the Higher order Pointcaré-Pontryagin
functions associated to the perturbed polynomial foliation

df − ε(P dx + Q dy) = 0

satisfy a differential eqation of Fuchs type.

RÉSUMÉ. — Nous montrons que toute fonction de Poincaré-Pontryagin
d’ordre supérieur, associée au feuilletage polynomial perturbé défini par

df − ε (Pdx + Qdy) = 0,

vérifie une équation fuchsienne.

1. Statement of the result

Let f, P,Q ∈ R[x, y] be real polynomials in two variables. How many
limit cycles the perturbed foliation

df − ε(Pdx+Qdy) = 0 (1.1)

can have ? This problem is usually referred to as the weakened 16th Hilbert
problem (see Hilbert [15], Arnold [1, p.313]).

Suppose that the foliation defined on the real plane by {df = 0} possesses
a family of periodic orbits γ(t) ⊂ f−1(t), continuously depending on a
parameter t ∈ (a, b) ⊂ R. Take a segment σ, transversal to each orbit
γ(t) and suppose that it can be parameterized by t = f |σ (this identifies
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σ to (a, b)). The first return map P(t, ε) associated to the period annulus
A = ∪t∈σγ(t) and to (1.1) is analytic in t, ε and can be expressed as

P(t, ε) = t+ εkMk(t) + εk+1Mk+1(t) + · · · (1.2)

where Mk(t) �≡ 0 is the kth order Poincaré-Pontryagin function. The maxi-
mal number of the zeros of Mk on σ provides an upper bound for the number
of the limit cycles bifurcating from the annulus A. For this reason Mk(t) was
called in [11] generating function of limit cycles. The above construction can
be carried out in the complex domain. In this case the polynomials f, P,Q
are complex and γ(t) is a continuous family of closed loops contained in the
fibers f−1(t), parameterized by a transversal open disc σC. The maximal
number of the complex zeros of the generating function Mk on σC provides
an upper bound for the complex limit cycles bifurcating from the family
{γ(t)}t, see [16].

The main result of the paper is the following

Theorem 1.1. — The generating function of limit cycles Mk satisfies a
linear differential equation of Fuchs type.

We show also that the monodromy group of Mk is contained in SL(n,Z)
where n is the order of the equation. In this sense the differential equation
satisfied by Mk is of “Picard-Fuchs” type too. As a by-product we prove
that n � rk where r = dimH1(f−1(t0),Z) and t0 is a typical value of f .
It is not clear, however, whether there exists an uniform bound in k for the
order n. In the explicit examples known to the author n � r.

In the case k = 1 the generating function Mk is an Abelian integral
depending on a parameter

M1(t) =
∫
γ(t)

Pdx+Qdy (1.3)

and hence it satisfies a Fuchs equation of order at most r (this bound is
exact). The identity (1.3) goes back at least to Pontryagin [21] and has
been probably known to Poincaré. In the case k > 1 the (higher order)
Poincaré-Pontryagin function Mk is not necessarily of the form (1.3) with
P,Q rational functions. This fact is discussed in Appendix B. We show in
section 2 that Mk(t) is a linear combination of iterated path integrals of
length k along γ(t) whose entries are essentially rational one-forms. This
observation is crucial for the proof of Theorem 1.1. It implies that the mon-
odromy representation of Mk is finite-dimensional, as well that Mk is a
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function of moderate growth. The universal monodromy representation of
all generating functions Mk was recently described in [11]. It is not known,
however, whether this representation is finite-dimensional.

We note that iterated path integrals appeared recently in a similar con-
text in the study of the polynomial Abel equation [3, 4, 8]. Some of their
basic properties used in the paper are summarized in the Appendix.

The author acknowledges the stimulating discussions and comments of
I.D. Iliev, Yu. S. Ilyashenko, S. Yakovenko, and Y. Yomdin.

2. The integral representation of Mk(t)

From now on we consider (1.1) as a perturbed complex foliation in C
2.

Let l(t) ∈ f−1(t) ⊂ C
2 be a continuous family of closed loops, defined for all

t which belong to some complex neighborhood of the typical value t0 of f .
There exists a constant c > 0 such that the holonomy (or monodromy) map
P (t, ε) of the foliation ((1.1) associated to the family l(t) is well defined
and analytic in {(t, ε) : |t − t0| < c, |ε| < c}. Therefore it has there the
representation (1.2). Of course the continuous deformation of a given closed
loop l(t0) ⊂ f−1(t0) is not unique. The free homotopy class of the loop is
however unique and the first non-zero Poincaré-Pontryagin function Mk(t),
defined by (1.2) depends only on the free homotopy class γ(t) of l(t) [11].
The main result of this section is the following

Theorem 2.1. — Let γ(t) : [0, 1] → f−1(t) be a continuous family of
closed loops. For every regular value t0 of f there exists a neighborhood U0

of t0 in which the first non-vanishing Poincaré-Pontryagin function Mk(t),
associated to γ(t) and (1.1) is a finite linear combination of iterated integrals
of length at most k, whose entries are differential one-forms analytic in
f−1(U0).

The function Mk(t) is computed according to the Françoise’s recursion
formula [7]

Mk(t) =
∫
γ(t)

Ωk

where

Ω1 = Pdx+Qdy,Ωm = rm−1(Pdx+Qdy), 2 � m � k (2.1)

and the functions ri are determined successively from the (non-unique) rep-
resentation Ωi = dRi+ridf . We intend to derive explicit expressions for the
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functions ri. For this purpose consider a trivial smooth fibration

f : V0 → U0 = {t ∈ C : |t− t0| < c}

where V0 is a connected analytic two-dimensional manifold, and f is an
analytic surjection. The fibers f−1(t) are mutually diffeomorphic Riemann
surfaces. Suppose that there exists an analytic curve

τ : t→ P0(t) ∈ f−1(t) ⊂ V0, t ∈ U0 (2.2)

transversal to the fibers f−1(t). For an analytic one-form in V0 define the
function

F (P ) =
∫ P

P0(t)

ω

where t = f(P ) and the integration is along some path contained in f−1(t)
and connecting the points P0(t), P ∈ f−1(t). Finally we shall suppose that
when varying P ∈ f−1(U0) the path connecting P0(t) and P varies con-
tinuously in P . The function F (P ) is multivalued but locally analytic in
V0 = f−1(U0).

Lemma 2.2. — Under the above conditions the following identity holds

d

∫ P

P0(t)

ω =

(∫ P

P0(t)

dω

df

)
df + ω − (τ ◦ f)∗ω (2.3)

where dω
df is the Gelfand-Lerray form of dω and (τ ◦ f)∗ω is the pull back of

ω under the map

τ ◦ f : V0
f→ U0

τ→ V0 .

Remark. — If τ̃ : t → P̃0(t) ∈ f−1(t) is another transversal curve (as in
(2.2)) then (2.3) implies

d

∫ P̃0(t)

P0(t)

ω =

(∫ P̃0(t)

P0(t)

dω

df

)
df + (τ̃ ◦ f)∗ω − (τ ◦ f)∗ω.

If, in particular P ≡ P0(t) (so the path of integration τ is closed) we get
the well known identity [2]

d

∫
τ(t)

ω =

(∫
τ(t)

dω

df

)
dt.
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Proof of Lemma 2.2. — Suppose that when t is sufficiently close to t0
the path of integration connecting P0(t) to P is contained in some open poly-
disc Dε ⊂ V0, in which we may choose local coordinates x, y. We claim that
for such a family of paths and for t sufficiently close to t0 the identity (2.3)
holds true. As (2.3) is linear in ω we may suppose without loss of generality
that ω|Dε

= Q(x, y)dx where Q is analytic in Dε. Suppose further that the
path of integration from P0(t) = (x0(t), y0(t)) to P = (x, y) is projected
under the map (x, y) → x into an analytic path, avoiding the ramification
points of this projection, and connecting x0(t) and x in the complex x-plane.
Along such a path we may express y = y(x, t) from the identity f(x, y) = t
and hence

d

∫ P

P0(t)

ω = d

∫ x

x0(t)

Qdx

= Qdx−Qx′0(t)df +

(∫ x

x0(t)

Qy
∂y

∂t
dx

)
df

= Qdx−Qx′0(t)df +

(∫ x

x0(t)

Qy

fy
dx

)
df

= ω − (τ ◦ f)∗ω +

(∫ P

P0(t)

dω

df

)
df.

Therefore (2.3) holds true in a neighborhood of P0(t0). By analytic continu-
ation it holds true for arbitrary P and arbitrary continuous family of paths
connecting P0(t) to P . The Lemma is proved. �

Let f ∈ C[x, y], γ(t) ⊂ f−1(t) be a continuous family of closed loops
such that

∫
γ(t)

ω ≡ 0. If γ(t) generates the fundamental group of f−1(t)
then (2.3) implies that ω = dA+Bdf where A,B are analytic functions in
f−1(U0). In the case when the fundamental group of f−1(t) is not infinite
cyclic we consider a covering

Ṽ0
p→ V0 (2.4)

such that the fundamental group of Ṽ0 is infinite cyclic with a generator
represented by a closed loop γ̃(t0) projected to γ(t0) under p. Such a covering
exists and is unique up to an isomorphism [9]. Moreover Ṽ0 has a canonical
structure of analytic two-manifold induced by p. If we define f̃ = f ◦p, then
the fibration

f̃ : Ṽ0 → U0 (2.5)

is locally trivial and the fibers are homotopy equivalent to circles. An an-
alytic function (or differential form) on Ṽ0 is a locally analytic function
(differential form) on V0 = f−1(U0) such that
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(i) it has an analytic continuation along any arc in f−1(U0)

(ii) its determination does not change as (x, y) varies along any closed
loop homotopic to γ(t0).

We shall denote the space of such functions (differential forms) by
Õ(f−1(U0)) (Ω̃k(f−1(U0))). Lemma 2.2 implies the following

Corollary 2.3. — If ω̃ ∈ Ω̃1(f−1(U0)) is such that
∫
γ(t)

ω̃ ≡ 0, then

ω̃ = dÃ+ B̃df

where Ã, B̃ ∈ Õ(f−1(U0)),

Ã =
∫ P

P0(t)

ω̃, B̃ = −
∫ P

P0(t)

dω̃

df
+R(f)

and R(.) is analytic in U0.

In the proof of Theorem 2.1 we shall use the following well known

Proposition 2.4. — Let f ∈ C[x, y] be a non-constant polynomial.
Then there exists a polynomial m ∈ C[f ] such that

1. m(f) belongs to the gradient ideal of f

2. m(c) = 0 if and only if c is a critical value of f .

The identity

(αfx + βfy)dx ∧ dy = df ∧ (αdy − βdx) (2.6)

combined with Proposition 2.4 shows that when ω is a polynomial (analytic)
one-form, then the Gelfand-Leray form

m(f)
dω

df

can be chosen polynomial (analytic).

Proof of Proposition 2.4. — Consider the reduced gradient ideal
Jred ⊂ C[x, y] generated by fx/D, fy/D where D is the greatest common
divisor of fx, fy. The variety V (Jred) = {ci}i is a finite union of points
which may be supposed non-empty. Therefore C[x, y]/Jred is a vector space
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of finite dimension[9] and the multiplication by f defines an endomorphism.
Therefore m(f) ∈ Jred where m(.) is the minimal polynomial of the endo-
morphism defined by f . We note that m(c) = 0 if and only if c = ci for some
i. Taking into consideration that

∏
i(f − ci)/D is a polynomial we conclude

that
∏

i(f − ci)m(f) belongs to the gradient ideal of f .

Proof of Theorem 2.1. — Suppose that M1 = · · · = Mk−1 = 0 but
Mk �= 0, k � 3. The recursion formula (2.1) implies that Mi(t) =

∫
γ(t)

ω̃i,

where ω̃i ∈ Ω̃1(f−1(U0)), i � k. Indeed, ω̃1 = ω ∈ Ω1(f−1(U0)) and if
ω̃i ∈ Ω̃1(f−1(U0)), then by Corollary 2.3

ω̃i+1 = −ω
∫ P

P0(t)

dω̃i
df

.

The Gelfand-Leray form dω̃i

df may be supposed analytic (according to Propo-

sition 2.4 and (2.6)).M ′
i(t) =

∫
γ(t)

dω̃i

df = 0 implies that
∫ P

P0(t)
dω̃i

df ∈ Õ(f−1(U0))

and hence ω̃i+1 ∈ Ω̃1(f−1(U0)). We obtain in particular that

Mk(t) = −
∫
γ(t)

ω

∫ P

P0(t)

dω̃

df

where
Mk−1(t) =

∫
γ(t)

ω̃ ≡ 0.

We shall prove the Theorem by induction on k. Suppose that that Mk−1(t),
is a finite linear combination of iterated integrals of length at most k − 1,
whose entries are differential one-forms analytic in f−1(U0). We need to
show that the same holds true for∫ P

P0(t)

dω̃

df
. (2.7)

Let ω1, ω2, . . . , ωk−1 be analytic one-forms in f−1(U0). Lemma 2.2 implies

d

df

(
ω1

∫ P1

P0(t)

ω2

∫ P2

P0(t)

ω3 . . .

∫ Pk−1

P0(t)

ωk−1

)
=
dω1

df

∫ P1

P0(t)

ω2 . . .

∫ Pk−1

P0(t)

ωk−1

+ω1

∫ P1

P0(t)

dω2

df
. . .

∫ Pk−1

P0(t)

ωk−1 + · · · + ω1

∫ P1

P0(t)

ω2 . . .

∫ Pk−1

P0(t)

dωk−1

df

−ω1 ∧ ω2

df

∫ P2

P0(t)

ω3 . . .

∫ Pk−1

P0(t)

ωk−1
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−ω1

∫ P1

P0(t)

ω2 ∧ ω3

df

∫ P3

P0(t)

ω4 . . .

∫ Pk−1

P0(t)

ωk−1

. . .

−ω1

∫ P1

P0(t)

ω2 . . .

∫ Pk−4

P0(t)

ωk−3

∫ Pk−3

P0(t)

ωk−2 ∧ ωk−1

df

+ω1

∫ P1

P0(t)

ω2

∫ P2

P0(t)

ω3 . . .

∫ Pk−2

P0(t)

ωk−2 ∧ (τ ◦ f)∗ωk−1

df
.

The differential form ωk−2∧(τ◦f)∗ωk−1
df can be written in the form ωk−2R(f)

where (τ ◦f)∗ωk−1 = −R(f)df . This shows that (2.7) is a linear combination
of iterated integrals of length at most k − 1. As the Gelfand-Leray forms

ωi ∧ ωi+1

df
,
dωi

df

may always be chosen analytic in f−1(U0) (see (2.6)) then Theorem 2.1 is
proved. �

The proof of the above theorem provides also an algorithm for comput-
ing the higher-order Poincaré-Pontryagin functions Mk in terms of iterated
integrals. To illustrate this we consider few examples. To simplify the nota-
tions, for every given one-form ω on C

2, we denote by ω′ some fixed one-form,
such that df ∧ w′ = dω (that is to say ω′ is a Gelfand-Leray form of dω).

Examples. —

1. It is well known that
M1(t) =

∫
γ(t)

ω.

2. If M1 = 0 then Lemma 2.2 and Corollary 2.3 imply

ω = dA(x, y) +B(x, y)df + dR(f)

where

A(x, y) =
∫ P

P0(t)

ω,B(x, y) = −
∫ P

P0(t)

dω

df
+R(f), P = (x, y).

We have

M2(t) =
∫
γ(t)

Bω = −
∫
γ(t)

ω

∫ P

P0(t)

ω′
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and hence

M2(t) = −
∫
γ(t)

ωω′. (2.8)

As
∫
γ(t)

ω′ =
∫
γ(t)

ω ≡ 0 then the iterated integral (2.8) depends on
the free homotopy class of γ(t) (and not on the initial point P0(t) ).

3. If M2 = 0, then

M3(t) =
∫
γ(t)

ω

∫ P

P0(t)

d

df
(ω

∫ Q

P0(t)

ω′)

where

d

df

(
ω

∫ P

P0(t)

ω′
)

= ω′
∫ P

P0(t)

ω′+ω
∫ P

P0(t)

ω′′−
∫
γ(t)

ω ∧ ω′

df
+R(t)

∫ P

P0(t)

ω

and R(t) is an analytic function computed from the identity
(f ◦ τ)∗ω′ = R(f)df . As

∫
γ(t)

ωω = 0 then

M3(t) =
∫
γ(t)

ω(ω′)2 +
∫
γ(t)

ω2ω′′ − ω
ω ∧ ω′

df
. (2.9)

Both of the iterated integrals in (2.9) depend on the free homotopy
class of γ(t) only and do not depend on the particular choice of the
Gelfand-Leray form ω′.

4. If M3 = 0, then

M4(t) = −
∫
γ(t)

ω

∫ P

P0(t)

d

df
(ω

∫ Q

P0(t)

(ω′)2)

−
∫
γ(t)

ω

∫ P

P0(t)

d

df
(ω

∫ Q

P0(t)

ωω′′)

−
∫
γ(t)

ω

∫ P

P0(t)

d

df
(ω

∫ Q

P0(t)

ω ∧ ω′

df
)

If we make the particular choice ω′ = −dB, B =
∫ P

P0(t)
dω
df for the

Gelfand-Leray form of dω, as well w′′ = 0 then the formula for M4

becomes

M4(t) =
∫
γ(t)

ω(ω′)3 + ωω′ω ∧ ω′

df
+ ω2

dω∧ω
′

df

df
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+
∫
γ(t)

ω
ω ∧ ω′

df
ω′ − ω

ω ∧ ω∧ω′

df

df

−(
∫
γ(t)

ω2ω′)(f ◦ τ)∗ω′ + (
∫
γ(t)

ω2)(f ◦ τ)∗ω ∧ ω′

df

=
∫
γ(t)

ω(ω′)3 + ωω′ω ∧ ω′

df
+ ω2

dω∧ω
′

df

df

+
∫
γ(t)

ω
ω ∧ ω′

df
ω′ − ω

ω ∧ ω∧ω′

df

df
.

Note that the last expression depends on the choice of ω′ and hence
on the initial point P0(t). It is an open question to find a general
closed formula for Mk, k � 4, in terms of iterated integrals with
rational entries, depending on the free homotopy class of γ(t) only.

3. Proof of Theorem 1.1

The proof is split in two parts. First we show that Mk(t) satisfies a linear
differential equation of finite order (possibly with irregular singularities). For
this we need to study the monodromy group of Mk(t). Second, we shall show
that the generating function Mk(t) is of moderate growth on the projective
plane CP

1, and hence the equation is Fuchsian.

3.1. The monodromy representation of Mk

Recall first that the universal monodromy representation for Mk(t) (for
arbitrary k) can be constructed as follows (see [11] for proofs). To the non-
constant polynomial f ∈ C[x, y] we associate the locally trivial fibration

f−1(C\∆)
f→ C\∆

where ∆ ⊂ C is the finite set of atypical values. Let t0 �∈ ∆ and put
S = f−1(t0). The canonical group homomorphism

π1(C \ ∆, t0) → Diff (S)/Diff0(S). (3.1)

where Diff (S)/Diff0(S) is the mapping class group of S, induces a homo-
morphism (group action on π1(S))

π1(C \D, t0) → Perm (π1(S)) (3.2)

where Perm (π1(S)) is the group of permutations of π1(S), and π1(S) is the
set of free homotopy classes of closed loops on S.
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Let γ(t0) ∈ π1(S) be a free homotopy class of closed loops on S and
consider the orbit Oγ(t0) of γ(t0) under the group action (3.2). For a given
point P0 ∈ S we denote F = π1(S, P0) and let G ⊂ π1(S, P0) be the normal
subgroup generated by the pre-image of the orbit Oγ(t0) under the canonical
projection

π1(S, P0) → π1(S) .

Let (G,F ) be the normal sub-group of G generated by commutators

g−1f−1gf, g ∈ G, f ∈ F

and denote
Hγ

1 (S,Z) = G/(G,F).

From the definition of G it follows that the Abelian group Hγ
1 (S,Z) is in-

variant under the action of π1(C\∆) and hence we obtain a homomorphism
(the universal representation)

π1(C \ ∆, t0) → Aut(Hγ
1 (S,Z)). (3.3)

On the other hand, the monodromy representation of the generating func-
tion Mk(t) = Mk(γ,Fε, t) is defined as follows. The function Mk(t) is mul-
tivalued on C \ ∆. Let us consider all its possible determinations in a
sufficiently small neighborhood of t = t0. All integer linear combinations of
such functions form a module over Z which we denote by Mk(γ,Fε). The
fundamental group π1(C \ ∆, t0) acts on Mk = Mk(γ,Fε) in an obvious
way. We obtain thus a homomorphism

π1(C \ ∆, t0) → Aut(Mk) (3.4)

called the monodromy representation of the generating functionMk(γ,Fε, t).

It is proved in [11, Theorem 1] that the map

Hγ
1 (f−1(t0),Z)

ϕ→ Mk(γ,Fε) : γ →Mk(γ,Fε, t) (3.5)

is a canonical surjective homomorphism compatible with the action of the
fundamental group π1(C \∆, t0). Equivalently, (3.4) is a sub-representation
of the representation dual to the universal representation (3.3).

If the rank of the Abelian group Hγ
1 (f−1(t0),Z) were finitely generated,

then this would imply that each Mk(t) satisfies a linear differential equation
whose order is bounded by the dimension of Hγ

1 (f−1(t0),Z). We shall prove
here a weaker statement: Mk(t) satisfies a linear equation of finite order
(depending on k). Our argument is based on the integral representation for
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Mk(t) obtained in the previous section. Namely, consider the lower central
series

F1 ⊇ F2 ⊇ · · ·Fk ⊇ · · · (3.6)

where F1 = F = π1(S, P0), and Fk+1 = (Fk, F ) is the subgroup of Fk gen-
erated by commutators (fk, f) = f−1

k f−1fkf , fk ∈ Fk, f ∈ F . An iterated
integral of length k along a closed loop which belongs to Fk+1 vanishes.
Therefore Theorem 2.1 implies that in (3.3) we can further truncate by
Fk+1. Namely, for every subgroup H ⊂ F we denote H̃ = (H ∪Fk+1)/Fk+1.
As before the group action (3.2) induces a homomorphism

π1(C \D, t0) → Aut(G̃/(G̃, F̃ )) (3.7)

and there is a canonical surjective homomorphism

G̃/(G̃, F̃ ) → Mk(γ,Fε).

The lower central series of F̃ = F̃1 is

F̃1 ⊇ F̃2 ⊇ · · · F̃k ⊇ {id}.

It is easy to see that in this case (G̃, F̃ ) ⊂ F̃ is finitely generated (e.g.
[20, Lemma 4.2, p.93]), and hence G̃/(G̃, F̃ ) is finitely generated too. This
implies on its hand that Mk(γ,Fε) is finite-dimensional, and hence the gen-
erating function satisfies a linear differential equation. Its order is bounded
by the dimension of G̃/(G̃, F̃ ). The latter is easily estimated to be less or
equal to

k∑
i=1

dimFi/Fi+1 � rk

(for the last inequality see [14, section 11]). To resume, we proved that the
generating function of limit cycles Mk(t), t ∈ C \ ∆, satisfies an analytic
linear differential equation of order at most rk.

3.2. The moderate growth of Mk

We shall show that the possible singular points (contained in ∆∪∞) are
of Fuchs type. A necessary and sufficient condition for this is the moderate
growth of Mk(t) in any sector centered at a singular point. For this we shall
use once again the integral representation for Mk(t). Let t0 be an atypical
value for f and suppose that the analytic curve

τ : t→ P0(t) ∈ f−1(t)

is defined for t ∼ t0 and is transversal to the fibers f−1(t). It follows from
the proof of Theorem 2.1 that Mk(t) has an integral representation in a
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punctured neighborhood of t0 too. More precisely Mk(t) is a finite linear
combination ∑ αi(t)

mi(t)

∫
γ(t)

ωi1 . . . ω
i
ij

where ωpq are polynomial one-forms, ij � k, αi(t) are analytic functions and
mi(t) are polynomials. Let

t→ P0(t) ∈ f−1(t), t→ P̃0(t) ∈ f−1(t)

be two analytic curves defined in a neighborhood of the atypical value t0
and transversal to the fibers f−1(t) (including f−1(t0)) and consider the
iterated integral

F (t) =
∫
l(t)

ω1ω2 . . . ωk

where l(t) is a path on f−1(t) connecting P0(t) and P̃0(t), and ω1, ω2, . . . , ωk
are polynomial one-forms in C

2.

Proposition 3.1. — Let S(t0) = {t ∈ C : arg(t − t0) < ϕ0,
0 < |t − t0| < r0} be a sector centered at t0. There exists r0, N0 > 0 such
that |F (t)| < |t − t0|−N0 . Let S(∞) = {t ∈ C : arg(t) < ϕ0, |t| > r0} be
a sector centered at ∞. There exist r0, N0 > 0 such that |F (t)| < |t|N0 in
S(∞).

Remark. — Recall that an analytic function F defined on the universal
covering of C \ ∆ and satisfying the claim of the above Proposition is said
to be of moderate growth.

Proof of Proposition 3.1. — Let (xi(t), yi(t)) ∈ f−1(t) be the ramifica-
tion points of the projection f−1(t) → C induced by π : (x, y) → x. Each
ramification point xi(t) has a Puiseux expansion in a neighborhood of t0.
Therefore when t tends to t0 in a sector centered at t0, each ramification
point tends to a definite point P ∈ CP

1.

Assume further that the projection of l(t) on the x-plane is represented
by a piece-wise straight line

π(l(t)) = ∪n
i=1[xi, xi+1] (3.8)

connecting x0(t), x1(t), · · · , xn+1(t) where xi, i = 1, 2, . . . , n are some ram-
ification points, and P0(t) = (x0(t), y0(t)), P̃0(t) = (xn+1(t), yn+1(t)). The
iterated integral F (t) along l(t) is expressed as an iterated integral along
π(l(t)) whose entries are one-forms with algebraic coefficients. It is clear
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that such an iterated integral along [xi(t), xi+1(t)] is of moderate growth
(because xi(t) are of moderate growth). Thus, if the number n in (3.8) were
bounded when t varies in S(t0), then F (t) would be of moderate growth of
F (t). It remains to show that the number n = n(t) is uniformly bounded in
S(t0). Note that when t ∈ S(t0) and r0 is sufficiently small the ramification
points xi(t) are all distinct. Denote by B the subset of S(t0) of points t
having the property

“there exist ramification points xi(t), xj(t), xk(t) such that xi(t)− xj(t)
and xi(t) − xk(t) are collinear but not identically collinear .”

Using the fact that xi(t)− xj(t), xi(t)− xk(t) have Puiseux expansions,
we conclude that B is a real analytic subset of R

2 � C of co-dimension one.
The set S(t0)\B has a finite number of connected components and on each
connected component the function t→ n(t) is constant. It follows that n(t)
is uniformly bounded. Proposition 3.1, and hence Theorem 1.1 is proved.

A. Iterated Path Integrals

Let S be a Riemann surface and ω1, ω2, . . . , ωk be holomorphic one-
forms. For every smooth path l : [0, 1] → S we define the iterated path
integral

∫
l

ω1ω2 . . . ωk =
∫

0�tk�...�t1�1

fk(tk) . . . f1(t1)dtk . . . dt1 (A.1)

where l∗ωi = fi(t)dt. We have for instance

∫
l

ω1ω2 =
∫
l

ω1

∫ l(t)

l(0)

ω2.

The basic properties of the iterated path integrals (A.1) were established
by Parsin [19]. The general theory of iterated integrals has been developed
by Chen, e.g. [5, 6]. In the Chen’s theory the iterated integrals generate
the De Rham complex of the path space PX associated to an arbitrary
manifold X. In this context the iterated integrals of the form (A.1) provide
the 0-cochains of the path space Pa,bS, where a, b are the two ends of l.
Indeed, a connected component of Pa,bS consists of those paths (with fixed
ends) which are homotopy equivalent, and (A.1) is constant on such paths.
Some basic properties of iterated path integrals are summarized below. The
missing proofs (and much more) may be found in R. Hain [12, 13].
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Lemma A.1. —

(i) The value of
∫
l
ω1ω2 . . . ωk depends only on the homotopy class of l

in the set of loops with ends fixed at l(0), l(1).

(ii) If l1, l2 : [0, 1] → S are composable paths (i.e. l1(1) = l2(0) ) then

∫
l1l2

ω1ω2 . . . ωk =
k∑

i=0

∫
l2

ω1ω2 . . . ωi

∫
l1

ωi+1ω2 . . . ωk (A.2)

where we set
∫
l
ω1ω2 . . . ωi = 1 if i = 0.

(iii) ∫
l

ω1ω2 . . . ωk = (−1)k
∫
l−1

ωkωk−1 . . . ω1.

From now on we suppose that l(0) = l(1) = P0 and put F = π1(S, P0).
For α, β ∈ F we denote the commutator α−1β−1αβ by (α, β). If A,B ⊂ F
are subgroups, we denote by (A,B) the subgroup of F generated by all
commutators (α, β), such that α ∈ A and β ∈ B. Consider the lower central
series F = F1 ⊇ F2 ⊇ F3 ⊇ . . . where Fk = (Fk−1, F ) and F1 = F .

Lemma A.2. —

(i)

−
∫

(α,β)

ω1ω2 = det
( ∫

α
ω1

∫
β
ω1∫

α
ω2

∫
β
ω2

)
,∀α, β ∈ F1.

(ii) Let γ ∈ Fk and ω1, ω2, . . . , ωk be holomorphic one-forms on S. Then
the iterated path integral

∫
γ
ω1 ω2 . . . ωk−1 vanishes, and the value

of the integral
∫
γ
ω1 ω2 . . . ωk does not depend on the initial point

P0.

(iii) If α, β ∈ Fk then∫
αβ

ω1 ω2 . . . ωk =
∫
α

ω1 ω2 . . . ωk +
∫
β

ω1 ω2 . . . ωk.

(iv) If α ∈ Fp, β ∈ Fq, then

−
∫

(α,β)

ω1 ω2 . . . ωp+q =
∫
α

ω1 ω2 . . . ωp

∫
β

ωp+1 ωp+2 . . . ωp+q

−
∫
β

ω1 ω2 . . . ωq

∫
α

ωq+1 ωq+2 . . . ωp+q
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Proof. — The identity (i) follows from (A.2). It implies in particular that∫
γ
ω1ω2 does not depend on the initial point P0 provided that γ ∈ F2, and

vanishes provided that γ ∈ F3. Suppose that the claim (ii) is proved up to
order k− 1 and let γ ∈ Fk. If γ = (α, β) where α ∈ Fk−1 then (A.2) implies∫

(α,β)

ω1 ω2 . . . ωk−1 =
∫
α

ω1 ω2 . . . ωk−1 +
∫
α−1

ω1 ω2 . . . ωk−1

+
k−1∑
i=0

∫
β

ω1 ω2 . . . ωi

∫
β−1

ωi . . . ωk−1

=
∫
αα−1

ω1 ω2 . . . ωk−1 +
∫
β−1β

ω1 ω2 . . . ωk−1

= 0.

If, more generally, γ ∈ Fk then γ =
∏

i γi where each γ is a commutator
(α, β), such that either α ∈ Fk−1, or β ∈ Fk−1. Therefore∫

γ

ω1 ω2 . . . ωk−1 =
∑
i

∫
γi

ω1 ω2 . . . ωk−1 = 0.

The claim that
∫
γ
ω1 ω2 . . . ωk, γ ∈ Fk does not depend on the initial

point P0 follows from (iv) (by induction). The claims (iii) and (iv) follow
from (ii) and (A.2). �

We proved in section 2 that the generating function of limit cycles Mk(t)
is a linear combination of iterated path integrals of length k along a loop
γ(t). As M(t) depends on the free homotopy class of γ(t) then these it-
erated integrals are of special nature. The iterated integrals appearing in
Lemma A.2 have the same property: they do not depend on the initial point
P0. Therefore they must satisfy (by analogy to Mk) a Fuchsian differential
equation. The proof of this fact can be seen as a simplified version of the
proof of Theorem 1.1 and for this reason it will be given below.

Let γ(t) ⊂ f−1(t) be a family of closed loops depending continuously
on a parameter t in a neighborhood of the typical value t0 of the non-
constant polynomial f ∈ C[x, y]. We put S = f−1(t0) and suppose, using
the notations of Lemma A.2, that γ(t0) ∈ Fk. Consider the iterated integral

I(t) =
∫
γ(t)

ω1 ω2 . . . ωk

where ωi are polynomial one-forms in C
2. In the case k = 1 this is an Abelian

integral depending on a parameter t and hence it satisfies a (Picard-) Fuchs
equation of order at most r.
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Higher order Poincaré-Pontryagin functions and iterated path integrals

Proposition A.3. — The iterated integral I satisfies a Fuchs equation
of order at most Mr(k), where Mr(k) = dimFk/Fk+1 is given by the Witt
formula

Mr(k) =
1
k

∑
d|k

µ(d)rk/d (A.3)

and µ(d) is the Möbius function (it equals to 0,±1, see Hall [14]). For small
values of k, r the numbers Mr(k) are shown on the table below.

r \ k 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 2 1 2 3 6 9 18 30
3 3 3 8 18 32 116 312 810
4 4 6 20 60 204 4020 4095 8160

Proof. — Let ∆ be the finite set of atypical values of f . The function
I(.) is locally analytic on C \ ∆ and has a moderate growth there (see
section 3). A finite-dimensional representation of its monodromy group is
constructed as follows. As Fk is a normal subgroup of F we may consider the
Abelian factor groups Fk/Fk+1. Recall that Fk/Fk+1 is free, torsion free,
and finitely generated. Thus it is homomorphic to Z

Mr(k) where r is the
number of generators of F and Mr(k) is given by the Witt formula (A.3),
e.g. Hall[14]. As the Abelian group Fk/Fk+1 is canonically identified to a
subset of π1(S) invariant under the action (3.2) of the fundamental group
π1(C \ ∆, t0), then we obtain a homomorphism

π1(C \ ∆, t0) → Aut(Fk/Fk+1) . (A.4)

Finally, Lemma 3(ii) implies that the iterated integral I(t) depends on the
equivalence class of γ(t) in Fk/Fk+1. Therefore the monodromy representa-
tion of I is a sub-representation of (A.4). The Proposition is proved.

B. Is the generating function Mk an Abelian integral?

Equivalently, is the Fuchs equation satisfied byMk of Picard-Fuchs type?
This is an open difficult problem. The results of [11] and Theorem 1.1 pro-
vide an answer to the following related question. Let f ∈ C[x, y] be a non
constant polynomial, γ(t) ∈ f−1(t) a family of closed loops depending con-
tinuously on t. Is there a rational one-form on C

2, such that

Mk(t) =
∫
γ(t)

ω ? (B.1)
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Consider the canonical homomorphism

π1 : Hγ
1 (f−1(t),Z) → H1(f−1(t),Z) (B.2)

(which is neither injective, nor surjective in general ) as well the surjective
homomorphism

π2 : Hγ
1 (f−1(t),Z) → Mk(γ,Fε). (B.3)

The homomorphism π1 is defined in an obvious way, and π2 was defined
in section 3.1. Recall that both of them are compatible with the action of
π1(C \ ∆, t0).

Theorem B.1. — The generating function Mk can be written in the
form (B.1) if and only if

Ker(π1) ⊂ Ker(π2).

The theorem says, roughly speaking, that Mk is an Abelian integral in
the sense (B.1) if and only if Mk “depends on the homology class of γ(t)
only”. Indeed, when Mk(t) is an Abelian integral, this holds true. Con-
versely, if Ker(π1) ⊂ Ker(π2), then the injective homomorphism

Hγ
1 (f−1(t),Z)/Ker(π1) → H1(f−1(t),Z)

and the surjective homomorphism

Hγ
1 (f−1(t),Z)/Ker(π1) → Mk(γ,Fε)

are both compatible with the action of π1(C \ ∆, t0). The proof that Mk is
an Abelian integral in the sense (B.1) repeats the arguments from the proof
of [11, Theorem 2] and will be not reproduced here.

Theorem B.1 can be illustrated by the following two basic examples,
taken from [11].

Example B.2. — The generating functionM3 associated to the perturbed
foliation

df + ε(2 − x+
1
2
x2)dy = 0, f = x(y2 − (x− 3)2)

and to the family of ovals γ(t) around the center of the unperturbed system
can not be written in the form (B.1). Indeed, an appropriate computation
shows that there is a loop l(t) contained in the orbit of γ(t) under the action
of π1(C \ ∆, t0), such that

• the homology class of l(t) is trivial
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• the free homotopy class of l(t) is non-trivial

• the corresponding generating function M3(t) = M3(l,Fε, t) is not
identically zero.

It follows that Ker(π1) �⊂ Ker(π2) and Mk(t) is not an Abelian integral.

Example B.3. — Let ω be an arbitrary polynomial one-form on C
2. The

generating function Mk associated to

df + εω = 0, f = y2 + (x2 − 1)2

and to the exterior family of ovals {f = t}, t > 1 can be written in the
form (B.1). Indeed, it can be shown that the homomorphism π1 (B.2) is
injective [11]. Thus Mk is always an Abelian integral in the sense (B.1), see
also [17, 18].
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1985 and 1988.

[3] Briskin (M.), Yomdin (Y.). — Tangential Hilbert problem for Abel equation,
preprint, 2003.

[4] Brudnyi (A.). — On the center problem for ordinary differential equation,
arXiv:math 0301339 (2003).

[5] Chen (K.-T.). — Algebras of iterated path integrals and fundamental groups,
Trans. AMS 156, p. 359-379 (1971).

[6] Chen (K.-T.). — Iterated Path Integrals, Bull. AMS 83 (1977) 831-879.

[7] Françoise (J.-P.). — Successive derivatives of a first return map, application to
the study of quadratic vector fields, Ergod. Theory and Dyn. Syst. 16, p. 87–96
(1996).

[8] Françoise (J.-P.). — Local bifurcations of limit cycles, Abel equations and
Liénard systems, in Normal Forms, Bifurcations and Finitness Problems in Dif-
ferential Equations, NATO Science Series II, vol. 137, 2004.

[9] Fulton (W.). — Algebraic Topology, Springer, New York, 1995.

[10] Gavrilov (L.). — Petrov modules and zeros of Abelian integrals, Bull. Sci.
Math. 122, no. 8, p. 571–584 (1998).

[11] Gavrilov (L.), Iliev (I.D.). — The displacement map associated to polynomial
unfoldings of planar vector fields, arXiv:math.DS/0305301 (2003).

[12] Hain (R.). — The geometry of the mixed Hodge structure on the fundamental
group, Proc. of Simposia in Pure Math., 46, p. 247-282 (1987).

– 681 –



Lubomir Gavrilov

[13] Hain (R.). — Iterated integrals and algebraic cycles: examples and prospects.
Contemporary trends in algebraic geometry and algebraic topology (Tianjin,
2000), p. 55–118, Nankai Tracts Math., 5, World Sci. Publishing, River Edge,
NJ, 2002.

[14] Hall (M.). — The Theory of Groups, AMS Chelsea Publishing, 1976.

[15] Hilbert (D.). — Mathematische probleme, Gesammelte Abhandlungen III,
Springer-Verlag, Berlin, p. 403–479 (1935).

[16] Ilyashenko (Y.S.). — Selected topics in differential equations with real and com-
plex time, in Normal Forms, Bifurcations and Finitness Problems in Differential
Equations, NATO Science Series II, vol. 137, 2004, Kluwer. preprint, 2002.

[17] Jebrane (A.), Mardesic (P.), Pelletier (M.). — A generalization of
Françoise’s algorithm for calculating higher order Melnikov functions, Bull. Sci.
Math. 126, p. 705-732 (2002).

[18] Jebrane (A.), Mardesic (P.), Pelletier (M.). — A note on a generalization
of Franoise’s algorithm for calculating higher order Melnikov function, Bull. Sci.
Math. 128, p. 749-760 (2004).

[19] Parsin (A.N.). — A generalization of the Jacobian variety, AMS Translations,
Series 2, p. 187-196 (1969).

[20] Passman (D.). — The algebraic theory of group rings, Wiley, New York, 1977.
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