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Abstract. We study the displacement map associated to small one-parameter polynomial unfoldings
of polynomial Hamiltonian vector fields on the plane. Its leading term, the generating function M(t),
has an analytic continuation in the complex plane and the real zeroes of M(t) correspond to the limit
cycles bifurcating from the periodic orbits of the Hamiltonian flow. We give a geometric description
of the monodromy group of M(t) and use it to formulate sufficient conditions for M(t) to satisfy a
differential equation of Fuchs or Picard-Fuchs type. As examples, we consider in more detail the
Hamiltonian vector fields ż = iz̄ − i(z + z̄)3 and ż = iz + z̄2, possessing a rotational symmetry of
order two and three, respectively. In both cases M(t) satisfies a Fuchs-type equation but in the first
example M(t) is always an Abelian integral (that is to say, the corresponding equation is of Picard-
Fuchs type) while in the second one this is not necessarily true. We derive an explicit formula of
M(t) and estimate the number of its real zeroes.

1. Introduction. Consider a perturbed planar Hamiltonian vector field

{
ẋ = Hy(x, y) + εP(x, y, ε),

ẏ = −Hx(x, y) + εQ(x, y, ε).
(1ε)

We suppose that H, P, Q are real polynomials in x, y and moreover, P, Q depend
analytically on a small real parameter ε. Assume that for a certain open interval
Σ ⊂ R, the level sets of the Hamiltonian {H = t}, t ∈ Σ, contain a continuous in
t family of ovals A. (An oval is a smooth simple closed curve which is free of
critical points of H). Such a family is called a period annulus of the unperturbed
system (10). Typically, the endpoints of Σ are critical levels of the Hamiltonian
function that correspond to centers, saddle-loops or infinity. The limit cycles
(that is, the isolated periodic trajectories) of (1ε) which tend to ovals from A as
ε→ 0 correspond to the zeros of the displacement map Pε(t)− t, where the first
return map Pε(t) is defined on Fig. 1. More explicitly, take a segment σ which is
transversal to the family of ovals A and parameterize it by using the Hamiltonian
value t. For small ε, σ remains transversal to the flow of (1ε), too. Take a point
S ∈ σ and let t = H(S). The trajectory of (1ε) through S, after making one round,
will intersect σ again at some point S1 and the first return map Pε(t) is then
defined by t→ H(S1).
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Fixing a period annulus A of (10) and taking a nonintegrable deformation
(1ε), then the related displacement map is defined in the corresponding open
interval Σ ⊂ R and there is a natural number k so that

Pε(t)− t = M(t)εk + · · · , t ∈ Σ.(2k)

The limit cycles of (1ε) which tend to periodic orbits from A as ε→ 0 correspond
therefore to the zeros of the generating function M(t) in Σ.

The goal of the paper is to study the analytic continuation of the generat-
ing function M(t) in a complex domain. We give a geometric description of the
monodromy group of M(t) (Theorem 1) from which we deduce sufficient con-
ditions for M(t) to satisfy a differential equation of Fuchs or Picard-Fuchs type
(Theorem 2).

Recall that a Fuchsian equation is said to be of Picard-Fuchs type, provided
that it possesses a fundamental set of solutions which are Abelian integrals (de-
pending on a parameter). In the present paper by an Abelian integral we mean a
function of the form

I(t) =
∫
δ(t)
ω(3)

where
• ω is a rational one-form in C2;
• there exists a bivariate polynomial f : C2 → C such that δ(t) ⊂ f−1(t),

where {δ(t)} is a family of closed loops, depending continuously on the complex
parameter t.

It is supposed that t belongs to some simply connected open subset of C and
δ(t) avoids the possible singularities of the one-form ω restricted to the level sets
f−1(t). Under these conditions I(t) satisfies a linear differential equation of Fuchs,
and hence of Picard-Fuchs type.

It is well known that for a generic perturbation in (1ε) one has k = 1 in (2k)
and moreover,

M(t) =
∫
δ(t)

Q(x, y, 0) dx− P(x, y, 0) dy, t ∈ Σ

is then an Abelian integral [19]. Here δ(t) ⊂ R
2, A = {δ(t)}, t ∈ Σ, is the

continuous family of ovals defined by the polynomial H(x, y) and the monodromy
of M(t) is deduced from the monodromy of δ(t) in a complex domain. More
precisely, let ∆ be the finite set of atypical values of H: C2 → C. The homology
bundle associated to the polynomial fibration

C
2 \ H−1(∆) H→ C \ ∆
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has a canonical connection. The monodromy group of the Abelian integral M(t)
is then the monodromy group of the connection (or a subgroup of it). It is clear
that M(t) depends on the homology class of δ(t) in H1(Γt,Z) where Γt is the
algebraic curve {(x, y) ∈ C2: H(x, y) = t}.

On the other hand, there are perturbations (1ε) with k > 1 in (2k). This
happens when the perturbation is so chosen that the first several coefficients in
the expansion of the displacement map, among them the function M(t) given
by the above explicit integral, are identically zero in Σ. One needs to consider
such perturbations in order to set a proper bound on the number of bifurcating
limit cycles e.g. when the Hamiltonian possesses symmetry or the degree of the
perturbation is greater than the degree of the original system. Therefore, the case
when k > 1 is the more interesting one, at least what concerns the infinitesimal
Hilbert’s 16th problem which is to find the maximal number of limit cycles in
(1ε), in terms of the degrees of H, P, Q only. In this case the generating function
M(t) can have more zeroes in Σ, and respectively the perturbations with k > 1 can
produce in general more limit cycles than the ones with k = 1 (see e.g. [9], [11],
[6] for examples). Moreover, this case is more difficult because the generating
function is not necessarily an Abelian integral and even the calculation of M(t)
itself is a challenging problem. It turns out that in general (when k > 1), the
generating function M(t) depends on the free homotopy class of the closed loop
δ(t) ⊂ Γt (Proposition 1). The homology group H1(Γt,Z) must be replaced in
this case by another Abelian group Hδ

1(Γt,Z) which we define in section 2.2.
Although there is a canonical homomorphism

Hδ
1(Γt,Z)→ H1(Γt,Z)

it is neither surjective, nor injective in general. The bundle associated to Hδ
1(Γt,Z)

has a canonical connection too and this is the appropriate framework for the study
of M(t). This construction might be of independent interest in the topological
study of polynomial fibrations.

To illustrate our results we consider in full details two examples

HA3 =
y2

2
+

(x2 − 1)2

4
and HD4 = x[y2 − (x− 3)2],

that are known as the eight-loop Hamiltonian and the Hamiltonian triangle. Note
that HA3 and HD4 are deformations of the isolated singularities of type A3 and
D4 respectively, chosen to possess a rotational symmetry of order 2 and 3. We
explain first how Theorem 2 applies to these cases. In the A3 case the differential
equation satisfied by the generating function M(t) is of Picard-Fuchs type. This
means that M(t) is always an Abelian integral, as conjectured earlier by the second
author, see [16]. On the other hand, in the D4 case the equation is of Fuchs type
and has a solution which is not a linear combination of Abelian integrals of the
form (3), with f = HD4 . The reason is that the generating function M(t) has a
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term ( log (t))2 in its asymptotic expansion. Equivalently, the monodromy group
of the associated connection contains an element of the form


1 1 0

0 1 1
0 0 1




which could not happen if the associated equation were of Picard-Fuchs type.
Next, we provide an independent study of M(t) based on a generalization of
Françoise’s algorithm [2]. It is assumed for simplicity that in (1ε) the polynomials
P, Q do not depend on ε. In the A3 case, we derive explicit formulas for M(t)
in terms of k and the degree n of the perturbation (Theorem 3) and use them
to estimate the number of bifurcating limit cycles in (1ε) which tend to periodic
orbits of the Hamiltonian system (Theorems 4, 5, 6). Note that our argument
applies readily to the double-heteroclinic Hamiltonian H = 1

2 y2 − 1
4 (x2 − 1)2 and

to the global-center Hamiltonian H = 1
2 y2 + 1

4 (x2 + 1)2 as well. What concerns
the Hamiltonian triangle, we give an explicit example of a quadratic perturbation
leading to a coefficient M(t) at ε3 which is not an Abelian integral and derive
the third-order Fuchsian equation satisfied by M(t). This part of the paper uses
only “elementary” analysis and may be read independently. We hope that the
complexity of the combinatorics involved will motivate the reader to study the
rest of the paper. This was the way we followed, when trying to understand the
controversial paper [16] (its revised version is to appear in Bull. Sci. Math.).

The applications of Theorem 2 which we present are by no means the most
general. On the contrary, these are the simplest examples in which it gives non-
trivial answers. Theorem 2 can be further generalized and a list of open ques-
tions is presented at the end of section 2.3. Some recent results concerning the
generating function M(t) can be found in the paper L. Gavrilov, Higher order
Poincaré-Pontryagin functions and iterated path integrals, Annales de la Faculté
des Sciences de Toulouse 14 (2005), no. 4, 677–696.

Acknowledgments. We are grateful to the referee for the useful remarks and
valuable recommendations.

2. Generating functions and limit cycles. Assume that f = f (x, y) is a real
polynomial of degree at least 2 and consider a polynomial foliation Fε on the
real plane R2 defined by

df − εQ(x, y, ε) dx + εP(x, y, ε) dy = 0,(4)

where P, Q are real polynomials in x, y and analytic in ε, a sufficiently small real
parameter. Note that (4) is just another form of the equation (1ε) with H replaced
by f .
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Let δ(t) ⊂ {(x, y) ∈ R2: f (x, y) = t} be a continuous family of ovals defined
on a maximal open interval Σ ⊂ R. We identify Σ with a cross-section Σ → R

2

transversal to the ovals δ(t) from the period annulus A = ∪t∈Σδ(t). For every
compact sub-interval K ⊂ Σ, there exists ε0 = ε0(K) such that the first return
map Pε(t) associated to the period annulus A is well defined and analytic in

{(t, ε) ∈ R2: t ∈ K, |ε| < ε0} .

As the limit cycles of (4) intersecting K correspond to the isolated zeros of
Pε(t)− t, we shall always suppose that Pε(t) �≡ t. Then there exists k ∈ N such
that

Pε(t)− t = Mk(t)εk + O(εk+1)(5)

uniformly in t on each compact sub-interval K of Σ. Therefore the number of the
zeros of Mk(t) on Σ provides an upper bound to the number of zeros of Pε(t)−t on
Σ and hence to the number of the corresponding limit cycles of (4) which tend to
A as ε→ 0. Indeed, taking the right-hand side of (5) in the form εk[Mk(t)+O(ε)]
and using the implicit function theorem (respectively, the Weierstrass preparation
theorem in the case of multiple roots), we see that the displacement map and its
first nonzero coefficient Mk(t) will have the same number of zeros in Σ for small
ε �= 0.

Definition 1. We call Pε(t) − t the displacement map, and Mk(t) the (k-th)
generating function, associated to the family of ovals δ(t) and to the unfolding Fε.

Example. If f has (deg f − 1)2 different critical points with different critical
values, then Mk(t) =

∫
δ(t) Ωk where Ωk is a polynomial one-form in x, y. Therefore,

the generating function Mk(t) is an Abelian integral. This easily follows from
Françoise’s recursion formula [2] and the fact that if

∫
δ(t) Ω ≡ 0 for a certain

polynomial one-form Ω, then Ω = dG + gdf for suitable polynomials G, g [14, 4].
On the other hand, when f is non-generic (e.g. has “symmetries”), this might not
be true, see the examples in Section 3.

2.1. The monodromy group of the generating function. For any noncon-
stant complex polynomial f (x, y) there exists a finite set ∆ ⊂ C such that the

fibration C2 f→ C \ ∆ is locally trivial. Let t0 �∈ ∆, P0 ∈ f−1(t0) and Σ ⊂ C2 be a
small complex disc centered at P0 and transversal to f−1(t0) ⊂ C2. We will also
suppose that the fibers f−1(t) which intersect Σ are regular, hence t = f (x, y)|Σ is
a coordinate on Σ.

To an unfolding Fε of df = 0 on the complex plane C2 defined by (4), and
to a closed loop

l0: [0, 1]→ f−1(t0), l0(0) = l0(1) = P0,
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Σ

(i) (ii)

(iii)

Figure 1. The first return map and its complexification.

we associate a holonomy map (return map, Poincaré map in a complex domain)

Pl0,Fε : Σ→ Σ.

In the case when l0 is an oval of the real polynomial f , it is just the complex-
ification of the analytic Poincaré map Pε defined above, see Fig. 1. In general,
the definition of Pl0,Fε is the following, see e.g. [17]. Let F⊥0 be a holomorphic
foliation transversal to F0 = {df = 0} in some neighborhood of l0 (for instance,
F⊥0 = {fydx− fxdy = 0}). Then for |ε| sufficiently small, F⊥0 remains transversal
to Fε. The holonomy map Pl0,Fε is a germ of a biholomorphic map in a neigh-
borhood of P0 ∈ Σ which is obtained by lifting the loop l0 in the leaves of Fε via
F⊥0 . Namely, Q = Pl0,Fε(P) if there exists a path l̃0 in a leaf of Fε which connects
P and Q, and which is a lift of the loop l0 according to F⊥0 . The holonomy map
Pl0,Fε does not depend on the choice of the transversal foliation F⊥0 . If l0, l1 are
two homotopic loops with the same initial point P0, then Pl0,Fε = Pl1,Fε .

Let us fix the foliation Fε and the loop l0. As before, if we suppose that
Pl0,Fε �= id, then there exists k ∈ N such that

Pl0,Fε(t) = t + εkMk(l0,Fε, t) + · · · .

When there is no danger of confusion, we shall write simply

Mk(l0,Fε, t) = Mk(t).

The function Mk is called the generating function associated to the unfolding Fε
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and to the loop l0. Note that the natural number k as well as Mk depend on l0,Fε
and Σ in general. The following observation is crucial for the rest of the paper.

PROPOSITION 1. The number k and the generating function Mk do not depend
on Σ. They depend on the foliation Fε and on the free homotopy class of the loop
l0 ⊂ f−1(t). The generating function Mk(t) allows an analytic continuation on the
universal covering of C \ ∆, where ∆ is the set of atypical points of f .

The proof the proposition uses the following algebraic lemma.

LEMMA 1. Take k ∈ N. Let

Pε(t) = t +
∞∑
i=k

εipi(t), pk �= 0, Gε(t) = t +
∞∑
i=1

εigi(t)

be convergent power series of (t, ε) in a suitable polydisc centered at the origin in
C

2. If ε is fixed and sufficiently small, then Gε is a local automorphism and

G−1
ε ◦ Pε ◦ Gε(t) = t +

∞∑
i=k

εip̃i(t)

where p̃k(t) ≡ pk(t).

Proof of Lemma 1. We have

Pε ◦ Gε(t) = Gε(t) +
∞∑
i=k

εipi(Gε(t)) = Gε(t) + εkpk(t) + O(εk+1)

G−1
ε (t) = t +

∞∑
i=1

εig̃i(t)

and therefore

G−1
ε ◦ Pε ◦ Gε(t) = Gε(t) + εkpk(t) + O(εk+1)

+
∞∑
i=1

εig̃i(Gε(t) + εkpk(t) + O(εk+1))

= Gε(t) + εkpk(t) +
∞∑
i=1

εig̃i(Gε(t)) + O(εk+1)

= G−1
ε ◦ Gε(t) + εkpk(t) + O(εk+1)

= t + εkpk(t) + O(εk+1).

In the above computation O(εk+1) denotes a power series in t, ε containing terms
of degree at least k + 1 in ε. The lemma is proved.
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Proof of Proposition 1. Let Σ̃ be another transversal disc centered at P0 and

P̃l0,Fε(t): Σ̃→ Σ̃

the corresponding holonomy map. Then

Pl0,Fε(t) = G−1
ε ◦ P̃l0,Fε(t) ◦ Gε(t)

where

Gε: Σ→ Σ̃

is analytic and G0(t) ≡ t. Lemma 1 shows that

P̃l0,Fε(t) = t + εkMk(t) + O(εk+1), Mk(t) �≡ 0

if and only if

Pl0,Fε(t) = t + εkMk(t) + O(εk+1), Mk(t) �≡ 0

As the holonomy map Pl0,Fε(t) depends on the homotopy class of l0 this holds
true for k and Mk. In contrast to Pl0,Fε , the generating function Mk depends
on the free homotopy class of l0. Indeed, let l̃0 be a path in f−1(t0) starting at
Q0 and terminating at P0, and let Σ̃ be a transversal disc centered at Q0 with
corresponding holonomy map

P̃l0,Fε(t): Σ̃→ Σ̃.

Then we have

Pl0,Fε(t) = G−1
l̃0,Fε ◦ P̃l0,Fε(t) ◦ Gl̃0,Fε(t)(6)

where

Gl̃0,Fε : Σ→ Σ̃

is analytic and Gl̃0,F0
(t) ≡ t (the definition of Gl̃0,Fε is similar to the definition

of Pl0,Fε(t)). Lemma 1 shows that the generating function Mk(t) does not depend
on the special choice of the initial point P0. We conclude that it depends only on
the free homotopy class of the loop l0. Until now Mk was defined only locally

(on the transversal disc Σ). As the fibration C2 \ f−1(∆)
f→ C\∆ is locally trivial,

then each closed loop l0 ∈ f−1(t0) defines a continuous family l0(t) of closed
loops on f−1(t), defined on the universal covering space of C \ ∆. Only the free
homotopy classes of the loops l0(t) are well defined and to each l0(t) corresponds
a holonomy map defined up to conjugation, see (6). As this conjugation preserves
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the number k and the generating function Mk(t) then the latter allows an analytic
continuation on the universal covering of C \ ∆. Proposition 1 is proved.

The monodromy group of Mk(t) is defined as follows. The function Mk(t)
is multivalued on C \ ∆. Let us consider all its possible determinations in a
sufficiently small neighborhood of t = t0. All integer linear combinations of such
functions form a module over Z which we denote by Mk(l0,Fε). When there is
no danger of confusion we shall write simply

Mk(l0,Fε) =Mk.

The fundamental group π1(C \ ∆, t0) acts on Mk as follows. If γ ∈ π1(C \ ∆, t0)
and M ∈ Mk, let γ∗M(t) be the analytic continuation of M(t) along γ. Then γ∗
is an automorphism of Mk and

(γ1 ◦ γ2)∗M = γ2∗(γ1∗M) .

Definition 2. The monodromy representation associated to the generating
function Mk is the group homomorphism

π1(C \ ∆, t0)→ Aut(Mk) .(7)

The group image of π1(C\∆, t0) under (7) is called the monodromy group of Mk.

In what follows we wish to clarify the case when the generating function is (or is
not) an Abelian integral. For this we need to know the monodromy representation
of Mk.

2.2. The universal monodromy representation of the generating function.
Let H be a group and S ⊂ H a set. We construct an abelian group Ŝ/[H, Ŝ]
associated to the pair H, S as follows. Let Ŝ be the group generated by the set

{hsh−1: h ∈ H},

that is to say, the least normal subgroup of H containing S. We denote by [H, Ŝ]
the “commutator” group generated by

{hsh−1s−1: h ∈ H, s ∈ Ŝ}.

Then [H, Ŝ] = [Ŝ, H] is a normal subgroup of Ŝ and Ŝ/[H, Ŝ] is an abelian group.
There is a canonical homomorphism

Ŝ/[H, Ŝ]→ H/[H, H]
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which is not injective in general. Note that Ŝ = H implies that Ŝ/[H, Ŝ] =
H/[H, H] is the abelianization of H.

We apply now the above construction to the case when H = π1(Γ, P0) is
the fundamental group of a connected surface Γ (not necessarily compact), P0 ∈
Γ. Let π1(Γ) be the set of immersions of the circle into Γ, up to homotopy
equivalence (the set of free homotopy classes of closed loops). Let S ⊂ π1(Γ) be
a set and Ŝ ⊂ π1(Γ, P0) be the pre-image of S under the canonical projection

π1(Γ, P0)→ π1(Γ) .

Then Ŝ is a normal subgroup of π1(Γ, P0) and we define

HS
1(Γ,Z) = Ŝ/[Ŝ,π1(Γ, P0)].

In the case when Ŝ = π1(Γ, P0) we have HS
1(Γ,Z) = H1(Γ,Z), the first homology

group of Γ. Let Ψ be a diffeomorphism of Γ. It induces a map

Ψ∗: π1(Γ)→ π1(Γ)

and we suppose that Ψ∗(S) = S. Then it induces an automorphism (denoted again
by Ψ∗)

Ψ∗: HS
1(Γ,Z)→ HS

1(Γ,Z).

Note also that if Ψ0 is a diffeomorphism isotopic to the identity, then it induces
the identity automorphism.

Two closed loops s1, s2 ∈ Ŝ represent the same free homotopy class if and
only if s1 = hs2h−1 for some h ∈ π1(Γ, P0). It follows that to each free homotopy
class of closed loops represented by an element of Ŝ there corresponds a unique
element of HS

1(Γ,Z).
Consider finally the locally trivial fibration

C
2 \ f−1(∆)

f→ C \ ∆

defined by the nonconstant polynomial f ∈ C[x, y] and put Γ = f−1(t0), t0 �∈ ∆.
Each loop γ ∈ π1(C \ ∆, t0) induces a diffeomorphism γ∗ of Γ, defined up to an
isotopy, and hence a canonical group homomorphism

π1(C \ ∆, t0)→ Diff (Γ)/Diff0(Γ).(8)

Here Diff (Γ)/Diff0(Γ) denotes the group of diffeomorphisms Diff (Γ) of Γ, up
to diffeomorphisms Diff0 (Γ) isotopic to the identity (the so called mapping class
group of Γ). The homomorphism (8) induces a homomorphism (group action



THE DISPLACEMENT MAP 1163

on π1(Γ))

π1(C \ ∆, t0)→ Perm (π1(Γ))(9)

where Perm (π1(Γ)) is the group of permutations of π1(Γ).
Let l0 ∈ Γ be a closed loop, and let Ŝ ⊂ π1( f−1(t0), P0) be the subgroup

“generated” by l0. More precisely, let l̄0 ∈ π1( f−1(t0)) be the free homotopy
equivalence class represented by l0. We denote by S ⊂ π1(Γ) the orbit π1(C \
∆, t0)l̄0. Let Ŝ ⊂ π1(Γ, P0) be the subgroup generated by the pre-image of the
orbit Ol0 under the canonical map

π1(Γ, P0)→ π1(Γ)

and let us put

Hl0
1 (Γ,Z) = Ŝ/[π1(Γ, P0), Ŝ].

We obtain therefore the following:

PROPOSITION 2. The group Hl0
1 ( f−1(t0),Z) is abelian and the canonical map

Hl0
1 ( f−1(t0),Z)→ H1( f−1(t0),Z)(10)

is a homomorphism. The group action (9) of π1(C \ ∆, t0) on π1( f−1(t0)) induces
a homomorphism

π1(C \ ∆, t0)→ Aut(Hl0
1 ( f−1(t0),Z))(11)

called the monodromy representation associated to the loop l0.

The monodromy group associated to l0 is the group image of π1(C \ ∆, t0) under
the group homomorphism (11).

THEOREM 1. For every polynomial deformation Fε of the foliation df = 0, and
every closed loop l0 ⊂ f−1(t0), the monodromy representation (7) of the generating
function Mk is a sub-representation of the monodromy representation dual to (11).

The concrete meaning of the above theorem is as follows. There exists a
canonical surjective homomorphism

Hl0
1 ( f−1(t0),Z)

ϕ→Mk(l0,Fε)(12)

compatible with the action of π1(C \ ∆, t0). The latter means that for every γ ∈
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π1(C \ ∆, t0) the diagram

Hl0
1 ( f−1(t0),Z)

ϕ
−−−→ Mk(l0,Fε)

γ∗

� �γ∗
Hl0

1 ( f−1(t0),Z)
ϕ

−−−→ Mk(l0,Fε)

commutes (γ∗ is the automorphism induced by γ). Therefore Ker(ϕ) is a sub-
group of Hl0

1 ( f−1(t0),Z), invariant under the action π1(C \ ∆, t0), and hence (7)
is isomorphic to the induced representation

π1(C \ ∆, t0)→ Hl0
1 ( f−1(t0),Z)/Ker(ϕ)

which is a subrepresentation of

π1(C \ ∆, t0)→ Hl0
1 ( f−1(t0),Z)∗.

Proof of Theorem 1. First of all, note that if l1, l2 ∈ π1( f−1(t0), P0) and

Pl1,Fε(t) = t + Mk(l1,Fε, t)εk + O(εk+1), Pl2,Fε(t) = t + Mk(l2,Fε, t)εk + O(εk+1)

then

Pl1,Fε ◦ Pl2,Fε(t) = Pl2◦l1,Fε(t) = t + (Mk(l1,Fε, t) + Mk(l2,Fε, t))εk + O(εk+1)

(the proof repeats the arguments of Proposition 1). It follows that

Mk(l1 ◦ l2,Fε, t) = Mk(l2 ◦ l1,Fε, t) = Mk(l1,Fε, t) + Mk(l2,Fε, t).(13)

The generating function Mk(t) is locally analytic and multivalued on C \ ∆.
For every determination γ∗Mk(l0,Fε, t) of Mk(l0,Fε, t) obtained after an analytic
continuation along a closed loop γ ∈ π1(C \ ∆, t0) it holds

γ∗Mk(l0,Fε, t)) = Mk(γ∗l0,Fε, t)(14)

where l0 is (by abuse of notation) a free homotopy class of closed loops
on f−1(t0). Indeed, let l(t) ⊂ f−1(t) be a continuous family of closed loops,
l(t0) = l0. For each t̃0 we may define a holonomy map Pl(̃t0),Fε(t) analytic in
a sufficiently small disc centered at t̃0. It follows from the definition of the
holonomy map, that if t̃0, t0 are fixed sufficiently close regular values of f , then
Pl(t̃0),Fε(t) and Pl(t0),Fε(t) coincide in some open disc, containing t̃0, t0. The same
holds for the corresponding generating functions. This shows that the analytic
continuation of Mk(t) = Mk(l(t0),Fε, t) along an interval connecting t0 and t̃0 is
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obtained by taking a continuous deformation of the closed loop l(t0) along this
interval. Clearly this property of the generating function holds true even with-
out the assumption that t̃0, t0 are close and for every path connecting t̃0, t0. This
proves the identity (14).

Formula (14) shows that

k(l0,Fε) = k(γ∗l0,Fε), ∀γ ∈ π1(C \ ∆, t0).

Let l ⊂ f−1(t0) be a closed loop representing an equivalence class in
Hl0

1 ( f−1(t0),Z). Then (13) implies that k(l,Fε) ≥ k(l0,Fε) and we define

ϕ(l) =

{
Mk(l,Fε, t), if k(l,Fε) = k(l0,Fε)

0, if k(l,Fε) > k(l0,Fε).

Using the definitions of the abelian groups Hl0
1 ( f−1(t0),Z) and Mk(l0,Fε)

and the identities (13), (14), it is straightforward to check that:
• ϕ depends on the equivalence class of the loop l in Hl0

1 ( f−1(t0),Z);
• ϕ(l) belongs to Mk(l0,Fε);
• ϕ defines a surjective homomorphism (12) which is compatible with the

action of π1(C \ ∆, t0) on Hl0
1 ( f−1(t0),Z) and Mk(l0,Fε).

Theorem 1 is proved.

2.3. Main result. Our main result in this paper is the following.

THEOREM 2.
(1) If Hl0

1 ( f−1(t0),Z) is of finite dimension, then the generating function Mk(t) =
Mk(l0,Fε, t) satisfies a linear differential equation

an(t)x(n) + an−1(t)x(n−1) + · · · + a1(t)x′ + a0(t)x = 0(15)

where n ≤ dim Hl0
1 ( f−1(t0),Z) and ai(t) are suitable analytic functions on C \ ∆.

(2) If, moreover, Mk(t) is a function of moderate growth at any ti ∈ ∆ and at
t =∞, then (15) is an equation of Fuchs type.

(3) If in addition to the preceding hypotheses, the canonical map

Hl0
1 ( f−1(t0),Z)→ H1( f−1(t0),Z)(16)

is injective, then Mk(t) is an Abelian integral

Mk(t) =
∫

l(t)
ω,(17)

where ω is a rational one-form on C2 and l(t) ⊂ f−1(t) is a continuous family of
closed loops, l(t0) = l0.
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Remarks.
(1) Recall that a multivalued locally analytic function g: C \ ∆→ C is said

to be of moderate growth if for every ϕ0 > 0 there exist constants C, N > 0 such
that

sup{|g(t)tN |: 0 < |t − ti| < C, Arg (t − ti) < ϕ0, ti ∈ ∆} <∞

and

sup{|g(t)t−N |: |t| > 1/C, Arg |t| < ϕ0} <∞.

(2) When (16) is not injective, the generating function could still be an
Abelian integral. Of course, this depends on the unfolding Fε.

(3) If the dimension of Hl0
1 ( f−1(t0),Z) is finite, we may also suppose that

(15) is irreducible. This makes (15) unique (up to a multiplication by analytic
functions). The monodromy group of this equation is a subgroup of the mon-
odromy group associated to l0, see (11). It is clear that Mk(t) may satisfy other
equations with nonanalytic coefficients on C \ ∆.

Proof of Theorem 2. Suppose that Hl0
1 ( f−1(t0),Z) is of finite dimension. Then

Mk(l0,Fε) = Hl0
1 ( f−1(t0),Z)/Ker(ϕ) is of finite dimension too, and let gi(t) =

Mk(li,Fε, t), i = 1, . . . , n be a basis of the complex vector space V generated
by Mk(l0,Fε), dimC V ≤ dimZMk(l0,Fε). There is a unique linear differential
equation of order dimC V satisfied by the above generating functions (and hence
by Mk(l0,Fε, t)) having the form (15) which can be equivalently written as

det




g1 g′1 · · · g(n)
1

g2 g′2 · · · g(n)
2

. . · · · .
gn g′n · · · g(n)

n
x x′ · · · x(n)


 = 0.(18)

The functions g1, g2, . . . , gn are linearly independent over C and define a complex
vector space invariant under the action of π1(C \ ∆, t0). For a given γ ∈ π1(C \
∆, t0), let γ∗ ∈ Aut(V) be the automorphism (11) and denote (by abuse of notation)
by γ∗ai(t) the analytic continuation of ai(t) along the loop γ. The explicit form of
the coefficients ai(t) as determinants (see (18)) implies that γ∗ai(t) = det(γ∗)ai(t).
Therefore γ∗[ai(t)/an(t)] = ai(t)/an(t), ai(t)/an(t) are single-valued and hence
meromorphic functions on C \ ∆. This proves the first claim of the theorem.
If in addition Mk(t) is of moderate growth, then gi(t) are of moderate growth
too, ai(t)/an(t) are rational functions, and the equation (15) is of Fuchs type
(eventually with apparent singularities).

Suppose finally that (16) is injective, which implies that Hl0
1 ( f−1(t0),Z) is

a subgroup of the homology group H1( f−1(t0),Z). By the algebraic de Rham
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theorem [8] the first cohomology group of f−1(t0) is generated by polynomial
one-forms. In particular, the dual space of Hl0

1 ( f−1(t0),Z) is generated by poly-
nomial one-forms ω1,ω2, . . . ,ωn. Let l1(t), l2(t), . . . , ln(t), l(t) ⊂ f−1(t) be a con-
tinuous family of closed loops, such that l1(t0), l2(t0), . . . , ln(t0) defines a basis of
Hl0

1 ( f−1(t0),Z, l(t0) = l0. The determinant

det




g1
∫

l1
ω1

∫
l1
ω2 · · ·

∫
l1
ωn

g2
∫

l2
ω1

∫
l2
ω2 · · ·

∫
l2
ωn

· · · · · ·
gn

∫
ln ω1

∫
ln ω2 · · ·

∫
ln ωn

Mk
∫

l ω1
∫

l ω2 · · ·
∫

l ωn


 = 0.(19)

developed with respect to the last row gives

α0Mk + α1

∫
l
ω1 + α2

∫
l
ω2 + · · ·αn

∫
l
ωn = 0.

As Hl0
1 ( f−1(t0),Z) ⊂ H1( f−1(t0),Z) is invariant under the action of π1(C\∆, t0),

then we deduce in the same way as before that αi(t)/α0(t) are rational functions.
This completes the proof of the theorem.

We conclude the present section with some open questions. Let l0(t) ⊂ f−1(t)
be a continuous family of ovals defined by the real polynomial f ∈ R[x, y].

Open questions.
(1) Is it true that the abelian group Hl0

1 ( f−1(t0),Z) is free, torsion free, finitely
generated, or even stronger, dim Hl0

1 ( f−1(t0),Z) ≤ dimH1( f−1(t0),Z)? If not, give
counter-examples.

(2) Is it true that every generating function of a polynomial deformation Fε
of df = 0 is of moderate growth at any point t ∈ ∆ or t ∈ ∞?

(3) Is it true that the monodromy representation (11) has the following uni-
versal property: for every l ∈ Hl0

1 ( f−1(t0),Z) there exists a polynomial deformation
Fε of df = 0, such that the corresponding generating function ϕ(l) is not identi-
cally zero. If this were true it would imply that Hl0

1 ( f−1(t0),Z) is torsion-free,
and whenever (16) is not injective, then there exists a polynomial unfolding with
corresponding generating function which is not an Abelian integral of the form
(17).

(4) Suppose that the canonical homomorphism (10) is surjective. Is it true
that it is also injective? Note that a negative answer would imply that the repre-
sentation (11) is not universal (in the sense of the preceding question). Indeed,
if (10) is surjective, then the orbit Ol0 generates the homology group, and hence
the generating function is always an Abelian integral. The kernel of the canoni-
cal map (10) consists of free homotopy classes (modulo an equivalence relation)
homologous to zero, along which every Abelian integral vanishes.
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δl δr

δe

δs

Figure 2. The continuous families of ovals δl, δr and δe.

3. Examples. In this section we show that the claims of Theorem 2 are
nonempty. Namely, we apply it to polynomial deformations f of the simple sin-
gularities y2 + x4, xy(x − y) of type A3, D4 respectively (see [1, vol. 1] for this
terminology). For a given loop δ(t) ⊂ f−1(t) ⊂ C2 we shall compute the group
Hδ

1( f−1(t),Z). As the abelian groups Hδ
1( f−1(t),Z) are isomorphic, then when

the choice of t is irrelevant we shall omit it. The same convention will be ap-
plied to the cycles or closed loops on the fibers f−1(t). An equivalence class of
loops in Hδ

1( f−1(t0)t,Z) will be represented by a free homotopy class of loops
on f−1(t). Two such free homotopy classes δ1, δ2 are composed in the following
way: take any two representative of δ1, δ2 in the fundamental group of the sur-
face f−1(t) and compose them. This operation is compatible with the group law
in Hδ

1( f−1(t0)t,Z), provided that δ1, δ2 represent equivalence classes in it. The
operation defines a unique element in Hδ

1( f−1(t0)t,Z) (represented once again by
a nonunique free homotopy class of loops).

3.1. The A3 singularity. Take

f (x, y) =
y2

2
+

(x2 − 1)2

4

and denote by δe(t), δl(t), δr(t) respectively the exterior, left interior and right
interior continuous family of ovals defined by {(x, y) ∈ R2: f (x, y) = t}, see
Fig. 2. We denote by the same letters the corresponding continuous families
of free homotopy classes of loops defined on the universal covering space of
C \ {0, 1/4}, and fix t0 �= 0.

PROPOSITION 3. We have

Hδl
1 ( f−1(t0),Z) = Hδr

1 ( f−1(t0),Z) = H1( f−1(t0),Z) = Z3, Hδe(t0) = Z2

and the canonical map Hδe
1 ( f−1(t0),Z)→ H1( f−1(t0),Z) is injective.
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lδ δr

δs

δslδ +

δs

δr

Figure 3. The Dehn twist along the closed loop δl.

Applying Theorem 2 we get:

COROLLARY 1. For every polynomial unfolding Fε the generating function
Mδe(t0) is an Abelian integral, provided that this function is of moderate growth.

It is possible to show that Mδe(t0) is always of moderate growth (this will follow
from the explicit computations below). As for Mδl(t0) and Mδr(t0), it follows from
[5] that these functions are always Abelian integrals.

Proof of Proposition 3. The affine curve f−1(t0) is a torus with two removed
points, and hence H1( f−1(t0),Z) = Z

3. We compute first Hδl
1 ( f−1(t0),Z). Let

t0 ∈ (0, 1/4) and let δs(t) ⊂ f−1(t), t ∈ (0, 1/4), be the continuous family of
“imaginary” closed loops (the ovals of {y2/2 + (x2 − 1)2/4 = t}) which tend
to the saddle point (0, 0) as t tends to 1/4. As before we denote by the same
letter the continuous family of free homotopy classes of loops defined on the
universal covering space of C\{0, 1/4}, and fix t0 �= 0, 1/4. Let l0, l1/4 ∈ π1(C\
{0, 1/4}, t0) be two simple loops making one turn about 0 and 1/4 respectively
in a positive direction. The group π1(C \ {0, 1/4}, t0) acts on π1( f−1(t0)) as
follows. To the loop l1/4 corresponds an automorphism of f−1(t0) which is a
Dehn twist along δs(t0). Recall that a Dehn twist of a surface along a closed
loop is a diffeomorphism which is the identity, except in a neighborhood of the
loop. In a neighborhood of the loop the diffeomorphism is shown on Fig. 3, see
[22]. The usual Picard-Lefschetz formula [1] describes an automorphism of the
homology group induced by a Dehn twist along a “vanishing” loop. Therefore
l1/4∗δs = δs and l1/4∗δl is the loop shown on Fig. 3. We may also compose the
loops δs, l1/4∗δl in the way explained in the beginning of this section. The result

is an equivalence class in Hδl
1 ( f−1(t0),Z) represented in a nonunique way by a

closed loop. The equivalence class Varl1/4
δl = (l1/4 − id)∗δl equals therefore to

the class represented by δs, and hence Var2
l1/4
δl represents the zero class. In a

similar way we compute l0∗δs(t0) which equals δs + δr + δl, as well as its first
variation Varl0δs = (l0− id)∗δs which equals δr + δl, see Fig. 5. It follows that the
second variation Var2

l0δs of δs may be represented by a loop homotopic to a point.

We conclude that Hδl
1 ( f−1(t0),Z) is generated by equivalence classes represented

by δl, δs, δr and hence it coincides with H1( f−1(t0),Z) (generated by the same
loops). The computation of Hδr

1 ( f−1(t0),Z) is analogous.



1170 LUBOMIR GAVRILOV AND ILIYA D. ILIEV

t1t0

(i)

1/40

(iii) (iv)

(ii)

Figure 4. The closed loops δe and δs.

To compute Hδe
1 ( f−1(t0),Z) we note that this group coincides with Hδs

1 ( f−1(t0),Z).
Indeed, take a loop l ⊂ C starting at t0 ∈ (0, 1/4) and terminating at some
t1 ∈ (1/4,∞) as it is shown on Fig. 4. This defines a continuous family of (free
homotopy classes of) loops δs(t) along l. Then it follows from Fig. 4 that

δs(t0) = δe(t1)

and hence Hδs(t0)
1 ( f−1(t0),Z) = Hδe(t1)

1 ( f−1(t0),Z). The loop l0∗δs(t0) and its first
variation Varl0δs(t0) = (l0 − id)∗δs(t0) were already computed (Fig. 5) and the
second variation Var2

l0δs(t0) may be represented by a loop homotopic to a point.
Further, l1/4∗δs(t0) = δs(t0), and the first variation Varl1/4

Varl0δs(t0) of Varl0δs(t0)
along l1/4 is a composition of free homotopy classes of δs (two times). It follows

that Hδs
1 ( f−1(t0),Z) is generated by δs and Varl0δs. As these loops are homolog-

ically independent we conclude that

Hδs
1 ( f−1(t0),Z)→ H1( f−1(t0),Z)

is injective and Hδs
1 ( f−1(t0),Z) = Z2. The proposition is proved.

3.2. Calculation of the generating function in the A3 case. In what follows
we compare the above geometric approach to the combinatorial approach based
on Françoise’s recursion formulae. We shall prove a stronger result allowing us to
set up an explicit upper bound to the number of zeros in Σ of the displacement map
Pε(t)− t for small ε. Below we use the standard notation H of the Hamiltonian
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(i)

(ii)

Figure 5. (i) The loop l0∗δs(t0), and (ii) its first variation Varl0δs(t0).

function,

H =
y2

2
+

(x2 − 1)2

4
.

We say that A is a polynomial of weighted degree m in x, y, H provided that

A(x, y, H) =
∑

i+j+2k≤m

aijkxiyjHk

(namely, the weight of x, y is one and the weight of H is assumed to be two).
Clearly, a polynomial in x, y allows a representation through different weighted
polynomials in x, y, H, possibly of different weighted degrees, depending on the
way the powers xi with i > 3 were expressed. However, any polynomial has a
unique representation through a weighted polynomial in a normal form which
means that the latter contains powers xi with i ≤ 3 only. We will not assume that
the weighted polynomials we consider bellow are taken in a normal form.
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Set σk = xkydx and Ik(t) =
∫
δ(t) σk, k = 0, 1, 2, where δ(t) is an oval contained

in the level set {H = t}.

PROPOSITION 4. For any one-formωm = Am(x, y, H)dx+Bm(x, y, H)dy with poly-
nomial coefficients of weighted degree m, the following decomposition holds:

ωm = dGm+1(x, y, H) + gm−1(x, y, H)dH(20)

+ αm−1(H)σ0 + βm−2(H)σ1 + γm−3(H)σ2

where Gk, gk,αk,βk, γk are polynomials in their arguments of weighted degree k.

Below, we will denote by αk,βk, γk polynomials of weighted degree k in H,
by Gk, gk polynomials of weighted degree k in x, y, H, and by ωk one-forms
with polynomial coefficients of weighted degree k in x, y, H. (Possibly, different
polynomials and one-forms of the same degree and type will be denoted by the
same letter.)

Proof of Proposition 4. The proof is similar to the proof of Lemma 1 in
[12] which concerned the elliptic case H = 1

2 y2 + 1
2 x2 − 1

3 x3. It is sufficient to
consider the case when the coefficients of the one-form do not depend on H. As
in [12], one can easily see that the problem reduces to expressing the one-forms
yjdx, xyjdx, x2yjdx in the form (20). We have

yjdx=
4j

2j + 1
Hyj−2dx +

j
2j + 1

(x2 − 1)yj−2dx− j
2j + 1

xyj−2dH + d
xyj

2j + 1
,

xyjdx=
2j

j + 1
Hxyj−2dx− j

2j + 2
(x2 − 1)yj−2dH + d

(x2 − 1)yj

2j + 2
,

x2yjdx− 1
2j + 3

yjdx =
4j

2j + 3
Hx2yj−2dx− j

2j + 3
(x3 − x)yj−2dH + d

(x3 − x)yj

2j + 3
.

From the second equation we obtain immediately that xyjdx = cjH
j−1

2 σ1 + dGj+2 +
gjdH (cj = 0 for j even, cj > 0 for j odd) which yields

xAm−1(y)dx = βm−2(H)σ1 + dGm+1 + gm−1dH.

Taking notation θj = (yjdx, x2yjdx)
, Θj = (dGj+1 + gj−1dH, dGj+3 + gj+1dH)
, one
can rewrite the system formed by the first and the third equation above in the
form

θj = Λj(H)θj−2 + Θj, Λj(H) =
j

2j + 1




4H − 1 1

4H − 1
2j + 3

4(2j + 1)H + 1
2j + 3


 .
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As ΛjΘj−2 = Θj, this implies that θj = ΛjΛj−2 . . .Λ3θ1 + Θj for j odd and θj =
ΛjΛj−2 . . .Λ2θ0 + Θj for j even, which in both cases is equivalent to

yjdx = αj−1(H)σ0 + γj−3(H)σ2 + dGj+1 + gj−1dH,

x2yjdx = αj−1(H)σ0 + γj−1(H)σ2 + dGj+3 + gj+1dH
(21)

where the coefficients at σ0,σ2 vanish for j even. Applying the last two relations
with j ≤ m and j ≤ m− 2 respectively, we obtain the result.

The above decomposition (20) is the basic tool for calculating the generating
functions. For the two period annuli inside the eight-loop (level sets t ∈ (0, 1

4 )),
one has ∫

δ(t)
ωm = αm−1(t)I0(t) + βm−2(t)I1(t) + γm−3(t)I2(t),

and for 0 < t < 1
4 ,

∫
δ(t)
ωm ≡ 0⇔ αm−1(t) = βm−2(t) = γm−3(t) ≡ 0⇔ ωm = dGm+1 + gm−1 dH.

This means that the internal period annuli satisfy the so called (∗) property [2]
and the generating functions are determined from the integration of polynomial
one-forms calculated in a recursive procedure. More explicitly, consider a small
polynomial perturbation

ẋ = Hy + εf (x, y),

ẏ = −Hx + εg(x, y),
(22)

which can be rewritten as dH− εωn = 0 with ωn = g(x, y)dx− f (x, y)dy and n the
degree of the perturbation. Then in (0, 1

4 ), the first nonzero generating function
is given by

Mk(t) =
∫
δ(t)

Ωk, where Ω1 = ωn, Ωk = qk−1Ω1 and Ωk−1 = dQk−1 + qk−1 dH.

Making use of (20), it is then easily seen by induction that qk−1 is a polynomial
of weighted degree (k − 1)(n − 1), therefore Ωk is a polynomial one-form of
weighted degree m = k(n− 1) + 1 which proves that

Mk(t) = α
[ k(n−1)

2 ]
(t)I0(t) + β

[ k(n−1)−1
2 ]

(t)I1(t) + γ
[ k(n−1)−2

2 ]
(t)I2(t),(23)

where αj,βj, γj are polynomials in t of degree at most j.
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For the period annulus outside the eight-loop (level sets t ∈ ( 1
4 ,∞)), one has

∫
δ(t)
ωm = αm−1(t)I0(t) + γm−3(t)I2(t),

and for 1
4 < t <∞,

∫
δ(t)
ωm ≡ 0⇔ αm−1(t) = γm−3(t) ≡ 0⇔ ωm = dGm+1 + gm−1 dH + βm−2(H)σ1,

since I1(t) ≡ 0 which is caused by symmetry of the oval. Therefore the outer pe-
riod annulus does not satisfy the (∗) property which makes this case troublesome
and we shall deal with it until the end of this section.

Take a point (x, y) lying on a certain level set H = t for a fixed t > 1
4 and let

(a, 0) be the intersection point of the level curve with the negative x-axis. Denote
by δ(x, y) ⊂ {H = t} the oriented curve in the (ξ, η) plane connecting (a, 0) and
(x, y) in a clockwise direction. Consider the function ϕ determined by the formula
(see formula (2.5) in [11])

ϕ(x, y) =
∫
δ(x,y)

ξdξ
η

.

As I1(t) =
∫
δ(t) xy dx ≡ 0, this is also true for I′1(t) =

∫
δ(t)

x dx
y which implies that

ϕ(± a, 0) = 0. Therefore, ϕ(x, y) is single-valued and hence an analytic function
in the domain outside the eight-loop. In [13], ϕ was expressed as

ϕ(x, y) =
1√
2

(
arctan

x2 − 1

y
√

2
− π

2
sign y

)
=

sign y√
2

(
arcsin

x2 − 1

2
√

H
− π

2

)
.

In [16], the authors expressed ϕ by a complex logarithmic function

ϕ =
i

2
√

2
log

x2 − 1 + i
√

2y

x2 − 1− i
√

2y

and used in their proofs the properties of ϕ on the corresponding Riemann surface.
The concrete expression of the function ϕ is inessential in our analysis. We will
only make use of the identities (24) below and the fact that ϕ there is determined
up to an additive constant, whilst the first nonvanishing generating function Mk

is independent on such a constant.
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Let us denote for short G = 1
4 (x2 − 1)y. Using direct calculations, one can

establish easily the following identities:

σ1 = xydx = dG + Hdϕ,

Hdϕ =
xy
2

dx− x2 − 1
4

dy,

(x2 − 1)dϕ =
y

2H
dH − dy,

ydϕ = xdx− x2 − 1
4H

dH,

xdϕ =
(5x2 − 1)y

4H
dx− d

(
xG
H

)
− xG

H2 dH.

(24)

Making use of the first identity in (24), we can rewrite (20) as

ωm= dGm+1 + gm−1dH + βmdϕ + αm−1(H)σ0 + γm−3(H)σ2

= d(Gm+1 + ϕβm) + (gm−1 − ϕβ′m) dH + αm−1(H)σ0 + γm−3(H)σ2,
(25)

with some new Gk, gk and βm satisfying βm(0) = 0.

LEMMA 2. For any nonnegative integer l and one-form of weighted degree
m ≥ 0, the following identity holds:

ϕlωm = d
l+1∑
j=0

ϕj

Hl−j Gm+3l−3j+1 +
l+1∑
j=0

ϕj

Hl−j+1 gm+3l−3j+1dH

+
l∑

j=0

ϕj

Hl−jαm+3l−3j−1σ0 +
l∑

j=0

ϕj

Hl−jγm+3l−3j−3σ2.

Proof. By the first equation in (25), we have

ϕlωm = d

(
ϕlGm+1 +

ϕl+1

l + 1
βm

)
+

(
ϕlgm−1 −

ϕl+1

l + 1
β′m

)
dH(26)

+ ϕlαm−1σ0 + ϕlγm−3σ2 − lϕl−1Gm+1dϕ.

Using the second equation in (24), we can rewrite this identity as

ϕlωm = d(ϕlGm+1 + Hϕl+1Gm−2) + (ϕlgm−1 + ϕl+1gm−2)dH

+ ϕlαm−1σ0 + ϕlγm−3σ2 +
l
H
ϕl−1ωm+3.
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By iteration procedure, we get

ϕlωm =
l∑

j=0

j!
Hj

(
l
j

)[
d(ϕl−jGm+3j+1 + Hϕl−j+1Gm+3j−2)

+ (ϕl−jgm+3j−1 + ϕl−j+1gm+3j−2)dH + ϕl−jαm+3j−1σ0 + ϕl−jγm+3j−3σ2

]

=
l∑

j=0

[
d

(
ϕl−j

Hj Gm+3j+1 +
ϕl−j+1

Hj−1 Gm+3j−2

)

+

(
ϕl−j

Hj+1 gm+3j+1 +
ϕl−j+1

Hj gm+3j−2

)
dH

+
ϕl−j

Hj αm+3j−1σ0 +
ϕl−j

Hj γm+3j−3σ2

]

= d
l+1∑
j=0

ϕj

Hl−j Gm+3l−3j+1 +
l+1∑
j=0

ϕj

Hl−j+1 gm+3l−3j+1dH

+
l∑

j=0

ϕj

Hl−jαm+3l−3j−1σ0 +
l∑

j=0

ϕj

Hl−jγm+3l−3j−3σ2.

Unfortunately, one cannot use directly Lemma 2 to prove Proposition 5 and
Theorem 3. Indeed, by the second equation in (25), we see that the function q1

is a first degree polynomial with respect to ϕ which agrees with Proposition 5
for k = 1. By applying Lemma 2, we then conclude that q2 would contain terms
with denominators H2, which does not agree with Proposition 5 when k = 2. The
core of the problem is the following. Let us express Ωk, the differential one-form
used to calculate Mk(t), in the form Ωk = dQk + qkdH + ak(H)σ0 + bk(H)σ2. Then
Mk(t) ≡ 0 is equivalent to ak = bk ≡ 0. However, the vanishing of ak and bk

implies the vanishing of some ”bad” terms in qk as well. Without removing these
superfluous terms in qk, one cannot derive the precise formulas of Mk+1 and qk+1

during the next step. Hence, the precise result we are going to establish requires
much more efforts. The proof of our theorem therefore consists of a multi-step
reduction allowing us to detect and control these ”bad” terms. As the first step,
we derive below some preliminary formulas.

Consider the function Gm+1 in formula (26). As it is determined up to an
additive constant, one can write

Gm+1(x, y, H) = ax + (x2 − 1)Gm−1(x) + yGm(x, y) + HGm−1(x, y, H)

which together with (24) yields

−lGm+1dϕ = ωm+1 +
gm+2

H
dH + alxdϕ, al = const.
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Therefore, by (26),

ϕlωm = ϕl−1ωm+1 + d

(
ϕlGm+1 +

ϕl+1

l + 1
βm

)

+

(
ϕl−1

H
gm+2 + ϕlgm−1 −

ϕl+1

l + 1
β′m

)
dH

+ alϕ
l−1xdϕ + ϕlαm−1σ0 + ϕlγm−3σ2.

By iteration, one obtains

ϕlωm = d
l∑

j=0

(
ϕjGm+l−j+1 +

ϕj+1

j + 1
βm+l−j

)
+

l∑
j=0

(
ϕjgm+l−j−1 −

ϕj+1

j + 1
β′m+l−j

)
dH

+
l∑

j=1

ϕj−1

H
gm+l−j+2dH +

l∑
j=1

ajϕ
j−1xdϕ +

l∑
j=0

ϕjαm+l−j−1σ0

+
l∑

j=0

ϕjγm+l−j−3σ2.

After a rearrangement, we get

ϕlωm = d
l+1∑
j=0

ϕjGm+l−j+1 +


 l−1∑

j=0

ϕj

H
gm+l−j+1 + ϕlgm−1 − ϕl+1G′m


 dH

+
l−1∑
j=0

ajϕ
jxdϕ +

l∑
j=0

ϕjαm+l−j−1σ0 +
l∑

j=0

ϕjγm+l−j−3σ2

(27)

where Gm = Gm(H) and Gm(0) = 0. Using (27), we then obtain

ϕl

H
ωm= d

l+1∑
j=0

ϕj

H
Gm+l−j+1 +


 l∑

j=0

ϕj

H2 gm+l−j+1 − ϕl+1(Gm/H)′


 dH

+
l−1∑
j=0

aj
ϕj

H
xdϕ +

l∑
j=0

ϕj

H
αm+l−j−1σ0 +

l∑
j=0

ϕj

H
γm+l−j−3σ2.

(28)

More generally, for any k ≥ 2,

ϕl

Hkωm = d
l+1∑
j=0

ϕj

Hk Gm+l−j+1 +


 l∑

j=0

ϕj

Hk+1 gm+l−j+1 +
ϕl+1

Hk βm−2


 dH

+
l−1∑
j=0

aj
ϕj

Hk xdϕ +
l∑

j=0

ϕj

Hkαm+l−j−1σ0 +
l∑

j=0

ϕj

Hk γm+l−j−3σ2.

(29)
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After making the above preparation, take again a perturbation (22) or equivalently
dH−εωn = 0 where ωn is a polynomial one-form in (x, y) of degree n and consider
the related displacement map (5).

PROPOSITION 5. Assume that M1(t) = . . . = Mk(t) ≡ 0. Then Ωk = dQk + qkdH,
with

qk =
k−1∑
j=0

ϕj

Hk−j−1 gkn+k−3j−2 + ϕkgk(n−2).(30)

Proof. The proof is by induction. Assume that qk takes the form (30), then
Ωk+1 = qkΩ1 = qkωn can be written as

Ωk+1 =
k−1∑
l=0

ϕl

Hk−l−1ω(k+1)(n+1)−3l−3 + ϕkω(k+1)(n−2)+2.(31)

Using (29), we obtain that Mk+1(t) =
∫
δ(h) Ω∗k+1 where

Ω∗k+1 =
k−1∑
l=0


 l−1∑

j=0

ajl
ϕj

Hk−l−1 xdϕ +
l∑

j=0

ϕj

Hk−l−1α(k+1)(n+1)−j−2l−4σ0

+
l∑

j=0

ϕj

Hk−l−1γ(k+1)(n+1)−j−2l−6σ2




+
k−1∑
j=0

ajkϕ
jxdϕ +

k∑
j=0

ϕjα(k+1)(n−2)+k−j+1σ0 +
k∑

j=0

ϕjγ(k+1)(n−2)+k−j−1σ2

= Ω∗∗k+1 +
k−1∑
j=0

ϕjα(k+1)(n+1)−3j−4

Hk−j−1 σ0 +
k−1∑
j=0

ϕjγ(k+1)(n+1)−3j−6

Hk−j−1 σ2

+ ϕkα(k+1)(n−2)+1σ0 + ϕkγ(k+1)(n−2)−1σ2

and

Ω∗∗k+1 =
k−2∑
l=0

δ2k−2l−4(H)
Hk−l−2 ϕlxdϕ + ak−1ϕ

k−1xdϕ.

We now apply Lemma 2 (with m = 3) to Ω∗∗k+1. Thus,

Ω∗∗k+1 =
k−2∑
l=0

δ2k−2l−4

Hk−l−1 ϕ
lω3 + ak−1ϕ

k−1xdϕ

=
k−2∑
l=0

δ2k−2l−4

Hk−l−1

l+1∑
j=0

[
d
ϕj

Hl−j G3l−3j+4 +
ϕj

Hl−j+1 g3l−3j+4dH

]
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+
k−2∑
l=0

δ2k−2l−4

Hk−l−1

l∑
j=0

ϕj

Hl−j (α3l−3j+2σ0 + γ3l−3jσ2) + ak−1ϕ
k−1xdϕ

=
k−2∑
l=0

l+1∑
j=0

[
d

ϕj

Hk−j−1 G2k−3j+l +
ϕj

Hk−j g2k−3j+ldH

]

+
k−2∑
l=0

l∑
j=0

ϕj

Hk−j−1 (α2k−3j+l−2σ0 + γ2k−3j+l−4σ2) + ak−1ϕ
k−1xdϕ

=
k−1∑
j=0

[
d
ϕjG3k−3j−2

Hk−j−1 +
ϕjg3k−3j−2

Hk−j dH

]

+
k−2∑
j=0

ϕj

Hk−j−1 (α3k−3j−4σ0 + γ3k−3j−6σ2) + ak−1ϕ
k−1xdϕ.

We have proved that

Ω∗k+1 =
k−1∑
j=0

[
d
ϕjG3k−3j−2

Hk−j−1 +
ϕjg3k−3j−2

Hk−j dH

]

+
k−1∑
j=0

ϕjα(k+1)(n+1)−3j−4

Hk−j−1 σ0 +
k−1∑
j=0

ϕjγ(k+1)(n+1)−3j−6

Hk−j−1 σ2

+ϕkα(k+1)(n−2)+1σ0 + ϕkγ(k+1)(n−2)−1σ2 + ak−1ϕ
k−1xdϕ.

(32)

We finish this step of the proof of Proposition 5 by noticing that if Mk+1(t) =∫
δ(t) Ω∗k+1 ≡ 0, then the constant ak−1 and the coefficients of all the polynomials
αj, γj in (32) are zero. The proof of this claim is the same as the proof of
Proposition 6 below and for this reason we omit it here. Therefore, equation (32)
reduces to Ω∗k+1 = dQ∗k+1 + q∗k+1dH.

Next, applying to (31) the more precise identities (27), (28) along with (29),
we see that Ωk+1 = dQk+1 + qk+1dH + Ω∗k+1 and moreover, the coefficient at dH is

qk+1 =
k−3∑
l=0


 l∑

j=0

ϕj

Hk−l g(k+1)(n+1)−j−2l−2 +
ϕl+1

Hk−l−1 g(k+1)(n+1)−3l−5




+
k−2∑
j=0

ϕj

H2 g(k+1)(n−2)+k−j+5 + ϕk−1g(k+1)(n−2)+2

+
k−2∑
j=0

ϕj

H
g(k+1)(n−2)+k−j+3 + ϕk−1g(k+1)(n−2)+2 + ϕkg(k+1)(n−2)+1

+
k−1∑
j=0

ϕj

H
g(k+1)(n−2)+k−j+3 + ϕkg(k+1)(n−2)+1 + ϕk+1g(k+1)(n−2).
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An easy calculation yields that the above expression can be rewritten in the form

qk+1 =
k∑

j=0

ϕj

Hk−j g(k+1)(n+1)−3j−2 + ϕk+1g(k+1)(n−2).

Finally, it remains to use the fact we already established above that q∗k+1 (the
coefficient at dH in Ω∗k+1) is a function of the same kind as the former qk+1.

PROPOSITION 6. Assume that M1(t) = . . . = Mk(t) ≡ 0. Then Ωk+1 = qkΩ1 =
qkωn takes the form

Ωk+1 = α2n−2(H)σ0 + γ2n−4(H)σ2 +
a0

4H
(5σ2 − σ0) + dQk+1 + qk+1dH if k = 1,

Ωk+1 =
α(k+1)(n+1)−4(H)

Hk−1 σ0 +
γ(k+1)(n+1)−6(H)

Hk−1 σ2 + dQk+1 + qk+1dH if k > 1.

Proof. We use formula (32) from the proof of Proposition 5 and the fact
that the function ϕ is determined up to an additive constant, say c. Recall that
Mk+1(t) =

∫
δ(t) Ω∗k+1 where Ω∗k+1 is given by (32). As above, one can use Lemma

2 to express the last term in (32)

ak−1ϕ
k−1xdϕ =

ak−1

H
ϕk−1ω3

as

ak−1

H
{[ϕk−1(α2σ0 + γ0σ2) + l.o.t] + dQ + qdH},

where we denoted by l.o.t. the terms containing ϕj with j < k− 1. The values of
α2 and γ0 can be calculated from the last equation in (24) which yields

ak−1ϕ
k−1xdϕ =

ak−1

4H
{[ϕk−1(5σ2 − σ0) + l.o.t] + dQ + qdH}.(33)

Let us now put ϕ+c instead of ϕ in the formula of Mk+1(t). Then Mk+1(t) becomes
a polynomial in c of degree k with coefficients depending on t. Since Mk+1 does
not depend on this arbitrary constant c, all the coefficients at cj, 1 ≤ j ≤ k should
vanish. By (32), the coefficient at ck equals

α(k+1)(n−2)+1(t)I0(t) + γ(k+1)(n−2)−1(t)I2(t)

which is zero as Mk+1(t) does not depend on c. This is equivalent to α(k+1)(n−2)+1(t)
= γ(k+1)(n−2)−1(t) ≡ 0. When k = 1, this together with (32) and (33) implies the
formula for Ω2. Assume now that k > 1. When the leading coefficient at ck
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vanishes, the next coefficient, at ck−1, becomes

[
α(k+1)(n−2)+2(t)− ak−1

4t

]
I0(t) +

[
γ(k+1)(n−2)(t) + 5

ak−1

4t

]
I2(t)

and both coefficients at I0 and I2 are identically zero which yields α(k+1)(n−2)+2 =
γ(k+1)(n−2) ≡ 0 and ak−1 = 0. Similarly, all coefficients in (32) α(k+1)(n+1)−3j−4,
γ(k+1)(n+1)−3j−6, j > 0, become zero which proves Proposition 6.

In the calculations above we took the eight-loop Hamiltonian H = 1
2 y2 +

1
4 (x2−1)2 and considered the outer period annulus of the Hamiltonian vector field
dH = 0, defined for levels H = t with t ∈ Σ = ( 1

4 ,∞). Evidently a very minor
modification (sign changes in front of some terms in the formulas like (24)) is
needed to handle the double-heteroclinic Hamiltonian H = 1

2 y2 − 1
4 (x2 − 1)2 and

the global-center Hamiltonian H = 1
2 y2 + 1

4 (x2 + 1)2. The functions ϕ, G and the
interval Σ could then be taken respectively as follows:

ϕ =
1

2
√

2
log

1− x2 −
√

2y

1− x2 +
√

2y
, G =

(x2 − 1)y
4

, Σ = (− 1
4 , 0),

ϕ =
i

2
√

2
log

x2 + 1 + i
√

2y

x2 + 1− i
√

2y
, G =

(x2 + 1)y
4

, Σ = ( 1
4 ,∞).

Below, we state Theorem 3 in a form to hold for all the three cases. Recall
that Ik(t) =

∫
δ(t) σk =

∫
δ(t) xky dx, k = 0, 1, 2, where δ(t), t ∈ Σ, is the oval formed

by the level set {H = t} for any of the three Hamiltonians.

THEOREM 3. For t ∈ Σ, the first nonvanishing generating function Mk(t) =∫
H=t Ωk corresponding to degree n polynomial perturbations dH−εωn = 0, has the

form

for k = 1, M1(t) = α n−1
2

(t)I0(t) + γ n−3
2

(t)I2(t),

for k = 2, M2(t) =
1
t

[
αn(t)I0(t) + γn−1(t)I2(t)

]
,

for k > 2, Mk(t) =
1

tk−2

[
α k(n+1)

2 −2
(t)I0(t) + γ k(n+1)

2 −3
(t)I2(t)

]
,

where αj(t), γj(t) denote polynomials in t of degree [ j].

Proof. Take a perturbation dH − εωn = 0 where ε is a small parameter.
Then by a generalization of Françoise’s recursive procedure, one obtains M1(t) =∫
δ(t) Ω1, and when M1(t) = · · · = Mk−1(t) ≡ 0, then Mk(t) =

∫
δ(t) Ωk, where

Ω1 = ωn, Ωk = qk−1Ω1 and qk−1 is determined from the representation Ωk−1 =
dQk−1 + qk−1dH. The algorithm is effective provided we are able to express the
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one-forms Ωk in a suitable form which was done above. For k = 1, the result
follows from (25) applied with m = n. For k > 1, the result follows immediately
from Proposition 6.

Clearly, Theorem 3 allows one to give an upper bound to the number of zeros
of Mk(t) in Σ and thus to estimate from above the number of limit cycles in the
perturbed system which tend as ε → 0 to periodic orbits of the original system
that correspond to Hamiltonian levels in Σ. For this purpose, one can apply the
known sharp results on non-oscillation of elliptic integrals (most of them due to
Petrov, see also [7], [21] and the references therein) to obtain the needed bounds.
Define the vector space

Mm = {Pm(t)I0(t) + Pm−1(t)I2(t): Pk ∈ R[t], deg Pk ≤ k, t ∈ Σ}.

Clearly, dimMm = 2m + 1. We apply to the eight-loop case Theorem 2.3 (c), (d)
and Lemma 3.1 from [21] and to the double-heteroclinic and the global-center
cases, Theorem 2 (4), (5) and Lemma 1 (iii) from [7] to obtain the following
statement.

PROPOSITION 7.
(i) In the eight-loop case, any nonzero function inMm has at most dimMm =

2m + 1 zeros in Σ.
(ii) In the double-heteroclinic and the global-center cases, any nonzero function

inMm has at most dimMm − 1 = 2m zeros in Σ.

By Proposition 7 and Theorem 3, we obtain:

THEOREM 4. In the eight-loop case, the upper bound N(n, k) to the number of
isolated zeros in Σ of the first nonvanishing generating function Mk(t) corresponding
to degree n polynomial perturbations dH − εωn = 0, can be taken as follows:
N(n, 1) = 2[ n−1

2 ] + 1, N(n, 2) = 2n + 1 and N(n, k) = 2[ k(n+1)
2 ]− 3 for k > 2.

THEOREM 5. In the double-heteroclinic and the global-center cases, the up-
per bound N(n, k) to the number of isolated zeros in Σ of the first nonvanishing
generating function Mk(t) corresponding to degree n polynomial perturbations
dH − εωn = 0, can be taken as follows: N(n, 1) = 2[ n−1

2 ], N(n, 2) = 2n and
N(n, k) = 2[ k(n+1)

2 ]− 4 for k > 2.

Similarly, one can consider in the eight-loop case any of the internal pe-
riod annuli when the (∗) property holds. Take t ∈ Σ = (0, 1

4 ) and consider the
corresponding oval δ(t) lying (say) in the half-plane x > 0. Define the vector
space

Mm = {P[ m
2 ](t)I0(t)+P[ m−1

2 ](t)I1(t)+P[ m−2
2 ](t)I2(t): Pk ∈ R[t], deg Pk ≤ k, t ∈ Σ}.
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Clearly, dimMm = [ 3m+2
2 ]. By Petrov’s result [18], any function in Mm has at

most dimMm − 1 = [ 3m
2 ] isolated zeros. Applying this statement to (23), we

get:

THEOREM 6. In the internal eight-loop case, the number of isolated zeros in
Σ of the first nonvanishing generating function Mk(t) corresponding to degree n
polynomial perturbations dH − εωn = 0 is at most N(n, k) = [ 3k(n−1)

2 ].

It is well known that the bounds in Theorems 4, 5, 6 are sharp for k = 1.
That is, there are degree n perturbations with the prescribed numbers of zeros of
M1(t) in the respective Σ. One cannot expect that this would be the case for all
k > 1 and n. The reason is that Mk, k > 1, is a very specific function belonging
to the linear space Mm with the respective index m which in general would not
possess the maximal number of zeros allowed in Mm. Moreover, as there is a
finite number of parameters in any n-th degree polynomial perturbation, after
a finite steps the perturbation will become an integrable one and hence Mk(t)
will be zero for all k > K with a certain (unknown) K. The determination of
the corresponding K and the exact upper bound to the number of isolated zeros
that the functions from the set {Mk(t): 1 ≤ k ≤ K} can actually have in Σ,
are huge problems. We will not even try to solve them here. Instead, below we
show that the result in Theorem 3 can be slightly improved when k > 1 and n is
odd.

THEOREM 3+. For t ∈ Σ and n odd, the first nonvanishing generating function
Mk(t) =

∫
H=t Ωk corresponding to degree n polynomial perturbations dH−εωn = 0,

has the form

for k = 1, M1(t) = α n−1
2

(t)I0(t) + γ n−3
2

(t)I2(t),

for k = 2, M2(t) =
1
t

[
αn−1(t)I0(t) + γn−1(t)I2(t)

]
,

for k > 2, Mk(t) =
1

tk−2

[
α k(n+1)

2 −3
(t)I0(t) + γ k(n+1)

2 −4
(t)I2(t)

]
,

where αj(t), γj(t) denote polynomials in t of degree j.

Proof. Given A(x, y, H), a polynomial of weighted degree m, we denote by
Ā its highest-degree part:

Ā(x, y, H) =
∑

i+j+2k=m

aijkxiyjHk.

The same notation will be used for the respective polynomial one-forms. We
begin by noticing that

ω̄n = (a0yn + a1xyn−1 + a2x2yn−2)dx + d(b0yn+1 + b1xyn + b2x2yn−1 + b3x3yn−2)
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because all terms containing xj with j ≥ 4 can be expressed through lower-degree
terms. If M1(t) ≡ 0 then, by Proposition 4, ᾱn−1 = γ̃n−3 = 0 which implies that
a0 = a2 = 0, see equations (21). From the formulas we derived in the proof of
Proposition 4, one can also obtain that, up to a lower-degree terms,

xyn−1dx =
2(n− 1)

n
Hxyn−3dx− n− 1

2n
x2yn−3dH + d

x2yn−1

2n
,

which yields

xyn−1dx = dx2Pn−1(y, H)− x2Pn−3(y, H)dH + l.d.t.,

where Pj denotes a weighted homogeneous polynomial of weighted degree j with
positive coefficients. Now,

Ω̄2 = q1ωn = −a1x2Pn−3d(b0yn+1 + b1xyn),

and we see that the highest-degree coefficient of the polynomial αn(t) in the
formula of M2(t) should be zero. If, in addition, M2(t) ≡ 0, then a1b1 = 0. When
a1 = 0, one obtains q̄1 = 0 ⇒ Ω̄k = 0, k ≥ 2 and the claim follows. If b1 = 0,
then Ω̄2 is proportional to x2Pn−3yndy which implies that all q̄k, k ≥ 2, will have
the form q̄k = x2Pk(n−1)−2(y, H) where Pj are as above, and hence, Ω̄k+1 = qkωn
will have no impact on the value of Mk+1.

The result in Theorem 3+ allows one to improve Theorems 4 and 5, but we
are not going to present here the obvious new statements.

3.3. The D4 singularity. Let

f = x[y2 − (x− 3)2]

and denote by δ(t) the family of ovals defined by {(x, y) ∈ R2: f (x, y) = t},
t ∈ ( − 4, 0), see Fig. 6. We will denote by the same letters the corresponding
continuous families of free homotopy classes of loops defined on the universal
covering space of C \ {0,−4}, and fix t0 �= 0,−4.

PROPOSITION 8. We have

Hδ(t0)
1 ( f−1(t0),Z) = Z3

and the kernel of the canonical map Hδe(t0)
1 ( f−1(t0),Z)→ H1( f−1(t0),Z) is equal

to Z.

Proof. The fibers f−1(t) ⊂ C2 for t �= 0,−4 are genus-one surfaces with three
removed points. Let l0, l−4 ∈ π1(C \ {0,−4}, t0) be two simple loops making
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δ(t)

Figure 6. The level sets of f = x[y2 − (x− 3)2] and the family of ovals δ(t).

one turn around 0 and −4 respectively in a positive direction. The closed loop
l0∗δ(t0) is shown on Fig. 7, (i). The loops representing Varl0δ(t0), Var2

l0δ(t0),
where Varl0 = (l0 − id)∗, are shown on Fig. 7, (ii), (iii) respectively. It follows

(i)

(ii) (iii)

Figure 7. (i) The closed loop l0∗δ(t0), (ii) Varl0δ(t0), and (iii) Var2
l0
δ(t0).
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1 γ γ2 γ33

γ33

γ2

1 γ

δ

δ

(i) (ii)

Figure 8. (i) The generators of the fundamental group π1( f−1(t0), P0); (ii) The generators of the fundamental
group π1(C \ {z0, z1, z2, z3}, z̃) .

that Var3
l0δ(t0) may be represented by a loop homotopic to a point. Finally, the

variation of an arbitrary element of Hδ
1( f−1(t0)t,Z) along l−4 is a composition

of free homotopy classes of δ (several times) which shows that Hδ
1( f−1(t0)t,Z)

is generated by

δ(t0), Varl0δ(t0), Var2
l0δ(t0) .

The equivalence class Var2
l0δ(t0) is homologous to zero while the other two

are homologically independent. This shows that the image of Hδ
1( f−1(t0)t,Z) in

H1( f−1(t0),Z) is Z2. It remains to show that the equivalence class of kVar2
l0δ(t0) in

Hδ
1( f−1(t0)t,Z) is nonzero for any k ∈ Z. The fundamental group π1( f−1(t0), P0)

is a free group with generators δ, γ1, γ2, γ3 shown on Fig. 8, (i). We have

Varl0δ(t0) = γ1γ2γ3, Var2
l0δ(t0) = γ1γ2γ

−1
1 γ−1

2 .(34)

Let

S = {δ, γ1γ2γ3, [γ1, γ2]} where [γ1, γ2] = γ1γ2γ
−1
1 γ−1

2 }

and let Ŝ be the least normal subgroup of π1( f−1(t0), P0) containing S. A general
method to study HS = Ŝ/[Ŝ,π1( f−1(t0), P0)] consists of constructing its dual
space. Namely, let z0, z1, z2, z3 be distinct complex numbers and let δ, γ1, γ2, γ3

be simple loops making one turn about z0, z1, z2, z3 respectively in a positive
direction as it is shown on Fig. 8, (ii). Note that

π1(C \ {z0, z1, z2, z3}, z̃) = π1( f−1(t0), P0) .
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Let

ω = ln
z− z1

z− z3

(
1

z− z2
− 1

z− z1

)
dz .

We claim that ω defines a linear function on HS by the formula

l→
∫

l
ω.

Indeed, whatever the determination of the multivalued function ln be, we have∫
δ ω = 0, and

∫
γ1γ2γ3

ω is well defined. The latter holds true because

∫
γ1γ2γ3

(
1

z− z2
− 1

z− z1

)
dz = 0

and ln z−z1
z−z3

is single-valued along the loop γ1γ2γ3. Finally, along [γ1, γ2] the
differential ω is single-valued too and

∫
[γ1,γ2] ω does not depend on the determi-

nation of ω. An easy exercise shows that
∫

[γ1,γ2] ω = −4π2. We conclude that
the space dual to HS is generated (for instance) by ω, dz/(z− z0), dz/(z− z1) and
hence HS = Z3. Obviously the kernel of the homomorphism Hδe(t0)

1 ( f−1(t0),Z)→
H1( f−1(t0),Z) is the infinite cyclic group generated by the commutator [γ1, γ2].

According to Theorem 2 and Proposition 8 the generating function M(t)
might not be an Abelian integral, the obstruction being the kernel of the map
Hδe(t0)

1 ( f−1(t0),Z) → H1( f−1(t0),Z). Indeed, it follows from [10], [23] that for
some quadratic unfoldings of {df = 0}, the corresponding generating function
Mδ(t) is not an Abelian integral (see the open question 3. at the end of section
2.3). More explicitly, we have:

PROPOSITION 9. The generating function associated to the unfolding

df + ε(2− x + 1
2 x2)dy = 0, f = x[y2 − (x− 3)2]

and to the family of ovals around the center of the unperturbed system, is not an
Abelian integral of the form (3). It satisfies an equation of Fuchs type of order three.

Proof. For a convenience of the reader, below we present the needed calcu-
lation. Denote ω2 = −(2 − x + 1

2 x2)dy. One can verify [9] that ω2 = dQ1 + q1df ,
with

Q1 = 1
6 [ fL(x, y)− x2y− 12y], q1 = −1

6 L(x, y), L(x, y) = ln
3− x− y
3− x + y

,
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and that the form q1ω2 − q2df is exact, where

q2 =
L2

72
+

x3 − 3x2 + 12x− 36
36f

(to check this, we make use of the identity fdL = 2xydx + (6x−2x2)dy). Therefore
M1(t) = M2(t) ≡ 0 for this perturbation, and

M3(t) =
∫
δ(t)

q2ω2 =
∫
δ(t)

q2 dQ1 =
1

216

∫
δ(t)

(x3 − 3x2 + 12x− 36) dL

+
1

216

∫
δ(t)

(x2 + 12)y d

(
L2

2
+

x3 − 3x2 + 12x− 36
t

)
.

In the same way as in [10], Appendix, we then obtain

M3(t) =
1

36t

∫
δ(t)

[36(x− 1) ln x + 1
2 x4 − 7

2 x3 − 39
2 x2 + 12x + 24]y dx.

As I1 = I0 and (2k + 6)Ik+1 = (12k + 18)Ik − 18kIk−1 − (2k − 3)tIk−2, the final
formula becomes

M3(t) =
1
t

∫
δ(t)

y(x− 1) ln x dx− 3
32

∫
δ(t)

y dx
x

.

For a general quadratic perturbation satisfying M1(t) = M2(t) ≡ 0, the formula of
M3(t) will take the form [10], [9]

M3(t) = c−1I−1(t) +
(

c0 +
c1

t

)
I0 +

c∗
t

I∗(t), I∗(t) =
∫
δ(t)

y(x− 1) ln x dx,(35)

where cj, c∗ are some constants depending on the perturbation. Below we write
up the equation satisfied by M3(t) and show that, apart of M1 and M2, M3 is not
an Abelian integral, due to I∗. We can rewrite (35) as tM3(t) = (α+βt)I0 +γI2 +δI∗
(with some appropriate constants) and use the Fuchsian system satisfied by I =
(I∗, I2, I0)
 [10], namely

I = AI′, where A =


 t −2 t + 6

0 3
4 (t − 6) 3

2 (t + 9)
0 −3 3

2 (t + 6)




to derive explicitly the third-order Fuchsian equation satisfied by M3(t). One
obtains

DP(t2M′3)′′ + (tP− DP′)(t2M′3)′ + Q(t2M′3) = 0,
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where D = t(t + 4) and

P = (8β2 − βγ)t3 − (56αβ + αγ + 96βγ + 2γ2 + 48βδ + 2γδ)t2

+ (8α2 − 288αβ + 12αγ − 432βγ + 24αδ − 192βδ + 28γδ + 16δ2)t

+ (96αδ + 144γδ + 64δ2),

Q = 4
9{(40β2 − 5βγ)t3 − (64αβ + 2αγ − 288β2 + 144βγ + 4γ2 + 48βδ + 4γδ)t2

+ (4α2 − 144αβ + 12αγ − 432βγ + 12αδ − 240βδ − 4γδ + 8δ2)t + 32δ2}.

For the above particular perturbation, the equation of M3 reads

t2(t + 4)(39t2 + 704t + 2048)M′′′3 + t(117t3 + 3128t2 + 18688t + 32768)M′′3

+ 8
9 (39t3 + 1544t2 + 9728t + 18432)M′3 = 0.

The above equation is obviously of Fuchs type and its monodromy group is
studied in a standard way. The characteristic exponents associated to the regular
singular point t = 0 are −1, 0, 0. Further analysis (omitted) shows that the mon-
odromy transformation of a suitable fundamental set of solutions along a small
closed loop about t = 0 reads


1 1 0

0 1 1
0 0 1


 .

Indeed, according to formula (19) in [10] in a neighborhood of t = 0 we have

I∗(t) =
∫
δ(t)

y(x− 1) ln x dx = −6− 1
6

t ln2 t + · · · .

From this we obtain that Var2
l0M3(t) �≡ 0. On the other hand

Var2
l0M3(δ(t0),Fε, t) = M3(Var2

l0δ(t0),Fε, t),

where the loop Var2
l0δ(t0) = γ1γ2γ

−1
1 γ−1

2 is homologous to zero, see (34). If M3

were an Abelian integral then its second “variation” M3(Var2
l0δ(t0),Fε, t) would

vanish identically which is a contradiction.
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