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Abstract

Let ðxðtÞ; yðtÞÞ? be a solution of a Fuchsian system of order two with three singular points.

The vector space of functions of the form PðtÞxðtÞ þ QðtÞyðtÞ; where P;Q are real

polynomials, has a natural filtration of vector spaces, according to the asymptotic behavior

of the functions at infinity. We describe a two-parameter class of Fuchsian systems, for which

the corresponding vector spaces obey the Chebyshev property (the maximal number of

isolated zeros of each function is less than the dimension of the vector space). Up to now, only

a few particular systems were known to possess such a non-oscillation property. It is

remarkable that most of these systems are of the type studied in the present paper. We apply

our results in estimating the number of limit cycles that appear after small polynomial

perturbations of several quadratic or cubic Hamiltonian systems in the plane.
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1. Introduction

In many bifurcation problems the main difficulty is to estimate the number of
isolated zeros of certain functions of the form

IðhÞ ¼ p1ðhÞI1ðhÞ þ p2ðhÞI2ðhÞ; hAS; ð1Þ
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where p1ðhÞ and p2ðhÞ are polynomials, and the vector function IðhÞ ¼ ðI1ðhÞ; I2ðhÞÞ?
satisfies a two-dimensional first-order Fuchsian system

IðhÞ ¼ AðhÞI0ðhÞ; 0 ¼ d=dh; ð2Þ

with a first-degree polynomial matrix AðhÞ: Typically, I1ðhÞ and I2ðhÞ are complete
Abelian integrals along the ovals dðhÞ within a continuous (in h) family of ovals
contained in the level sets of a fixed real polynomial Hðx; yÞ (called the
Hamiltonian), and SCR is the maximal open interval of existence of such ovals
dðhÞ; see Table 1.

In the present paper, our main assumptions on (2) are the following:

(H1) A0 is a constant matrix having real distinct eigenvalues.
(H2) The equation detAðhÞ ¼ 0 has real distinct roots h0; h1 and the identity

traceAðhÞ � ðdetAðhÞÞ0 holds.
(H3) IðhÞ is analytic in a neighborhood of h0:

The conditions that A0 is a constant matrix and detAðhÞ has distinct roots imply
that the singular points of the system

I0ðhÞ ¼ A�1ðhÞIðhÞ

(including N) are regular, i.e. it is of Fuchs type. Further, the condition traceAðhÞ �
ðdetAðhÞÞ0 implies that the characteristic exponents of (2) at h0 and h1 are f0; 1g: In
the formulation of our main result below, we assume for definiteness that h0oh1: A
similar result holds if h0 > h1: Clearly if h0oh1; and the function IðhÞ is analytic in a
neighborhood of h ¼ h0; then it also possesses an analytic continuation in the
complex domain C\½h1;NÞ:

Definition 1. The real vector space of functions V is said to be Chebyshev in the
complex domain DCC provided that every function IAV \f0g has at most dim V �
1 zeros in D: V is said to be Chebyshev with accuracy k in D if any function
IAV \f0g has at most k þ dim V � 1 zeros in D:

Definition 2. Let IðhÞ; hAC be a function, locally analytic in a neighborhood of N;
and sAR: We shall write IðhÞths; provided that for every sector S centered at N

there exists a non-zero constant CS such that jIðhÞjpCSjhjs for all sufficiently big jhj;
hAS:

For systems (2) satisfying (H1) and (H2), the characteristic exponents at infinity

are �l and �m where l0 ¼ 1=l and m0 ¼ 1=m are the eigenvalues of the constant

matrix A0: According to (H2), lþ m ¼ 2: Let us denote ln ¼ 2 if l is integer and

ln ¼ max ðjl� 1j; 1� jl� 1jÞ otherwise.
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Take sXln and consider the real vector space of functions

Vs ¼ fIðhÞ ¼ PðhÞI1ðhÞ þ QðhÞI2ðhÞ: P;QAR½h�; IðhÞthsg;

where I ¼ ðI1ðhÞ; I2ðhÞÞ? is a non-trivial solution of (2), holomorphic in a
neighborhood of h ¼ h0: As l; mef0; 1; 2g; the vector function IðhÞ is uniquely
determined, up to multiplication by a constant, and I1ðh0Þ ¼ I2ðh0Þ ¼ 0 (see
Proposition 1). Clearly, Vs is invariant under linear transformations in (2) and

affine changes of the argument h: The restriction sXln is taken to guarantee that Vs

is not empty.
Recall that h0oh1 are the roots of det AðhÞ ¼ 0: Our main result in Section 2 is the

following.

Table 1

Examples of systems for integrals I ¼ ðI1; I2Þ and Hamiltonian functions H which satisfy hypotheses

(H1)–(H3)

No. H; I S A detA; trA

1 H ¼ y2 þ x2 � x3

I ¼ ð
R

H¼h
y dx;

R
H¼h

xy dxÞ
ð0; 4

27
Þ 6

5
h � 4

15

4
35

h 6
7
h � 16

105

 !
36
35

h2 � 16
105

h

72
35

h � 16
105

2 H ¼ y2 þ x2 � xy2

I ¼ ð
R

H¼h
y dx;

R
H¼h

xy dxÞ
ð0; 1Þ 4

3h �4
3

4
15

h 4
5
h � 16

15

 !
16
15

h2 � 16
15

h

32
15

h � 16
15

3 H ¼ 1
2
y2 þ 1

2
x2 � 1

3
x3 þ xy2

I ¼ ð
R

H¼h
y dx;

R
H¼h

x2y dxÞ
ð0; 1

6
Þ 3

2
h �1

2

3
16

h 3
4
h � 3

16

 !
9
8
h2 � 3

16
h

9
4
h � 3

16

4 H ¼ y2 þ x2 þ x4

I ¼ ð
R

H¼h
y dx;

R
H¼h

x2y dxÞ
ð0;NÞ 4

3
h �2

3

� 2
15

h 4
5
h þ 4

15

 !
16
15

h2 þ 4
15

h

32
15

h þ 4
15

5 H ¼ y2 þ x2 � x4

I ¼ ð
R

H¼h
y dx;

R
H¼h

x2y dxÞ
ð0; 14Þ 4

3
h �2

3

2
15

h 4
5
h � 4

15

 !
16
15

h2 � 4
15

h

32
15

h � 4
15

6 H ¼ y2 þ x2 þ x2y2

I ¼ ð
R

H¼h
y dx;

R
H¼h

x2y dxÞ
ð0;NÞ 2h �2

�2
3
h 2

3
h þ 4

3

 !
4
3
h2 þ 4

3
h

8
3h þ 4

3

7 H ¼ y2 þ x2 � x2y2

I ¼ ð
R

H¼h
y dx;

R
H¼h

x2y dxÞ
ð0; 1Þ 2h �2

2
3
h 2

3
h � 4

3

 !
4
3
h2 � 4

3
h

8
3
h � 4

3

8 H ¼ x�3ðy2 � 2x2 þ xÞ
I ¼ ð

R
H¼h

x�3y dx;
R

H¼h
x�4y dxÞ

ð�1; 0Þ 4
3
h 4

3

4
15

h 4
5
h þ 16

15

 !
16
15

h2 þ 16
15

h

32
15

h þ 16
15
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Theorem 1. Assume that conditions (H1)–(H3) hold. If leZ; then Vs is a Chebyshev

vector space with accuracy 1þ ½ln� in the complex domain D ¼ C\½h1;NÞ: If lAZ;
then Vs coincides with the space of real polynomials of degree at most ½s� which vanish

at h0 and h1:

As an application of Theorem 1 let us consider a polynomial perturbation of a
planar Hamiltonian system

’x ¼ Hy þ ef ðx; yÞ;

’y ¼ �Hx þ egðx; yÞ; ð3Þ

where e is a small parameter, the degree of the polynomials f ; g does not exceed n and
H is some of the Hamiltonians from Table 1. Define the function

h-IðhÞ ¼
I

H¼h

½gðx; yÞ dx � f ðx; yÞ dy�; hAS: ð4Þ

As is well known, if IðhÞc0 in S; then the number of limit cycles in (3) bifurcating
for small e from the periodic orbits of the unperturbed Hamiltonian system is
bounded by the number of isolated zeros of IðhÞ in S: Define the linear space Vn of
integrals given by (4) for deg f ; gpn: Denote by h1 the non-zero critical value of the
Hamiltonian and by D the complex plane cut along the part of the real axis between
h1 and N not containing the other critical value h0 ¼ 0: Then applying Theorem 1,
we obtain the following results.

Theorem 2. For each of systems 1–5 in Table 1, the linear space of integrals Vn is

Chebyshev with accuracy one in D: In particular, Vn is Chebyshev in S:

Theorem 3. For systems 6 and 7 in Table 1, the linear space of integrals Vn is

Chebyshev with accuracy one in D; if np6; and with accuracy ½nþ1
4
�; if nX7: In

particular, Vn is Chebyshev in S; if np6; and Chebyshev with accuracy ½n�3
4
�; if nX7:

Roughly speaking, Theorems 2 and 3 imply that, for systems 1–7 from Table 1, the
number of limit cycles in (3) born out of periodic orbits under small polynomial
perturbations which are transversal to the integrable directions, is less than the
dimension of the linear space of these perturbations (with certain accuracy if nX7 in
cases 6 and 7). Clearly, a bound obtained by establishing the Chebyshev property, is
always the optimal one.

Case 8 from Table 1 is non-Hamiltonian one and requires slightly different
approach. See the end of the paper for results about it.

Let us recall that Theorem 2 in case 1 was proved earlier by Petrov [8]. Some less
general (or a little bit different) results concerning cases 3–5 can be found in [2,6,7,9].

L. Gavrilov, I.D. Iliev / J. Differential Equations 191 (2003) 105–120108



2. The Chebyshev property

We intend first to obtain a normal form for the matrices satisfying (H1) and (H2).

For this purpose, we perform in (2) a linear transformation bringing A0 to a diagonal
form and then translate the critical value h0 to the origin. The matrix in (2) takes the
form

AðhÞ ¼

2h � h1

2l
oh1

2l

h1

2mo
2h � h1

2m

0
BBB@

1
CCCA; ð5Þ

where h1 is the non-zero critical value and o is a free parameter. This is the normal
form we will use in this section. In applications, another normal form takes place. To
obtain it, we apply additional linear transformation in (5) ðI1; I2Þ-ðI1; I1=oþ I2Þ
bringing AðhÞ to

AðhÞ ¼

h

l
oh1

2l

ðl� mÞh
lmo

h

m
� h1

lm

0
BBB@

1
CCCA: ð6Þ

Evidently, Eqs. (5) and (6) present three-parameter families of matrices which can be
reduced to two-parameter ones by moving h1 to 1: We note that all the examples in

Table 1 are taken in the normal form (6), with 1
2
plomp3

2
:

Prior to proving Theorem 1, we need some preparation. Without any loss of
generality, we may use the normal form (5), with h1 ¼ 1: Hence, we will consider
t ¼ ðh � h0Þ=ðh1 � h0Þ as the argument and will assume throughout this section that

(2) is rewritten as a system IðtÞ ¼ AðtÞI0ðtÞ for IðtÞ ¼ ðxðtÞ; yðtÞÞ? � ðI1ðhÞ; I2ðhÞÞ?;
with

AðtÞ ¼

2t � 1

2l
o
2l

1

2mo
2t � 1

2m

0
BB@

1
CCA: ð7Þ

Proposition 1. The functions xðtÞ ¼ I1ðhÞ and yðtÞ ¼ I2ðhÞ satisfy equations

tðt � 1Þx00 ¼ lðl� 1Þx; ð8Þ

tðt � 1Þy00 ¼ mðm� 1Þy: ð9Þ

Proof. The most easy proof is a straightforward calculation which we have left to the
reader (cf. [9]). &
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Proposition 2. Let la0; 1 and xðtÞ be a non-trivial solution of (8) which is analytic in a

neighborhood of t ¼ 0 (or t ¼ 1). Then xðtÞa0 for to0 (respectively, for t > 1Þ: In

particular, if lAZ; then xðtÞ is a special kind of ultra-spherical polynomial and has all

of its zeros in the interval ½0; 1�:

Proof. The assertion is well known for l integer. In this case xðtÞ is a kind of ultra-
spherical (Gegenbauer) polynomial [1] of degree l if lX2 and of degree 1� l if
lp� 1: Although the result might be known for l which is not integer too, we will
for completeness give the proof for this case. Let xðtÞ be analytic near t ¼ 0 (the
other case is similar). Take the function

zðtÞ ¼ t2 � t

2� l
x0 þ 1� lt

2� l
x:

Then z0 ¼ tx0 � lx and x0; z0 together satisfy a system

ðt2 � tÞx00 ¼ ðl� 1Þðtx0 � z0Þ;

ðt2 � tÞz00 ¼ ðl� 1Þðtx0 � tz0Þ:

As x0ð0Þa0 and z0ð0Þ ¼ 0; the ratio w ¼ z0=x0 is an analytical function in a
neighborhood of t ¼ 0 satisfying the Riccati equation

t2 � t

l� 1
w0ðtÞ ¼ w2ðtÞ � 2twðtÞ þ t

and wð0Þ ¼ 0: Consider in the ðt;wÞ-plane the zero isocline given by the hyperbola

w2 � 2tw þ t ¼ 0: It goes through the origin and has a vertical asymptote at that
point. It is easy to conclude that for to0; the graphic of w is placed inside the left
branch of the hyperbola and either wðtÞ > 0 or wðtÞo0 for all to0; depending on
whether w0ð0Þ is negative or positive. Therefore x0ðtÞ and z0ðtÞ do not change signs for
to0: As xð0Þ ¼ 0; the assertion follows.

Proposition 3. Let lo1 and xðtÞ be a non-trivial solution of (8) which is analytic in a

neighborhood of t ¼ 0: If leZ; then xðtÞ has at most 1þ ½ln� zeros in the complex

domain D ¼ C\½1;NÞ:

Proof. Consider the analytic continuation of xðtÞ in the complex domain D ¼
C\½1;NÞ: We shall count the zeros of xðtÞ in D by making use of the argument
principle. Let R be a big enough constant and r a small enough constant. Denote by

D̃ the set obtained by removing the small disc fjt � 1jorg from D-fjtjoRg: To

estimate the number of the zeros of xðtÞ in D̃; we shall evaluate the increment

D@D̃Arg xðtÞ of the argument of the function xðtÞ along the boundary of D̃; traversed

in a positive direction. Then, according to the argument principle, we have that the
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number of the zeros of xðtÞ in D̃ equals

D@D̃Arg xðtÞ
2p

:

The monodromy group of the equation in (8) is reducible if and only if lAZ [5,
Theorem 4.3.2]. Therefore, if leZ; then in a neighborhood of t ¼ 1 we have

xðtÞ ¼ xðtÞ logðt � 1Þ þ ZðtÞ;

where xðtÞ; ZðtÞ are analytic in a neighborhood of t ¼ 1; xðtÞ is a non-trivial solution
of (8), xð1Þ ¼ 0: Moreover, a local analysis shows that limt-1� xðtÞ ¼ Zð1Þ ¼
consta0: Therefore the increase of the argument of xðtÞ; when running the boundary
of fjt � 1jorg; is close to zero. Along the half-line ð1;NÞ the imaginary part of xðtÞ
equals pxðtÞ which does not vanish, by Proposition 2. Finally, if jtj is sufficiently big
then we have

jxðtÞjpcjtjl if l > 1
2
; jxðtÞjpcjtj1�l if lo1

2
;

jxðtÞjpcjt
1
2 log tj if l ¼ 1

2
;

where c is a non-zero constant. The increase of the argument of xðtÞ; when running

the boundary of fjtjoRg is close to 2pln: Summing up the above information, we
obtain that the increase of the argument of xðtÞ; when running the boundary of D; is

at most 2pþ 2pln: We conclude that xðtÞ has at most 1þ ½ln� zeros in D which
completes the proof of Proposition 3.

We also need a more detailed information about the structure of the linear space
Vs and an explicit formula for dim Vs: The only interesting case is when l and m are
not integer.

Proposition 4. Let sXln and l; m be not integer. Then

dim Vs ¼
2s � 1 if l� m and s � 1

2
are integer;

½s � l� þ ½s � m� þ 2 otherwise:

(

Proof. Without loss of generality, we can use the coordinates in which A takes form

(7) and IðhÞ ¼ ðxðtÞ; yðtÞÞ?: To reduce the number of cases, let us assume that l > m
(when lom; the analysis is similar).

We begin our analysis with the case when sXl: Assume first that l� m is not
integer. Then one can take any solution of (2) near infinity in the form

I ¼
x

y

 !
¼ a

tl � l
2
tl�1 þ?

atl�1 þ?

 !
þ b

btm�1 þ?

tm � m
2
tm�1 þ?

 !
;
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where

a ¼ l
2oðm� lþ 1Þ; b ¼ mo

2ðl� mþ 1Þ:

Since I is analytic in a neighborhood of zero, the constants a and b are both non-
zero. Indeed, if ab ¼ 0 then I defines a one-dimensional subspace in the space of all
solutions, which is invariant under the monodromy group of (2), and hence of (8)
and (9). This is however impossible, as the latter groups are irreducible for l; meZ:

Given sXl; then the function IðhÞ in the definition of Vs contains monomials

of the form tkx; 0pkpK ; tly; 0plpL; where Kpminðs � l; s � mþ 1Þ; Lpmin
ðs � lþ 1; s � mÞ: Using that lþ m ¼ 2 and l > m; one obtains Kps � lþ
min ð0; 2l� 1Þ ¼ s � l: Similarly, Lps � mþmin ð0; 2m� 1Þ ¼ s � lþ 1 if l� m >
1 and Lps � m otherwise.

Among these monomials, other special combinations may be involved in Vs if
l� m > 1: Define the functions z1 ¼ ty � a1x; zm ¼ tzm�1 � amx; mX2; where a1 ¼
a and the constant am is determined so that the coefficient at tl in zm is zero. Denote

M ¼ ½s � m� � K � 1: Clearly, then tKþ1zmAVs for 1pmpM: Moreover, any

combination tKþ1ðPðtÞx þ QðtÞyÞ which belongs to Vs is a linear combination of

the ‘‘monomials’’ tKþ1zm:
Thus, dim Vs ¼ K þ L þ 2 for jl� mjo1 and dim Vs ¼ K þ L þ M þ 2 otherwise,

which yields dim Vs ¼ ½s � l� þ ½s � m� þ 2 in both cases.
Assume now that l� m is integer but l and m are not. If l� m > 1; then one can

take any solution of (2) near infinity in the form

I ¼ a
tl � l

2
tl�1 þ?

atl�1 þ?

 !
þ ðag log t þ bÞ

btm�1 þ?

tm � m
2
tm�1 þ?

 !
; ga0:

As in the previous case, this yields K ¼ ½s � l�; L ¼ ½s � lþ 1� ¼ K þ 1 and M ¼
½s � m� � K � 1 if s � 1

2
is not integer, M ¼ s � m� K � 2 if s � 1

2
is integer. In the first

case we obtain the same result as above, and in the second case dim Vs ¼
K þ L þ M þ 2 ¼ 2s � 1:

Finally, if l ¼ 3
2
; m ¼ 1

2
; we have respectively

I ¼ a
t
3
2 � 3

4
t
1
2 � 9

64
t�

1
2 þ?

3
8ot�

1
2 þ?

0
B@

1
CAþ � 3a

4o
log t þ b

� 
 o
8
t�

1
2 þ?

t
1
2 � 1

4
t�

1
2 þ?

0
B@

1
CA:

Clearly K ¼ ½s � 3
2
�; L ¼ ½s � 1

2
� if s � 1

2
is not integer and L ¼ K otherwise. Since no

other combinations are involved in Vs in this case, the result follows immediately.

In the case when l > sXln; the analysis is simpler. We use the same formulas for I
as above. One has either (a) l > sXl� 1 and l� mX1; or (b) l > sXm and l�
mo1: If s ¼ m ¼ 1

2; then Vs is empty. In all other cases, yAVs: In case (b), Vs contains

no other functions. In case (a), if sXmþ 1 and l� m is not integer, then also zmAVs
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for 1pmp½s � m�: The same is true if l� m is integer but s � 1
2 is not. Finally, if both

l� m and s � 1
2

are integer, and sXmþ 2; then Vs contains the functions zm;

1pmp½s � m� � 1: Clearly, in all the cases above we obtain a formula for dim Vs as
asserted.

Proof of Theorem 1. For integer l; m the assertion is obvious since I1 and I2 are
different ultra-spherical polynomials which have no common zeros except the simple
ones at h0 and h1:

Assume below that l; meZ and let l > m (for definiteness). Suppose as before that
the matrix A takes form (7), and let IðtÞ ¼ PðtÞxðtÞ þ QðtÞyðtÞAVs; where ðxðtÞ ¼
I1ðhÞ; yðtÞ ¼ I2ðhÞÞ is the holomorphic solution of (2) vanishing at the origin. When
PðtÞ � 0; the assertion is evident. When Pc0; we use again the argument principle
to count the zeros of IðtÞ in D ¼ C\½1;NÞ: Consider in D the meromorphic
function

FðtÞ ¼ PðtÞ xðtÞ
yðtÞ þ QðtÞ:

Below we calculate the increase of its argument when running the boundary of D:
The local structure of the solutions of (8), (9) in a neighborhood of t ¼ 1 implies that
limt-1 xðtÞa0; limt-1 yðtÞa0: Therefore the increase of the argument of FðtÞ; when
running the boundary of fjt � 1jorg is close to zero. As xðtÞ; yðtÞ are real-analytic
on ð�N; 1Þ; then along the half-line ð1;NÞ

Im FðtÞ ¼ PðtÞ Im xðtÞ
yðtÞ ¼ PðtÞ

det
yðtÞ yðtÞ

xðtÞ xðtÞ

0
@

1
A

2ijyðtÞj2
:

As ðxðtÞ; yðtÞÞ? is the analytic continuation of ðxðtÞ; yðtÞÞ? along a loop contained in
D; and the monodromy group of (9) is not reducible for meZ; then the solutions

ðxðtÞ; yðtÞÞ? and ðxðtÞ; yðtÞÞ? are linearly independent. This together with yðtÞa0
for hAð1;NÞ (Proposition 2) shows that the imaginary part of FðtÞ has at most

deg P zeros on ð1;NÞ: Suppose finally that jtj is sufficiently big. As jyðtÞjXcjtjl
n

then

FðtÞtts�ln : Summing up the above information, we obtain that the increase of the

argument of FðtÞ; when running the boundary of D is at most 2pð1þ deg P þ s �
lnÞ: Moreover, in the exceptional case when ln ¼ 1

2; one has FðtÞBcts�1
2=log t for

large jtj; which yields a stronger result: the increase of the argument of F on jtj ¼ R is

strictly less than 2pðs � 1
2
Þ: Therefore the total increase of the argument in this case is

o2pð1þ deg P þ s � 1
2Þ: This fact is useful only if s � 1

2AN but we need it below. One

can deduce from the preceding proof of Proposition 4 that deg P ¼ ½s � l� if l�
mp1; deg P ¼ ½s � m� 2� if l� m > 1 and s � 1

2
are both integers, and deg P ¼

½s � m� 1� otherwise. (If deg Po0; one takes P � 0:) On one hand, ln ¼ m if
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l� mp1 and ln ¼ l� 1 otherwise. Therefore, by Proposition 4, the difference
between the number of zeros and poles in D of the meromorphic function FðtÞ ¼
IðtÞ=yðtÞ is bounded by dim Vs � 1: By Proposition 3, this yields that IðtÞ has at most

½ln� þ dim Vs zeros in D: Theorem 1 is proved.

3. The applications

In this section we prove Theorems 2 and 3. Before that, let us point out that some
but not everything included in Table 1 is an evident fact. However, since the
procedure of deriving the related Fuchsian systems is more or less known [10], we are
not going to discuss in more detail how all these systems were obtained.

Given i; j non-negative integers, denote IijðhÞ ¼
R R

Hoh
xiyj dx dy: Then

Vn ¼ IðhÞ ¼
X

0piþjpn�1

cijIijðhÞ
( )

: ð10Þ

Lemma 1. Let I ¼ ðI1; I2Þ be as in Table 1. Then for nX3 one can express the function

IðhÞ from (10) in the form IðhÞ ¼ aðhÞI1ðhÞ þ bðhÞI2ðhÞ where aðhÞ and bðhÞ are

polynomials of degrees as follows:

(i) deg a ¼ ½n�1
2
�; deg b ¼ ½n�2

2
� in cases 1 and 2;

(ii) deg a ¼ ½n�1
3
�; deg b ¼ ½n�3

3
� in case 3;

(iii) deg a ¼ ½n�1
2
�; deg b ¼ ½n�3

2
� in cases 4 and 5;

(iv) deg a ¼ deg b ¼ ½n�3
2
� in cases 6 and 7.

Moreover, the coefficients in aðhÞ and bðhÞ may take arbitrary values, except in case

(iv). The dimension of the vector space Vn in case (iv) equals ½n�1
2
� þ ½n�1

4
� þ 1:

Proof. For some of the cases, the results in Lemma 1 are already known. The result
in case 1 was proved by Petrov [6]. For cases 4 and 5 see [9], [7], respectively. The
result for 2 follows from the considerations in [3] and [4]. The result concerning 3 is
proved in [2]. Let us consider cases 6 and 7 from Table 1. By symmetry, we have
IijðhÞ ¼ IjiðhÞ and IijðhÞ � 0 whenever i or j is an odd number. To establish the

relations between the integrals IijðhÞ; we take the equation H � x2 þ y2 þ nx2y2 ¼
h; n ¼ 71 and multiply both sides by the one-form xiyjþ1 dx: Afterwards integrate
the result along the oval H ¼ h and apply Green’s formula. One obtains the relation

ðj þ 1ÞIiþ2;j þ ðj þ 3ÞIi;jþ2 þ nðj þ 3ÞIiþ2;jþ2 ¼ ðj þ 1ÞhIij:

Similarly, multiplying by xiþ1yj dy and integrating, we get another relation

ði þ 3ÞIiþ2;j þ ði þ 1ÞIi;jþ2 þ nði þ 3ÞIiþ2;jþ2 ¼ ði þ 1ÞhIij :
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Combining these equations we easily obtain

nði � jÞIiþ2;jþ2 ¼ ðj þ 1ÞIiþ2;j � ði þ 1ÞIi;jþ2; iaj;

nði þ 3ÞIiþ2;iþ2 ¼ �ð2i þ 4ÞIiþ2;i þ ði þ 1ÞhIii;

nði þ 5ÞIiþ4;0 ¼ ½nði þ 2Þh � 1�Iiþ2;0 � 3Ii;2 þ hIi;0: ð11Þ

For i ¼ j ¼ 0; we get (noticing that I00 ¼ �I1 and I20 ¼ I02 ¼ �I2)

I22 ¼ 4
3
nI2 � 1

3
nhI1;

I40 ¼ I04 ¼ ð�2
5

h þ 4
5
nÞI2 � 1

5
nhI1:

Then, using (11) with i; j even, we easily prove the assertion in (iv) by induction.
It remains to calculate the dimension of the vector space Vn: Clearly, we have

dimV1 ¼ 1; dimV3 ¼ 2; dimV5 ¼ 4: By (11), the only new functions in V2mþ1

(compared to V2m�1) are I2m;0 and, if m is even, Im;m: Hence, the integrals I2k;0;
0pkpm and I2k;2k; 1pkpm=2 form a basis in V2mþ1: These integrals are

independent, since the leading term of I2k;0; kX2 is proportional to hk�1ðnI1 þ 2I2Þ
and the leading term of I2k;2k; kX1 is proportional to hkI1: The above argument

implies that dimVn ¼ ½n�1
2
� þ ½n�1

4
� þ 1:

Remark 1. In cases (i)–(iii) of Lemma 1, the result remains true even for n ¼ 1; 2;
under the convention that a polynomial bðhÞ of negative degree is taken to be zero.
In case (iv), one has to take bðhÞ ¼ 0; deg a ¼ 0 for n ¼ 1; 2:

Corollary 1. The dimension of the vector space Vn; nX1; related to arbitrary

polynomial perturbations of degree n in (3), in cases 1–7 of Table 1 is as follows:
n; in cases 1 and 2

½2nþ1
3
�; in case 3

2½n�1
2
� þ 1; in cases 4 and 5

½n�1
2
� þ ½n�1

4
� þ 1; in cases 6 and 7.

Proof of Theorems 2 and 3. Let us first note that jl� mjp1 for all cases 1–7 in Table

1, which yields that ½ln� ¼ 0: We put

s ¼ nþ1
2

in cases 1 and 2,

s ¼ n
3
þ 1

2
in case 3,

s ¼ ½nþ1
2
� in cases 4 and 5,

s ¼ ½n�1
2
� þ 1

2
for nX3; s ¼ 1 for n ¼ 1; 2 in cases 6 and 7.

It is easy to check that, with this choice of s; VnCVs: For this purpose, one can
perform the inverse transformation ðI1; I2Þ-ðI1; I2 � I1=oÞ bringing A to a normal
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form (5) and then use the formulas for the solution given in the proof of Proposition
4. Hence, it suffices to verify in each case that deg aþ lps; deg bþ mps (the first
inequality should be strong in cases 6 and 7; see also Remark 1). Then we compare
the dimensions of Vn and Vs (Proposition 4 and Corollary 1). One obtains that

dimVn ¼ dim Vs in cases 1–5, as well as in 6 and 7, provided that np6;

dim Vs � dimVn ¼ ½n�3
4
� in cases 6 and 7, if nX7:

Thus, the results follow from Theorem 1, taking into account that IðhÞ has always
a zero at h0 ¼ 0:

Some other examples: Let us consider in brief system 8 from Table 1. Instead of (3)
and (4), we have

’x ¼ Hy=M þ ef ðx; yÞ;

’y ¼ �Hx=M þ egðx; yÞ; ð30Þ

where H ¼ x�3ðy2 � 2x2 þ xÞ; MðxÞ ¼ x�4; f ; g are polynomials of degree at most n;
and

IðhÞ ¼
I

H¼h

MðxÞ½gðx; yÞ dx � f ðx; yÞ dy�; hAS ¼ ð�1; 0Þ: ð40Þ

Note that in case 8, I is analytic in a neighborhood of h0 ¼ �1: Define by Vn the
linear space of integrals ð40Þ and let D ¼ C\½0;NÞ:

Theorem 4. For system 8 in Table 1, the linear space of integrals Vn has a dimension

n þ 1 and is Chebyshev in D; with accuracy as follows: one for n ¼ 2; two for n ¼ 1; 3;
three for n ¼ 0 and n � 3 for nX4:

Taking n ¼ 2; we get the following result about the number of limit cycles in ð30Þ:

Corollary 2. For any quadratic perturbation of the reversible quadratic system ð30Þ; the

cyclicity of the period annulus around the center at ðx; yÞ ¼ ð1; 0Þ is two.

Proof of Theorem 4. Denote Ikl ¼
R R

Hoh
MðxÞxkyl dx dy; Ik ¼

R
H¼h

MðxÞxk�1y dx;

thus I ¼ ðI2; I1Þ?: By symmetry, Ikl ¼ 0 for l odd. In the same way as above, we
obtain the relations

Ik;lþ2 ¼
2l þ 2

2k þ 3l þ 3
ðIkþ2;l � Ikþ1;lÞ; k ¼ �1; 0;y; l ¼ 0; 2;y;

k � 1

2

� 

hIkþ2 ¼ ð4� 2kÞIkþ1 þ k � 7

2

� 

Ik; k ¼ 0; 1; 2;y;
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and use the first of them to get the expression

IðhÞ ¼
Xn

k¼0

ckIkðhÞ; ck independent; ð12Þ

and then the second one to obtain

IðhÞ ¼ P0I1ðhÞ þ P1ðhÞI2ðhÞ; for n ¼ 0; 1; 2;

IðhÞ ¼ h�1½P1ðhÞI1ðhÞ þ P2ðhÞI2ðhÞ�; for n ¼ 3; 4;

IðhÞ ¼ h3�n½Pn�3ðhÞI1ðhÞ þ Pn�2ðhÞI2ðhÞ�; for nX5; ð13Þ

where Pk denotes a polynomial of degree k: By (12), dimVn ¼ n þ 1: Given n; we

choose s ¼ 7
4
if n ¼ 0; 1; 2; s ¼ 11

4
if n ¼ 3; 4; s ¼ n � 5

4
if nX5; and consider the

corresponding linear space Vs: Its dimension is dim V7
4
¼ 3; dim V11

4
¼ 5; dim V

n�5
4
¼

2n � 3; respectively. For each n the function IðhÞ in (13), multiplied by an
appropriate power of h; belongs to the respective Vs: The result then follows from
Theorem 1.

Our last example is concerned with the Hamiltonian

H ¼ x2 þ y2 � x4 � ax2y2 � y4; a > 2; ð14Þ

which comes from the cubic Hamiltonian vector field having a rotational symmetry
of order 4. In complex coordinates z ¼ x þ iy; such a field is presented by a complex

equation ’z ¼ �iz þ Az2 %z þ B%z3; A;BAC; Re A ¼ 0: Take a polynomial perturbation
in (3) which is semi-even with respect to x:

f ð�x; yÞ ¼ f ðx; yÞ; gð�x; yÞ ¼ �gðx; yÞ; deg f ; gpn ð15Þ

and consider integral (4) where S ¼ ð 1
aþ2

; 1
4
Þ and the integration is along the oval

dðhÞCfH ¼ hg surrounding the center at ð 1ffiffi
2

p ; 0Þ: As in Lemma 1, we can derive

relations between the integrals involved in (4) and then use them to rewrite IðhÞ in

the form IðhÞ ¼ PðhÞI1ðhÞ þ QðhÞI2ðhÞ where I1 ¼
R
dðhÞ x2 dy; I2 ¼

R
dðhÞ x2y2 dy; and

P;Q are polynomials with independent coefficients and degrees ½n�2
4
�; ½n�4

4
�;

respectively. The related vector space Vn has a dimension ½n
2
�: The vector function

I ¼ ðI1; I2Þ? satisfies a system (2) with a matrix (which is too large to fit in Table 1)

A ¼

4h � 1

3

a � 2

3

4h � 1

15ða þ 2Þ
4h

5
þ a � 14

15ða þ 2Þ

0
BBB@

1
CCCA:
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Clearly, conditions (H1)–(H3) are satisfied with h0 ¼ 1
4; h1 ¼ 1

aþ2: Denote D ¼
C\ð�N; h1�: Take s ¼ nþ1

4
; then evidently Vn ¼ Vs: Applying Theorem 1,

we obtain

Theorem 5. For any system (3) satisfying (14) and (15), the linear space of integrals

Vn has a dimension ½n
2
�: Moreover, Vn is Chebyshev with accuracy 1 in D and it is

Chebyshev in S:

Theorem 5 is useful for estimating the number of limit cycles not surrounding the
origin that are born in small semi-even polynomial perturbations of the cubic
Hamiltonian vector field with a rotational symmetry of order 4.

Appendix. Non-oscillation and Sturm-type theorems

The classical Sturm theorem can be used to find bounds for the number of the
zeros of the solutions of linear non-autonomous differential equations on a real
interval. In the context of the present paper a Sturm-type non-oscillation theorem
was recently proved by Petrov [9]. The proof uses of course topological arguments. It
is natural to ask whether the results of the present paper could not be deduced in
such a way. The answer turns out to be negative in general, and our main Theorem 1
is essentially a non-oscillation result in a complex domain. On the other hand our
proofs also rely on topological arguments: the argument principle for real analytic
functions in a complex domain. Therefore we may call Theorem 1 a Sturm-type

theorem in a complex domain.
To compare these two approaches (real and complex) we give below an example in

which a Sturm-type theorem in a real domain can still be proved. We shall follow
closely Petrov [9]. As in the Introduction, P and Q are the polynomials from the
definition of Vs and it is assumed (for definiteness) that h0oh1:

Theorem. Assume that conditions (H1)–(H3) hold and 2leZ: Then any non-trivial

function in Vs has at most deg P þ deg Q þ 1 zeros in the interval ð�N; h0Þ: In

particular, if jl� mjo1; then Vs is a Chebyshev vector space in ð�N; h0Þ:

Proof. As in Section 2, it is sufficient to consider (2) as a system for IðhÞ ¼
ðxðtÞ; yðtÞÞ?; with A taken in a normal form (7). For k a non-negative integer,
denote

o2kþ1 ¼ ðk þ lÞðk þ l� 1Þ; o2kþ2 ¼ ðk þ mÞðk þ m� 1Þ;

Ok ¼
o2kþ1 0

0 o2kþ2

 !
; Rk ¼

lþ k � 1 mo

l=o mþ k � 1

 !
:
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Following [9] we introduce the operator

L ¼
L 0

0 L

 !
; L ¼ tðt � 1Þ d2

dt2
:

By Proposition 1, we have LI ¼ O0I: Next, we prove that under hypotheses (H1) and

(H2), the operator L satisfies also the following identities: LðtkIÞ ¼ tkOkI� tk�1RkI;
kAN: Indeed, taking into account the form of the matrix in (7), and denoting for
short d ¼ detA ¼ tðt � 1Þ=lm; we obtain

LðtkIÞ ¼ tðt � 1ÞðtkIÞ00

¼ tðt � 1Þ½tkI00 þ 2ktk�1I0 þ kðk � 1Þtk�2I�

¼ ½tkLþ 2klmtk�1dA�1 þ kðk � 1Þðtk � tk�1Þ�I

¼ tk½O0 þ 2klmðdA�1Þ0 þ kðk � 1Þ�Iþ tk�1½2klmðdA�1Þð0Þ � kðk � 1Þ�I

¼ tkOkI� tk�1RkI:

Assume that 2l is not an integer. Then it is easy to verify that the constants oj are all

different. This implies that there exist scalar functions of the form

xkðtÞ ¼ ½tk þ Oðtk�1Þ�xðtÞ þ Oðtk�1ÞyðtÞ;

ykðtÞ ¼ Oðtk�1ÞxðtÞ þ ½tk þ Oðtk�1Þ�yðtÞ;

satisfying the equations

LxkðtÞ ¼ o2kþ1xkðtÞ; LykðtÞ ¼ o2kþ2ykðtÞ;

where Oðtk�1Þ denotes different polynomials of degree k � 1: To verify this, we ask

for a IkðtÞ ¼ ðxkðtÞ; ykðtÞÞ? in the form

Ik ¼
Xk

j¼0

Bj t
jI;

where Bk is the unity matrix, Bj to be determined for jok: As the operator L

commutes with the constant matrices, we have

LIk ¼ OktkIþ
Xk�1

j¼0

ðBjOj � Bjþ1Rjþ1ÞtjI ¼ OkIk

and the matrices Bj; j ¼ k � 1; k � 2;y; 0 are determined recursively from the

equations

BjOj � OkBj ¼ Bjþ1Rjþ1;
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which is possible because oj are all different. Therefore, there is a basis in the space

Vs consisting of the eigenfunctions of the operator L: Taking into account that, by
Proposition 2, xk and yk do not vanish for to0; we apply Petrov’s elimination
technique [9] to prove that any function in Vs has at most deg P þ deg Q þ 1 isolated
zeros in ð�N; 0Þ: Especially, in the case when jl� mjo1; this means that Vs is
Chebyshev in ð�N; 0Þ:

Note that the above proof works only on the open intervals having h0 as an
endpoint and where detA is positive (because the Sturm theorem applies in a
backward direction here). Also note that when jl� mj > 1; the above estimate,
although it concerns the interval ð�N; h0Þ only, is weaker than the estimate for the
whole D obtained in Theorem 1.
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