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Abstract. Let H(x, y) be a real cubic polynomial with four distinct critical
values (in a complex domain) and let X H = Hy

∂
∂x − Hx

∂
∂y be the corres-

ponding Hamiltonian vector field. We show that there is a neighborhood U
of X H in the space of all quadratic plane vector fields, such that any X ∈ U
has at most two limit cycles.
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1. Introduction

Let H(x, y) be a real cubic polynomial with four distinct (real or complex)
critical values and suppose that the quadratic Hamiltonian vector field

X H = Hy
∂

∂x
− Hx

∂

∂y
(1)

has a center. We prove the following

Theorem 1. There is a neighborhood U of X H in the space of all quadratic
vector fields, such that any X ∈ U has at most two limit cycles.
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Recall that the second part of the 16th Hilbert’s problem [18] asks about
“the maximum number and the position of Poincaré’s boundary cycles
(cycles limites)” for plane polynomial vector fields of degree n:

ẋ = P(x, y), ẏ = Q(x, y) . (2)

Solving this problem, even in the case n = 2, at the present state of know-
ledge seems to be hopeless. The result of the paper may be considered as
its infinitesimal version. To the end of this Introduction we shall explain in
a non-formal way our strategy of proving Theorem 1. It is based mainly on
the study of the zeros of suitable Abelian integrals.

Consider a small polynomial deformation

Xε = X H + εYε

of the polynomial Hamiltonian vector field X H , where

Yε(x, y) = Y1(x, y, ε)
∂

∂x
+ Y2(x, y, ε)

∂

∂y
, X H = Hy

∂

∂x
− Hx

∂

∂y

are quadratic vector fields, X H has a non-degenerate singular point which
is a center, and moreover Yε depends analytically on ε.

Without loss of generality we assume that the center is located at the
origin, Yε(0, 0) ≡ (0, 0), and

H(x, y) = (x2 + y2)/2 + “higher order terms”. (3)

Consider the continuous family of ovals

γ(h) ⊂ {(x, y) ∈ R2 : H(x, y) = h}
which tend to the origin in R2 as h → 0, and are defined on a maximal open
interval (0, h̃). Let l be a closed arc, contained in the open period annulus

⋃
h∈(0,h̃)

γ(h) (4)

and transversal to the family of ovals γ(h). For sufficiently small |ε| the
arc l is still transversal to the vector field Xε, and can be parameterized by
h = H(x, y)|l. Therefore we can define, on a suitable open subset of l, the
first return map h → Pε(h) associated to the vector field Xε and the arc l,
as it is shown on Fig. 1. The limit cycles of the perturbed vector field Xε

correspond to the fixed points of the analytic map Pε. It is well known [33,
Pontryagin] that

Pε(h)− h = −εIY0(h)+ o(ε) , (5)
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Fig. 1 The first return map Pε(h) associated to the vector field Xε and the arc l

where the Pontryagin function IY0(h) is given by

IY0(h) =
∫ ∫

{H≤h}
div(Y0) dx ∧ dy,

div(Y0) = (Y1(x, y, 0))x + (Y2(x, y, 0))y (6)

and

lim
ε→0

o(ε)/ε = 0

uniformly in h on any compact subset of [0, h̃).
In contrast to the first return map Pε(h), the Pontryagin function IY0(h)

does not depend on the choice of the arc l. If in addition H(x, y) has distinct
critical values and Pε(h) �≡ h, then IY0(h) �≡ 0 [25, Il’yashenko]. It is easy
to see in this case that the number of zeros of IY0(h) on the interval [0, h̃)
provides an upper bound for the number of the limit cycles of Xε which
bifurcate from the open period annulus (4). The same holds true for the
closed period annulus, provided that it is bounded by a homoclinic loop (as
in the present paper) as proved by Roussarie [34]. As Y0(x, y) is a quadratic
vector field, then the function IY0(h) can be written in the form

IY0(h) = Iαβγ (h) =
∫ ∫

{H≤h}
(α x + β y + γ) dx ∧ dy .

It is a complete elliptic integral and its qualitative behavior, as a function of
the complex variable h is the main subject of the present paper.

Denote by {H ≤ h} the interior of the oval γ(h), where h ∈ [0, h̃]. For
h = 0 it reduces to a point and for h = h̃ it is the interior of a homoclinic
loop containing the saddle point (1, 0) of the vector field X H . The centroid
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point (ξ(h), η(h)) of {H ≤ h} has coordinates

(ξ(h), η(h)) =
(∫∫

{H≤h} x dx ∧ dy∫∫
{H≤h} dx ∧ dy

,

∫∫
{H≤h} y dx ∧ dy∫∫
{H≤h} dx ∧ dy

)
, h ∈ [0, h̃] .

Consider the centroid curve (introduced first by Horozov and Iliev [19])

L = {(ξ(h), η(h)) : h ∈ [0, h̃]}
associated to the polynomial (3). A basic fact about L is that it is smooth,
and this holds true even without any restriction on the cubic polynomial
H(x, y). Assuming this, we note that Iαβγ (h) has a zero of multiplicity k at
h ∈ [0, h̃] if and only if the intersection number of the affine line

{(x, y) ∈ R2 : α x + β y + γ = 0}
with the centroid curve L at the point (ξ(h), η(h)) equals to k. We shall prove
that the centroid curve L is convex, and when running it, the tangential vector
rotates within an angle less than π. Clearly this implies that Iαβγ (h) has at
most two zeros which on its turn proves Theorem 1 (after a series of well
known steps).

The quadratic Hamiltonian vector field X H can have either one center and
one saddle, or two centers and two saddles, or one center and three saddles
(recall that Hamiltonian function (3) has four distinct critical values). If X H
has one center and three saddles the convexity of the centroid curve was
proved in [19] in the following way

Step 1. The second derivative of the Pontryagin function Iαβγ (h) can
have at most two zeros on h ∈ [0, h̃] and hence Iαβγ (h) has at most
four zeros [12]. As this function always vanishes at the origin then
this means that every line l = {(x, y) ∈ R2 : α x + β y + γ = 0}
intersects at most three times the centroid curve L .

Step 2. A local analysis shows that the curvature of L in a neighbor-
hood of its ends has the same sign and can not vanish. From this one
deduces that if L is not convex, there exists an affine line l which
intersects L at least four times. This contradicts Step 1.

If X H has one center and one saddle point, the analogue of the principal
result of [12], used in Step 1 above is proved in Theorem 4.1 below. It is
based on the following observations

- The Abelian integral d2

dh2 Iαβγ (h) can be continued analytically in the
complex domain D = C\[h̃,∞). This is not an obvious fact, because
H(x, y) has two complex conjugate critical values, but follows from
its Dynkin diagram (Fig. 3).
- The zeros of d2

dh2 Iαβγ (h) in the complex domain D are counted by
making use of topological arguments (Picard-Lefschetz formula and
the argument principle).
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The Proof of Theorem 1 is completed in this case by reasoning as in Step 2
above.

All this does not work when the quadratic Hamiltonian vector field X H
has two centers and two saddles. It can be shown that in this case the
exact upper bound for the number of the zeros of the second derivative of
Iαβγ (h) is four. Instead of L ⊂ R2 we consider the dual centroid curve
L∗ ⊂ RP2, which is the set of lines l = {(x, y) ∈ R2 : α x + β y + γ = 0}
tangent to L , in the projective space RP2 with homogeneous coordinates
[α : β : γ ]. Consider on other hand the bifurcation set B of the zeros of
d2

dh2 Iαβγ (h) in the complex domain D = C\[0,∞). A point [α : β : γ ]
belongs to B if and only if a zero of d2

dh2 Iαβγ (h) bifurcates from the border
of D = CP\[0,∞] ⊂ CP. The dual projective curve L∗ and the bifurcation
set B live therefore in the same projective space. The proof of the convexity
of L is split in the following steps.

Step 1. We compute explicitly the bifurcation set B. It turns out that
it is an union of four distinct projective lines and one segment (piece
of a projective line).

Step 2. We determine the mutual position of L∗ and B. It turns out that
L∗ can intersect only three connected components of the complement
to B in RP2.

Step 3. We prove that in each of the three connected components
defined in Step 2, the Abelian integral d2

dh2 Iαβγ (h) can have at most
two zeros. This implies that the order of tangency of a line l ∈ L∗ is
at most three. Equivalently, this shows that if the curvature κ(h) of
L vanishes at the point (ξ(h), η(h)) ∈ L , then this zero is simple.

Step 4. In this final step we use a deformation argument (as in [22])
to show that the curvature of L can not vanish. Namely, suppose
that for some cubic Hamiltonian H the centroid curve L is convex.
Such are for example the centro-symmetrical Hamiltonians, as it
has been proved in [22]. Consider a continuous deformation of the
Hamiltonian H(x, y), and the associated deformation of the centroid
curve L . As the curvature of L can not vanish at its ends (a local
result!) then if the curvature κ(h) acquires a zero, this zero is at least
double which contradicts to Step 3.

The convexity of the centroid curve together with results of Roussarie [35]
show that the vector field Xε can have at most two zeros. This on its turn
implies Theorem 1.

The paper is organized in the following way. In Sect. 2 we introduce
the main notations used in the sequel, and establish several general results
concerning the global Milnor bundle of the cubic polynomial H(x, y). These
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results might be of independent interest and are based on [12–15]. In Sect. 3
we study the bifurcation set B of the zeros of the Abelian integral d2

dh2 Iαβγ (h)

in the complex domain D = C\[h̃,∞). From this it is possible to obtain the
exact number of the zeros for each connected component of the complement
to B. We shall compute these numbers for some connected components
in Sect. 4 (the others will not be used in the proof). The geometry of the
centroid curve is studied in Sect. 5 where we materialize the strategy outlined
above and prove the central result of the paper (Theorem 5.3). Theorem 1 is
deduced from this in Sect. 6. In the last section we trace the historical origins
of the problem we solved. We give a precise formulation of the infinitesimal
16th Hilbert problem for any n and emphasize its algebro-geometric content.

Theorem 1 has been previously announced in [11].

Acknowledgements. I thank Emil Horozov who introduced me to the subject, as well for
the final reading of the manuscript. I am grateful to Iliya Iliev for his critics and scepticism
which helped me to finish the paper. Finally I thank the referee and H. Żoładek for their
suggestions and corrections concerning Sects. 6 and 7.

2. Notations and preliminary results

Let us suppose that the quadratic Hamiltonian vector field X H (1) has
a continuous family of periodic solutions δ1(h)⊂{(x, y)∈R2 :H(x, y)=h}
defined on a maximal open interval (h1, h2). It follows that the family δ(h)
contains a center of X H and is bounded by a loop (containing eventually
several singular points). If we place the center at the origin of the coordinate
system and a second critical point in (1, 0), then the Hamiltonian H(x, y)
takes the following normal form [19]

H(x, y) = H(x, y; a, b) = 1

2
(x2 + y2)− 1

3
x3 + a x y2 + 1

3
b y3 . (7)

We shall also suppose, without loss of generality, that the interval of defin-
ition of δ(h) is (0, 1

6 ) (of course X H can have a second center).

Convention. To the end of this paper, if it is not explicitly mentioned
otherwise, the cubic Hamiltonian H(x, y) is supposed to have four
distinct (real or complex) critical values. More explicitly, if H is given
by (7) then we shall always suppose that (a, b) ∈ Ω0

1 ∪ Ω0
2 ∪ Ω0

3,
where the open connected domains Ω0

i ⊂ R2 are defined below.

If H(x, y) = H(x, y; a, b) has four distinct critical values, then the
continuous family of periodic solutions δ1(h), h ∈ (0, 1

6 ) is bounded by
a saddle connection (a homoclinic solution containing one saddle point
with coordinates (0, 1)).
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Fig. 2 The set D of real cubic polynomials H(x, y; a, b) = 1
2 (x2+ y2)− 1

3 x3+axy2+ 1
3 by3

which do not have four distinct critical values

The set D ⊂ R2{a, b} of real cubic Hamiltonians H(x, y; a, b) which do
not have four distinct critical values are easily computed

D = {(a, b) ∈ R2 : (2 a + 1)((1 + 2 a)(1 − a)2 − b2)

× (4 a(1 + 2 a) + b2)b(4 a3 − b2) = 0} .

H(x, y; a, b) has less than three critical values if and only if 4 a3 − b2 = 0
(one critical point has escaped to infinity). The set R2\D has 14 connected
components (see Fig. 2). As H(x,−y; a,−b) = H(x, y; a, b) then without
loss of generality we shall suppose that b ≥ 0. Let h1, h2, h3, h4 be the
critical values of H(x, y). We shall also suppose that h1 = 0, h2 = 1/6
and if the critical values h3 and h4 are real, then h3, h4 ≥ 1/6. The latter is
equivalent (after an elementary computation) to the claim that if (a, b) �∈ D
then (a, b) belongs to one of the three open connected domains Ω0

3, Ω0
1 and

Ω0
2 shown on Fig. 2. In each of them the vector field X H has one center and

three saddles, one center and one saddle, or two centers and two saddles
respectively [19].
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Through the paper we shall use the following standard notations intro-
duced in [19]

X(h) =
∫ ∫

H≤h
xdx ∧ dy, Y(h) =

∫ ∫
H≤h

ydx ∧ dy,

M(h) =
∫ ∫

H≤h
dx ∧ dy, K(h) =

∫ ∫
H≤h

x y dx ∧ dy

ωX = −xydx, ωY = −1

2
y2dx, ωM = −ydx, ωK = −1

2
x y2dx . (8)

The Pontryagin function associated to an arbitrary quadratic perturbation of
X H ({H ≤ h} denotes the interior of the oval δ(h)) is

Iαβγ (h) =
∫ ∫

{H≤h}
(αx + βy + γ) dx ∧ dy =

∫
δ1(h)

α ωX + β ωY + γ ωM .

(9)

Denote
Γ̄h =

{
[x, y, z] ∈ CP2 : H

(x

z
,

y

z

)
= h

}
and

Γh = {(x, y) ∈ C2 : H(x, y) = h} .

If h �= hi , then both Γh and Γ̄h are smooth, Γ̄h is a compact Riemann
surface of genus one which is also the compactification of the affine elliptic
curve Γh . We have

Γ̄h = Γh ∪∞1 ∪∞2 ∪∞3

where ∞i , i = 1, 2, 3, are three distinct points on Γ̄h , and therefore

rankH1(Γh,Z) = 4, rankH1(Γ̄h,Z) = 2.

The (co)homology Milnor bundle associated to the global Milnor bundle of
H has a canonical flat connexion, called the Gauss-Manin connection. For
a section ω(h) of the cohomology bundle, the covariant derivative

∇ : H1
DR(Γh,C) → H1

DR(Γh,C) .

defining the connexion satisfies the identity

d

dh

∫
γ(h)

ω =
∫

γ(h)

∇ω

where γ(h) is any locally constant section of the homology bundle.
The restrictions of the polynomial one-forms (8) on Γh define meromor-

phic one-forms on Γ̄h , which are holomorphic on Γh . By abuse of notations
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we denote these one-forms by ωM, ωX, ωY , ωK too. They define global
sections of the cohomology Milnor bundle and

∇ωM = − dx

Hy
,∇ωX = −x dx

Hy
,∇ωY = − y dx

Hy
,∇ωK = −x y dx

Hy
.

Lemma 1 (Proposition 5, [15]). For every fixed h �= hi the differential
one-forms ∇ωM ,∇ωX, ∇ωY ∇ωK are holomorphic on the affine curve Γh
and define a basis of H1

DR(Γh,C).

Let hi , i = 1, ..., 4, be the distinct critical values of H , where h1 = 0,
h2 = 1

6 , and let (xi, yi) be the corresponding critical points. If h3, h4 ∈ Rwe
shall always suppose that 1

6 < h3 < h4 and if h3 = h4 �∈ Rwe shall suppose
that Im(h3) > 0. In the case when hi is a critical value corresponding to
a center (saddle point) of X H we shall denote sometimes this value by
hc

i (respectively hs
i ). Similar convention will be used for the continuous

families of vanishing cycles δi (see Fig. 3). The vector field X H can have
either

1. one center and one saddle ((a, b) ∈ Ω0
1), or

2. two centers and two saddles ((a, b) ∈ Ω0
2), or

3. one center and three saddles ((a, b) ∈ Ω0
3).

In each of these three cases H has its own Dynkin diagram. Namely, let
h = h0 be a fixed regular value with Im(h0) > 0 and let l1, l2, l3, l4 be
three mutually non-intersecting paths, connecting h0 to hi . In the cases 2, 3
the critical values are real and we shall suppose that li are contained in the
upper half-plane Im(h) > 0 (except their ends which coincide with hi). In
the case 1 we shall suppose that the paths l1, l2, l3 are contained in the upper
half-plane Im(h) > 0 and for l4 we shall suppose that it is contained in the
domain D = C\[ 1

6 ,∞). The paths li are shown on Fig. 3.
Denote by δi(h) ∈ H1(Γh,Z) the continuous families of cycles which

vanish at (xi, yi) as h tends to hi along the path li . As H(x, y) is a good
polynomial then for all regular h the cycles δi(h) form a basis of the first
integer homology group of the affine algebraic curve Γh ⊂ C2 [13, Theo-
rem 2.4]. The families δi(h) define locally constant sections of the global
homology Milnor bundle of H(x, y) with base C\{h1, h2, h3, h4} and fiber
H1(Γh,Z). When the polynomial H(x, y) has complex conjugate critical
values ((a, b) ∈ Ω0

1) a different choice of paths leads, a priori, to different
cycles δ3(h0) and δ4(h0). Here it is not so because the intersection indices
(to be computed below) < δ3, δ4 >, < δ3, δ1 >, < δ1, δ4 > are all equal to
zero.

Definition 1. The Dynkin diagram of H(x, y) is the graph with vertices the
cycles δi . Two cycles δi, δ j , i < j, are connected by an edge (dotted edge)
if the intersection index < δi, δ j > is equal to +1 (−1).
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The Dynkin diagram of H describes the intersection indices < δi, δ j >,
and hence the monodromy group of the global homology Milnor bundle. It
depends, however, on the homotopy class of the non-intersecting paths li .
The choice of paths on Fig. 3 is motivated by the proof of Theorem 4.1.

Lemma 2. For a suitable orientation of the cycles δi the Dynkin diagram
of the generic cubic polynomial H(x, y) (7) is shown on Fig. 3.

Corollary 1. The function Iαβγ (h) (and hence d2

dh2 Iαβγ (h)) can be continued
analytically in the complex domain

D = C\
[

1

6
,∞

)
= CP1\

[
1

6
,∞

]
.

Indeed, If H has four real critical values h1 = 0, h2 = 1
6 , h3, h4, then

it is easy to check that h3 and h4 are contained in the interval [ 1
6 ,∞). If

h3 = h4 �∈ R then the cycle δ1(h0) has a zero intersection index with the
cycles δ3(h) and δ4(h) (Fig. 3). Therefore the locally constant section δ1(h)
of the homology Milnor bundle is globally constant over D\{0, h3, h4}. ��
Proof of Lemma 2. For every generic cubic polynomial H(x, y; a, b) we
can find a continuous deformation H(x, y; a(λ), b(λ)), λ ∈ [0, 1], in the
space of all real cubic polynomials of the form (7) with the properties:

- H(x, y; a, b) = H(x, y; a(0), b(0))

- H(x, y; a(λ), b(λ)) is generic for λ ∈ [0, 1)

- H(x, y; a(1), b(1)) has four distinct critical points, and is one of the
polynomials

H1(x, y) = 1

2
(x2 + y2)− 1

3
x3 − 1

3
x y2

(one center and one saddle), or

H2(x, y) = 1

2
(x2 + y2)− 1

3
x3 + 1

3
y3

(two centers and two saddles), or

H3(x, y) = 1

2
(x2 + y2)− 1

3
x3 + x y2

(one center and three saddles).
It follows that the Dynkin diagrams of H(x, y; a(0), b(0)) and H(x, y;

a(1), b(1)) are the same. The critical points of the reversible polynomials
H3(x, y) and H2(x, y) above are all real and in the both cases the saddle
points are contained in the critical level set {(x, y) : H(x, y) = 1/6}.
Therefore the result follows from A’Campo [1] or Husein-Zade [23,2].
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Fig. 3 Dynkin diagram of the generic real cubic polynomial H(x, y; a, b) = 1
2 (x2 + y2) −

1
3 x3 + axy2 + 1

3 by3

Finally the polynomial H1(x, y) has two complex critical points, but we
note that

H1(1 − x,
√−3 y) = 1

6
− H3(x, y)

and hence the Dynkin diagram in the case (1) is obtained from the Dynkin
diagram in the case (3) (after exchanging δc

1 and δs
2). ��
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Let H0(Γ̄h,Ω
1(∞1 +∞2 +∞3)) be the vector space of meromorphic

one forms on Γ̄h having at most a simple pole at ∞i , i = 1, 2, 3, and
holomorphic on Γh .

Lemma 3. The differential one-forms ∇ωM,∇ωX,∇ωY form a basis of the
vector space

H0(Γ̄h,Ω
1(∞1 +∞2 +∞3))

for all h �= hi, i = 1, 2, 3, 4.

Indeed it is straightforward to check that ∇ωM,∇ωX,∇ωY are holomorphic
on Γh and have simple poles at ∞i . It follows from Lemma 1 that these
forms are also linearly independent, and from the Riemann-Roch formula
that dim H0(Γ̄h,Ω

1(∞1 +∞2 +∞3)) = 3. ��
An easy computation shows that the residues of ∇ωM,∇ωX,∇ωY at ∞i

are constants (in h) and therefore the second derivatives∇2ωM,∇2ωX,∇2ωY
are differential forms with no residues. Such differential forms are called
“of second kind” and they represent also cohomology classes in the first De
Rham cohomology group H1

DR(Γ̄h,C) of Γ̄h .

Lemma 4. The differential one-forms ∇2ωM,∇2ωX,∇2ωY generate the
vector space H1

DR(Γ̄h,C) for all h �= hi, i = 1, 2, 3, 4.

Note that dim H1
DR(Γ̄h,C) = rankH1(Γ̄h,Z) = 2. The proof of Lemma 4

follows essentially from [12, Lemma 5.2]. Namely, after a suitable rotation
we put, as in [12] the cubic polynomial (7) in the following form

H(x, y) = x2 + y2

2
+ Ax3 + Bx2y + Cxy2, C �= 0, B2− 4AC �= 0 . (10)

The level set Γh = {H = h} can be rewritten in the form

z2 = (B2 − 4AC)x4 − 2(A + C)x3 − x2 + 4Chx + 2h . (11)

where z = Hy = (1 + 2Cx)y + Bx2). In x, z coordinates we have

ωM = − z − Bx2

1 + 2Cx
dx, ωX = −x(z − Bx2)

1 + 2Cx
dx, ωY = −1

2

(
z − Bx2

1 + 2Cx

)2

dx

and hence

∇2ωM = −∇2 z − Bx2

1 + 2Cx
dx = −∇2 z

1 + 2Cx
dx = −∇ dx

z
= 1 + 2Cx

z3
dx

∇2ωX = −∇2 x(z − Bx2)

1 + 2Cx
dx = −∇2 xz

1 + 2Cx
dx =

−∇ x

z
dx = x(1 + 2Cx)

z3
dx
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∇2ωY = −1

2
∇2

(
z − Bx2

1 + 2Cx

)2

dx = ∇2 Bx2z

(1 + 2Cx)2
dx

= ∇ Bx2

z(1 + 2Cx)
dx = − Bx2

z3
dx .

As H(x, y) has four distinct critical values, then B �= 0, and hence the
following identity holds in H1

DR(Γ̄h,C)

Span
{∇2ωM,∇2ωX,∇2ωY

} = Span

{
dx

z3
,

x dx

z3
,

x2dx

z3

}
. (12)

Further linear rescaling of the variable z brings the curve (11) in the follow-
ing normal form

Γ̃h =
{
(x, z) ∈ C2 : 1

2
z2 = x4

4
− x2

2
+ c1 x + c0

}
, (13)

where c1 and c0 are suitable real constants depending linearly on h. Note that
the normalizations of the affine curves Γ̃h and Γh are isomorphic Riemann
surfaces. We shall prove that the differentials

dx

z3
,

x dx

z3
,

x2dx

z3

generate the first De Rham cohomology group of the normalized curve Γ̄h

with affine equation (13). Indeed, for every γ ∈ H1(Γ̄h,Z) we have the
following system of Picard-Fuchs equations [12, Lemma 5.2]

−∆(c1, c0)

∫
γ

dx

z3
= A(c1, c0)

∫
γ

dx

z
+ B(c1, c0)

∫
γ

x2dx

z

−∆(c1, c0)

∫
γ

x2dx

z3
= C(c1, c0)

∫
γ

dx

z
− A(c1, c0)

∫
γ

x2dx

z
(14)

−∆(c1, c0)

∫
γ

x dx

z3
= D(c1, c0)

∫
γ

dx

z
+ E(c1, c0)

∫
γ

x2dx

z

where ∆(c1, c0) = 4 c0 (1−4 c0)
2+2 c2

1(1−36 c0)−27 c4
1 is the discriminant

of the polynomial x4

4 − x2

2 + c1x + c0 and

A(c1, c0) = 4 c0 (1 − 4 c0)+ 3 c2
1, B(c1, c0) = 4 c0 + 9 c2

1 − 1

C(c1, c0) =
(
3 c2

1 + 4 c0
)
(1 − 4 c0)− c2

1, D(c1, c0) = c1
(
16 c0 + 9 c2

1

)
,

E(c1, c0) = c1 (12 c0 + 1) .

On the other hand it is well known that the differentials dx
z , x dx

z and x2dx
z

form a basis of H1
DR(Γh,C) provided that ∆(c1, c0) �= 0 (the latter always
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holds true for generic polynomials H and regular values h �= hi). As dx
z is

of first kind, x dx
z of third, and x2dx

z of second kind on Γ̄h , then dx
z and x2dx

z

form a basis of H1
DR(Γ̄h,C). It remains to check that the vectors (A, C, D)

and (B,−A, E) can not be co-linear. We have

det

(
A(c1, c0) B(c1, c0)

C(c1, c0) −A(c1, c0)

)
= (1 − 4 c0)∆(c1, c0)

det

(
A(c1, c0) B(c1, c0)

D(c1, c0) E(c1, c0)

)
= c1 ∆(c1, c0)

and if c1 = 1 − 4 c0 = 0 then ∆(c1, c0) = 0. This completes the proof of
Lemma 4. ��

Let γ1(h), γ2(h) be independent locally constant real sections of the
global homology Milnor bundle of the polynomial H(x, y) and let

ω = α∇2ωX + β∇2ωY + γ ∇2ωM

where α, β, γ , are fixed real constants

Lemma 5.

det

(∫
γ1(h)

ω
∫
γ1(h)

∇2ωM∫
γ2(h)

ω
∫
γ2(h)

∇2ωM

)
= P1(h)∏4

i=1(h − hi)
. (15)

det

(∫
γ1(h)

ω
∫
γ1(h)

∇ωM∫
γ2(h)

ω
∫
γ2(h)

∇ωM

)
= P2(h)∏4

i=1(h − hi)
. (16)

where P1(h) and P2(h) are suitable real polynomials of degree at most one
and two respectively.

Proof. The Picard-Lefschetz formula implies that the Wronskians defined
in (15), (16) are rational functions with simple poles at the critical values hi ,
i = 1...4. The asymptotic analysis of the Abelian integrals shows that for |h|
sufficiently big | ∫

γi(h)
ω| and | ∫

γi (h)
∇2ωM| grow no faster than |h|−4/3, and

| ∫
γi(h)

∇ωM| grows no faster than |h|−1/3 (see the proof of Proposition 1).

This shows that deg P1 ≤ |h|4/3, deg P2 ≤ |h|7/3. ��
Corollary 2. There exist real linear functions α(h), β(h), γ(h), which are
unique up to multiplication by a non-zero constant, such that for every
h �= hi the differential one-form

α(h)∇2ωX + β(h)∇2ωY + γ(h)∇2ωM (17)

represents the zero co-homology class in H1
DR(Γ̄h,C).
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Indeed, the differential one-form

det



∇2ωX ∇2ωY ∇2ωM∫
γ1(h)

∇2ωX
∫
γ1(h)

∇2ωY
∫
γ1(h)

∇2ωM∫
γ2(h)

∇2ωX
∫
γ2(h)

∇2ωY
∫
γ2(h)

∇2ωM




is zero in H1
DR(Γ̄h,C) for every h. Multiplying it by

∏4
i=1(h−hi) and using

the preceding Lemma we obtain the identity (17), where α(h), β(h), γ(h)
are suitable real linear functions. The uniqueness of α(h), β(h), γ(h) follows
from Lemma 4. ��

The next result shows that the curve

h → [α(h) : β(h) : γ(h)] : R→ RP
2 (18)

is a projective line which is not reduced to a point.

Lemma 6. Let δ(h) be a continuous family of vanishing cycles in the fibers
of the Milnor fibration of H(x, y). Then the Abelian integrals

∫
δ(h)

∇2ωX,

∫
δ(h)

∇2ωY ,

∫
δ(h)

∇2ωM

are functions in h which are linearly independent over C.

Proof. If for some α, β, γ we have

α

∫
δ(h)

∇2ωX + β

∫
δ(h)

∇2ωY + γ

∫
δ(h)

∇2ωM ≡ 0

then

α

∫
δ(h)

∇ωX + β

∫
δ(h)

∇ωY + γ

∫
δ(h)

∇ωM ≡ const.

As the Dynkin diagram of H is connected and the critical values of H are
distinct, then as in the proof of [14, Prosition 3.2] we conclude that the
above constant is equal to zero. Therefore

∫
δ(h)

∇ωX,

∫
δ(h)

∇ωY ,

∫
δ(h)

∇ωM

are also linearly dependent over C which contradicts to Lemma 1.
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3. The bifurcation set of the zeros of the Abelian integral d2

dh2 Iαβγ (h) in
a complex domain

We already noted that for fixed a, b, α, β, γ the Abelian integral d2

dh2 Iαiβiγi(h)

is an analytic function in h in the complex domain D = CP1\[ 1
6 ,∞]. The

number of its zeros depends, however, on the parameters a, b, α, β, γ .

Definition 2. A point ([α0 : β0 : γ0], a0, b0) ∈ RP2 × R2 belongs to the
bifurcation set B of the zeros of d2

dh2 Iαβγ (h) in D if and only if there exists
a sequence

αi, βi, γi, ai, bi, hi ∈ R5 × D

such that

lim
i→∞

(αi, βi, γi, ai, bi, hi) = (α0, β0, γ0, a0, b0, h0)

where d2

dh2 Iαiβiγi (hi) = 0 and h0 ∈ [ 1
6 ,∞]. In this case we shall say that

a zero of d2

dh2 Iα0β0γ0(h) bifurcates from h = h0.

For every (p, q) ∈ R2 denote by Bpq the section

Bpq = B ∩ {a = p, b = q} ⊂ RP2

and
Breg =

{
([α : β : γ ], a, b) ∈ B : (a, b) ∈ ∪3

i=1Ω
0
i

}
.

The purpose of this section is to describe the “regular part” Breg of the
bifurcation set B.

Theorem 3.1. The set Breg is an union of five smooth analytic manifolds of
co-dimension one denoted l2, l3, l4, l∞ and ∆.

If the generic point (a, b) is such that X H has three saddles and one
center, then the sections lab∞ = Bab ∩ l∞, lab

i = Bab ∩ li , i = 2, 3, 4 are
distinct projective lines, ∆ab = Bab∩∆ is a segment (a piece of a projective
line) joining lab∞ and lab

2 as on Fig. 4.
If the generic point (a, b) is such that X H has one saddle and one center,

then the sections lab∞ and lab
2 are distinct projective lines, lab

3 = ∅, lab
4 = ∅,

and ∆ab = Bab ∩ ∆ is a segment (a piece of a projective line) joining lab∞
and lab

2 .
A point ([α : β : γ ], a, b) ∈ Breg belongs to l2, l3, l4, l∞ or ∆, if and only

if a zero of the corresponding Abelian integral d2

dh2 Iαβγ (h) bifurcates from the
point h0, where h0 = h2, or h0 = h3 ∈ (1/6,∞), or h0 = h4 ∈ (1/6,∞),
or h0 = ∞, or h0 ∈ (1/6,∞) respectively. The precise description of li ,l∞,
∆ is given in Corollary 3,5,6.

To prove the above Theorem we shall study each of the sets lab
i , lab∞, ∆

separately.
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Fig. 4 The bifurcation set Bab ⊂ RP2 of the zeros of the Abelian integral d2

dh2 Iαβγ (h)

3.1. Bifurcations of zeros from h0 = ∞
Proposition 1. In a suitable neighborhood of (∞, a, b) ∈ CP1 × C2 the
functions h4/3M′′(h), h4/3X ′′(h), h4/3Y ′′(h) are holomorphic with respect
to a, b, h−1/3. If we denote

lim
h→∞ h4/3M′′(h) = c∞M , lim

h→∞ h4/3X ′′(h) = c∞X , lim
h→∞ h4/3Y ′′(h) = c∞Y

then c∞X , c∞Y , c∞M are real constants, c∞M �= 0, and

c∞X = b2 − 2 a2(a − 1)

6(4 a3 − b2)
c∞M , c∞Y = − b (a + 1)

6(4 a3 − b2)
c∞M .

Proof. To simplify the notations, let us fix first a, b. As the polynomial
H(x, y) has four critical points, then an elementary computation shows that
its highest order homogeneous part

H0 = −1

3
x3 + axy2 + 1

3
by3
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is non-degenerate, in the sense that it has an isolated critical point at the
origin (equivalently b2 − 4a3 �= 0). Consider the deformation

Hh(x, y) = (H(x h1/3, y h1/3)− h h0)/h = H0(x, y)+ x2 + y2

2
h−1/3 − h0

where h ∈ [1,∞]. As the global Milnor number of Hh(x, y) does not
depend on h [13, Proposition 3.2], then [13, Theorem 2.5] implies that the
smooth fibration

[1,∞] × ∪h∈[1,∞]{(x, y) ∈ C2 : Hh(x, y) = 0} → [1,∞]
(h, {(x, y) ∈ C2 : Hh(x, y) = 0}) → h

(19)

is trivial, provided that 0 is a regular value of Hh(x, y) for all h, such that
h ∈ [1,∞]. Clearly the last condition is satisfied if |h0| is sufficiently big.
We conclude that the continuous family of cycles δ(h) is defined for all h
such that h/h0 ∈ [1,∞]. In the same way we prove that, more generally,
the fibration

S1 × [1,∞] × ∪h∈[1,∞],|s|=1{(x, y) ∈ C2 : Hh s(x, y) = 0} → S1 × [1,∞]
: (s, h, {(x, y) ∈ C2 : Hh s(x, y) = 0}) → (s, h)

(20)

is locally trivial. Therefore we can define a continuous deformation of cycles
along the circle

{|h0| s : s = eiϕ, 0 ≤ ϕ ≤ 2 π}
and hence an automorphism

l∗ : H1(Γh,Z) → H1(Γh,Z) . (21)

The local triviality of (20) shows that l∗ is the operator of classical mon-
odromy of the singularity H0 = − 1

3 x3 + axy2 + 1
3by3 of type D4. This

implies that (l∗)3 = id and hence the Abelian integrals M(h), X(h), Y(h)
are single valued with respect to h−1/3 in a punctured neighborhood of ∞.
The triviality of (19) implies

lim
h→∞

h−2/3M(h) = −
∫

δ(∞)

y dx, lim
h→∞

h−1 X(h) = −
∫

δ(∞)

xy dx,

lim
h→∞ h−1Y(h) = −1

2

∫
δ(∞)

y2 dx,

where δ(∞) ⊂ {(x, y) ∈ C2 : H0(x, y) = h0}. In particular we get

c∞M = 2

9

∫
δ(∞)

y dx .
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To prove that c∞M �= 0 we use that

2

9

∫
H0=h

y dx = c∞M

(
h

h0

)2/3

and
2

9

∫
H0=h

dx

H0
y

= c∞M
d

d h

(
h

h0

)2/3

.

The differential one-form dx/H0
y is holomorphic on the elliptic curve

{(x, y) ∈ C2 : H0(x, y) = h}, h �= 0

and hence ∫
H0=h

dx

H0
y

�= 0, if h �= 0 .

The above shows also that for fixed generic a, b the functions h4/3M′′(h),
h4/3 X ′′(h), h4/3Y ′′(h) are holomorphic with respect to h in a neighbor-
hood of ∞ ∈ CP1. Finally we note that if a, b are not fixed, but belong to
a sufficiently small neighborhood U ⊂ C2 of some generic point (a0, b0),
then the trivial fibration (19) can be replaced by a similar trivial fibra-
tion with a base [1,∞] × U , and (20) by a locally trivial fibration with
a base S1 × [1,∞]×U . The same arguments as above show that the func-
tions h4/3M′′(h), h4/3X ′′(h), h4/3Y ′′(h), are bounded and single valued in
a neighborhood of (∞, a0, b0) ∈ CP1 × C2, and hence can be continued to
holomorphic functions.

Finally to obtain explicit formulae for cX, cY we use the Picard-Fuchs
equation satisfied by X(h), Y(h), M(h), K(h). Namely, from [19, Lemma 3.3]
we have

(6 h (4 a3 − b2)+ a + 1)Y ′′(h)+ (b2 + 8 a2 + 4 a) K ′′(h)

+ (a + 1) b M′(h) = 0

(6 h − 1) b (4 a3 − b2) X ′′(h)+ a (4 a3 − 2 a2 − 2 a − b2) Y ′′(h)

+ [(4 a2 + 3 a + 1)(4 a3 − b2)− 8 a3(a + 1)2] K ′′(h)

+ b (2 a3 − 2 a2 − b2) M′ = 0 .

As K ′′(h) is meromorphic at∞with respect to h−1/3 and h2/3K ′′(h) = O(1)
then the result follows. ��
Corollary 3. l∞={([α : β : γ ], a, b)∈RP2×R2 : α c∞X +β c∞Y +γ c∞M =0}
Corollary 4. For a fixed generic a, b let

d2

dh2
Iαβγ (h) = h−4/3

(
c∞1 + c∞2 h−1/3 + c∞3 h−2/3 + c∞4 h−1 + ...

)
(22)
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and consider a parameterized curve s → ([α(s), β(s), γ(s)], a(s), b(s)), s ∈
(−ε, ε) which intersects B transversally at ([α(0), β(0), γ(0)], a(0), b(0)) ∈
l∞. If the coefficient c2 does not vanish, then a simple zero of d2

dh2 Iαβγ (h)

bifurcates from h = ∞ as the parameter s crosses s = 0.

It follows that a multiple zero of d2

dh2 Iαβγ (h) bifurcates from ∞ only for
those α, β, γ, a, b, with c∞1 = c∞2 = 0.

Proposition 2. For every fixed generic a, b there is an unique [α : β : γ ] ∈
RP

2 such that c∞1 = c∞2 = 0 in (22).

Proof. Consider the Abelian integrals

Iαβγ (h) =
∫

δc
1(h)

α ωX+β ωY+γ ωM , Jαβγ (h) =
∫

l∗δc
1(h)

α ωX+β ωY+γ ωM ,

where l∗ is the operator of the classical monodromy (21). As < δ1, l∗δ1 >

�= 0, then δ1(h) and l∗δ1(h) form a basis of H1(Γ̄h,Z) for regular values
of h. It follows from Lemma 5 that for any fixed [α̃ : β̃ : γ̃ ] holds

W̃(h) = det

(
d2

dh2 Iαβγ (h) d2

dh2 Iα̃,β̃,γ̃ (h)

d2

dh2 Jαβγ (h) d2

dh2 Jα̃,β̃,γ̃ (h)

)
= P1(h)

δ(h)
(23)

where P1(h) is a polynomial in h of degree at most one, and δ(h) is the
discriminant of H(x, y) (a real polynomial in h of degree 4). If the claim of
Proposition 2 does not hold true, then there exist [α : β : γ ], [α̃ : β̃ : γ̃ ] and
such that in a neighborhood of h = ∞ holds

d2

d h2
Iαβγ (h) = c∞4 h−7/3 + ...,

d2

d h2
Iα̃β̃γ̃ (h) = c̃∞5 h−8/3 + ... .

It follows that

W̃(h) = det

(
c∞4 h−7/3 + ... c̃∞5 h−8/3 + ...

c∞4 h−7/3e−2πi/3 + ... c̃∞5 h−8/3e2πi/3 + ...

)
= O(h−15/3)

which is only possible if P1(h) ≡ 0 in (23). As the integrals Iαβγ (h) and
Iα̃β̃γ̃ (h) may be supposed linearly independent (Lemma 6) then the De Rham
theorem implies that the one-forms ω = α∇2ωX + β∇2ωY + γ ∇2ωM and
ω̃ = α̃∇2ωX + β̃∇2ωY + γ̃ ∇2ωM restricted to Γh are cohomological for
every regular value of h, and therefore there is a relation

a(h)ω+ b(h)ω̃ = 0 ∈ H1
DR(Γh,Z), a(h)/b(h) �≡ 0 .

According to Corollary 2 the functions a(h) and b(h) are linear in h. Re-
placing eventually ω and ω̃ by their suitable linear combination we can
always suppose that

h ω+ ω̃ = 0 ∈ H1
DR(Γh,Z). (24)
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where
d2

dh2
Iα̃β̃γ̃ (h) = h−4/3

(
c̃∞4 h−3/3 + ...

)
,

and hence

d2

dh2
Iαβγ (h) = h−4/3(c∞7 h−6/3 + ...

)
. (25)

By Lemma 4 one can always find ᾱ, β̄, γ̄ ∈ R such that

W(h) = det

(
d2

dh2 Iαβγ (h) d2

dh2 Iᾱ,β̄,γ̄ (h)

d2

dh2 Jαβγ (h) d2

dh2 Jᾱ,β̄,γ̄ (h)

)
= P1(h)

δ(h)
�≡ 0 (26)

On the other hand (25) implies

W(h) = det

(
h−4/3

(
c∞7 h−6/3 + ...

)
c̄1h−4/3 + ...

h−4/3
(
c∞7 h−6/3 + ...

)
c̄1h−4/3e−2πi/3 + ...

)
= O(h−14/3)

which contradicts to P1(h) �≡ 0 in (26). ��

3.2. Bifurcations of zeros from the critical values h2, h3, h4

Proposition 3. In a suitable neighborhood of (hi, a, b) ∈ C3 holds

Iαβγ (h) = − log(h − hi)

2π
√−1

f(h, a, b, α, β, γ) + g(h, a, b, α, β, γ)

where f and g are linear in α, β, γ , holomorphic in h, a, b, and

f(h, a, b, α, β, γ) =
∫

δi (h)

α ωX + β ωY + γ ωM .

Proof. In a sufficiently small neighborhood of (hi, a, b) the Abelian integral

f(h, a, b, α, β, γ) =
∫

δi (h)

α ωX + β ωY + γ ωM

is a bounded, single valued, and hence holomorphic function in h, a, b. We
note also that f(hi, a, b, α, β, γ) = 0. Consider now the function

g(h, a, b, α, β, γ) = Iαβγ (h)+ log(h − hi)

2π
√−1

f(h, a, b, α, β, γ) .

In a small neighborhood of (hi, a, b) the cycle δ1(h) can be represented by
a loop on the affine algebraic curve Γh which is bounded, and therefore
Iαβγ (h) remains bounded too. The function

log(h − hi)

2π
√−1

f(h, a, b, α, β, γ)
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is also bounded, because f(hi, a, b, α, β, γ) = 0. Finally the Picard-Lef-
schetz formula shows that g(h, a, b, α, β, γ) is single valued and hence
holomorphic. ��
Corollary 5.

li =
{
([α : β : γ ], a, b) ∈ RP2 × R2 : α xi + β yi + γ = 0

}
where (xi, yi) is the critical point of H(x, y) associated to the critical
value hi, i = 2, 3, 4.

Proof. From Proposition 3 we have that in a neighborhood of h = 1/6
holds

d2

dh2
Iαβγ (h) = ± 1

2π
√−1

(
h − 1

6

) ∫
δs

2(h)

α∇ωX + β∇ωY + γ∇ωM (27)

± log
(
h − 1

6

)
2π

√−1

∫
δs

2(h)

α∇2ωX + β∇2ωY + γ ∇2ωM + h.f.

where δs
2(h) is the continuous family of cycles vanishing at the saddle

point corresponding to the critical value h = 1/6, and “h.f.” means a suit-
able holomorphic function in a neighborhood of h = 1/6. Therefore
([α : β : γ ], a, b) ∈ li if and only if

∫
δi (hi )

α∇ωX + β∇ωY + γ∇ωM = 0

which, on its hand is equivalent to

α xi + β yi + γ = 0 .

Indeed, it is easy to check that

lim
h→hi

∫
δ(h)

dx ∧ dy

d H
�= 0

where dx∧dy
d H is the Gel’fand-Leray form of dx ∧ dy. As

α d ωX + β d ωY + γ d ωM

d H
= (α xi + β yi + γ)

dx ∧ dy

d H

then the Corollary is proved.
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3.3. Bifurcations of zeros from the regular points on the interval (1/6,∞)

We say that a point on the the interval (1/6,∞) is regular, if h �= hi . In
a neighborhood of such a point the Abelian integral d2

dh2 Iαβγ (h) is a holo-
morphic function in h, a, b, α, β, γ . Let

I±αβγ (h) =
∫

δ±1 (h)

αωX + βωY + γωM, h ∈
(

1

6
, h3

)
∪ (h3, h4) ∪ (h4,∞)

be the analytic continuation of the Abelian integral Iαβγ (h), h ∈ D =
CP

1\[ 1
6 ,∞] along an arc such that Im(h) > 0 (Im(h) < 0) respectively.

For h ∈ (1/6,∞) we have δ+1 (h) = δ−1 (h). It follows that if a zero bifurcates
from a regular value h0 ∈ (1/6,∞), then in fact a pair of complex conjugate
zeros bifurcate from h0 and in particular∫

δ+1 (h0)

α∇2ωX+β∇2ωY+γ∇2ωM =
∫

δ−1 (h0)

α∇2ωX+β∇2ωY+γ∇2ωM = 0 .

On the other hand it is easy to check, by making use of the Picard-Lefschetz
formula, that in each particular case on Fig. 3 the cycles δ+1 (h), δ−1 (h) form
a base of H1(Γh,Z), and hence the one-form

α∇2ωX + β∇2ωY + γ ∇2ωM

restricted to the curve Γh is cohomological to zero. The coefficients α, β,
γ of this one-form can be explicitly computed. Indeed, it follows from
Corollary 2 that for every regular value h of H(x, y) there exists an unique
point [α(h) : β(h) : γ(h)] ∈ RP2 such that the cohomology class of the
differential form

α(h)∇2ωX + β(h)∇2ωY + γ(h)∇2ωM

is equal to zero and hence

Corollary 6.

∆ = {([α : β : γ ], a, b) ∈ RP2 × { ∪3
i=1 Ω0

i

} :
α = α(h), β = β(h), γ = γ(h), h ∈ [1/6,∞]}

where α(h), β(h), γ(h) are real linear functions in h.

Finally we shall prove that for every fixed (a, b) ∈ ∪3
i=1Ω

0
i the straight

lines lab
i , lab∞ are distinct and do not contain ∆ab. First we shall check

that ∆ab is not contained in any of these lines. The coordinates of the point
[α(0) : β(0) : γ(0)] ∈ ∆ab are [b : 1−a : 0] (see (33) and [b : 1−a : 0] ∈ lab

i
is equivalent to

b xi + (1 − a) yi = 0 . (28)
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One easily shows that

y
(−b2 + 1 − 3 a2 + 2 a3)

belongs to the ideal generated by Hx , Hy and b x + (1 − a) y. Therefore
(28) is only possible if y = 0 or −b2 + 1 − 3 a2 + 2 a3 = 0. The second
identity is impossible because (a, b) ∈ ∪3

i=1Ω
0
i . The line y = 0 contains the

critical points (0, 0) and (1, 0) which combined with (28) gives b = 0 in
contradiction with (a, b) ∈ ∪3

i=1Ω
0
i .

4. Upper bounds for the number of the zeros of the Abelian integral
d2

dh2 Iαβγ (h) in a complex domain

Theorem 4.1. The maximum number of the zeros of the Abelian integral
d2

dh2 Iαβγ (h) in the complex domain D = C\[1/6,∞) is equal to two if X H

has one saddle and one center, and four otherwise.

Proof. Suppose first that X H has one saddle and one center. This means that
H(x, y) has two Morse real critical points at (0, 0) and (1, 0), as well two
complex conjugate Morse critical points. As ∇ωM is a holomorphic one-
form on the elliptic curve Γ̄h , then

∫
δ1(h)

∇ωM does not vanish, provided
that h �= hi , and

∫
δ1(0)

∇ωM = 2π �= 0. We shall count the number of the
zeros of the analytic function

F(h) =
∫
δc

1(h)
α∇2ωX + β∇2ωY + γ∇2ωM∫

δ1(h)
∇ωM

in the complex domain D , by making use of the argument principle. Let R
be a big enough constant and r a small enough constant. Denote by D̃ the
set obtained by removing the small disc {|h−hs

2| < r} from D ∩{|h| < R}.
To estimate the number of the zeros of F(h) in D̃ (and hence of d2

dh2 Iαβγ (h)

in D) we shall evaluate the increment ∆∂D̃ Arg(F(h)) of the argument of
the function F(h) along the boundary of D̃ , traversed in a positive direction.
Then, according to the argument principle, we have that the number of the
zeros of F(h) in D̃ equals to

∆∂D̃ Arg(F(h))

2 π
.

Let
ϕ → h(ϕ) : S1 → ∂D̃, S1 = R/2 π Z

be a parameterization of the oriented boundary of D̃ , which is analytic,
except at h = r and h = R. If R is big enough and r is small enough, then
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F(h) �= 0 along ∂D̃ and hence the increase of the argument ∆∂D̃ Arg(F(h))
divided by 2 π equals to the degree of the map of oriented circles

S1 → S1 : ϕ #→ z(ϕ) = F(h(ϕ))

|F(h(ϕ))| ,

where the orientation of R/2 π Z is induced by the orientation of ∂D̃, and
the orientation of {z ∈ C : |z| = 1} is induced by the orientation of C.

Recall that if z0 is a regular value of this map, then

deg(S1 → S1) =
∑

ϕ∈z−1(z0)

degϕ(S1 → S1)

where degϕ(S1 → S1) equals to +1 if z′(ϕ) ∈ Tz(ϕ)S1 is positively oriented,
and −1 otherwise. In this case we shall also say that the immersed curve
F(∂D̃) crosses the half-line {z : z = z0ρ, ρ > 0} at F(h(ϕ)) in a positive
(respectively negative) direction. This leads to the following equivalent
formulation of the argument principle.

The number of the zeros of F(h) in D̃ equals to the number of
the intersections of the immersed curve F(∂D̃) with the half-line
{Im(z) = 0, Re(z) > 0} counted with their signs. The sign is
positive, if F(∂D̃) crosses {Im(z) = 0, Re(z) > 0} in a positive
direction, and negative otherwise.

Consider the auxiliary function F̃(h) = (h − h2) F(h). We shall study
first the intersections of F̃(Sr(h2)), Sr(h2) = {h : |h−hs

2| = r, h �= h2+ r}
with {z : Im(z) = 0}. In a neighborhood of h = h2 we use (27) to obtain

F̃(h) = 1

log(h − h2)

∫
δ2(h2)

α∇ωX + β∇ωY + γ∇ωM∫
δ2(h2)

∇ωM

+ O

(
1

(log(h − h2))
2

)
. (29)

The increase of the argument of F̃(h) along Sr(h2) is close to zero and
hence F̃(Sr(h2)) crosses {z : Im(z) = 0} exactly once (at h = h2 − r).
Moreover F̃(Sr(h2)) crosses {z : Im(z) = 0} in the same direction as
the curve G(Sr(h2)), G(h) = 1/ log(h2 − h) does. Finally we note that
when h traverses Sr(h2) in a negative direction (which is induced by the
positive orientation of ∂D̃), the curve G(Sr(h2)) crosses {z : Im(z) = 0}
exactly once in a negative direction. Indeed, suffice it to apply the argument
principle to the function G(h) = 1/ log(h2 − h) in the complex domain D .
As G(h) has a simple pole at h = h2 − 1 ∈ D and has no zeros, and
ImG(h) �= 0 for h ∈ [r, R], then the result follows.

For h∈[r, R] denote by F̃+(h) (respectively F̃−(h) the value of F̃(h) ob-
tained by analytic continuation along an arc contained in D∩{z : Im(z)>0}
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(D ∩ {z : Im(z) < 0} respectively). (The same notation will be used for
the locally constant sections δ(h) of the homology bundle.) The number of
intersections of F̃+([r, R]) with {z : Im(z) = 0} equals to the number of
the zeros of the imaginary part of F̃(h) on the interval [r, R]. Let us denote

Wγ1γ2(ω1, ω2) = det

(∫
γ1(h)

ω1
∫
γ1(h)

ω2ωM∫
γ2(h)

ω1
∫
γ2(h)

ω2ωM

)
≡ P1(h)∏4

i=1(h − hi)
.

For h ∈ [r, R] we have

ImF̃(h) = 1

2
(F̃+(h)− F̃−(h))

= 1

2

(∫
δ+1 (h)

α∇2ωX + β∇2ωY + γ∇2ωM∫
δ+1 (h)

∇ωM

−
∫
δ−1 (h)

α∇2ωX + β∇2ωY + γ∇2ωM∫
δ−1 (h)

∇ωM

)

= Wδ+1 δ−1 (α∇2ωX + β∇2ωY + γ∇2ωM,∇ωM)

2
∫
δ+1 (h)

∇ωM
∫
δ−1 (h)

∇ωM
.

As Wδ+1 δ−1 (α∇2ωX + β∇2ωY + γ∇2ωM,∇ωM) is a polynomial of degree at
most two in h divided by the discriminant of H(x, y; a, b) − h (Lemma 5),
then the imaginary part of F̃(h) vanishes at most twice along the interval
[r, R].

Consider finally F̃(h) restricted to

SR(∞) = {h ∈ C : |h| = R, h �= R} .

We have

F̃(h) = −α cX + β cY + γ cM

3 cM
+ O(h− 1

3 ) .

Therefore the increase of the argument of F̃(h) along SR(∞) is close to zero.
It follows that the immersed curve F̃(SR(∞)) crosses {z ∈ C : Im(z) = 0}
exactly once (at h = −R).

Summing up the above data we conclude that F̃(∂D̃) crosses the line
{z ∈ C : Im(z) = 0} at most six times, and at least one of the crossings is
in a negative direction (at h = h2 − r). The argument principle implies that
F̃(h) has at most two zeros in D̃ , and hence F(h) has at most two zeros
in D .

Suppose now that H(x, y) has four real critical points. The proof is as
before, except that the critical values h3 and h4 belong now to the interval
(1/6,∞). In a neighborhood of hi , i = 3, 4, we have a formula similar
to (29) (with h2, δ2 replaced by hi , δi) which shows that the increase of
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the argument of F̃(h) along the semi-circles {h = r eiϕ : 0 ≤ ϕ ≤ π},
{h = r eiϕ : π ≤ ϕ ≤ 2 π} is close to zero. Therefore the immersed curve
F̃(∂D̃) crosses the line {z ∈ C : Im(z) = 0} at most ten times, and at
least one of the crossings is in a negative direction. The argument principle
implies that F̃(h) has at most four zeros in D̃ , and hence F(h) has at most
four zeros in D . ��

The bound for the number of the zeros of the Abelian integral d2

dh2 Iαβγ (h),
found in Theorem 4.1, will be enough for the proof of the main result of the
present paper, except in the case when the vector field X H has two centers
and two saddles. Let us denote by U the open connected component of the
set {

RP
2 × {

Ω0
2

}}\B

which contains the set{
([α(0) : β(0) : γ(0)], a, b) : (a, b) ∈ Ω0

2

}
.

Theorem 4.2. If ([α : β : γ ], a, b) ∈ U then the associated Abelian
integral d2

dh2 Iαβγ (h) has exactly one zero in the complex domain D =
C\[1/6,∞).

Proof. The sections Uab of U are shown on Fig. 4. As Uab is connected,
then U is connected too and Theorem 3.1 shows that it is enough to find
the number of the zeros of a fixed Abelian integral d2

dh2 Iαβγ (h) for a fixed
Hamiltonian H(x, y; a, b), where ([α : β : γ ], a, b) ∈ U. Namely let us put
α = α(0), β = β(0), γ = γ(0), where the functions α(h), β(h), γ(h) were
defined in Corollary 2 and Corollary 6. Recall that the differential one-form

ω(h) = α(h)∇2ωX + β(h)∇2ωY + γ(h)∇2ωM

is homologous to zero on the level set Γh , i.e.
∫
δi (h)

ω(h) ≡ 0, i = 1, 2, 3, 4
(Corollary 2). We have ω(h) = ω(0)+ h ω(∞), where

ω(∞) = α′(h)∇2ωX + β′(h)∇2ωY + γ ′(h)∇2ωM

(the functions α(h), β(h), γ(h) are linear in h) and hence ω(0) is homologous
to −h ω(∞). Therefore the leading term of

∫
δi (h)

ω(0) in a neighborhood of
h = 0 vanishes which gives∫

δ1(0)

α(0)∇2ωX + β(0)∇2ωY + γ(0)∇2ωM = 0 (30)

∫
δ1(0)

α(0)∇ ωX + β(0)∇ ωY + γ(0)∇ ωM = 0 . (31)

The geometric interpretation of the above identities is that the line

tc = {(x, y) ∈ R2 : α(0) x + β(0) y + γ(0) = 0} (32)
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is tangent to the centroid curve Lab ⊂ R2 at the point (ξ(0), η(0)). The
equation of this line is computed in [19, Corollary 3.4] and we have

[α(0) : β(0) : γ(0)] = [b : 1 − a : 0] . (33)

Suppose in addition that a = 0. The vector field X H has in this case a central
symmetry and the properties of the centroid curve Lab were studied in details
in [22].

The zeros of the Abelian integral d2

dh2 Ib10(h) will be computed in two
steps. First we shall show that the imaginary part of the function

F(h) =
d2

dh2 Ib10(h)

d
dh I001(h)

, 0 < b < 1

does not vanish on (1/6, h3)∪(h3, h4)∪(h4,∞) . This would imply, as in the
proof of Theorem 4.1, that d2

dh2 Ib10(h) has at most two zeros in the complex
domain D . At the second step we shall check that the Abelian integral
d2

dh2 Ib10(h) has an odd number of zeros on (−∞, 1/6) which combined to
d2

dh2 Ib10(0) = 0 implies Theorem 4.2.
The number of the zeros of the imaginary part of F(h) on (1/6,∞) is

the same as the number of the zeros of the Wronskian

Wδ1δ2(ω(0),∇ ωM) .

We are going to compute explicitly the above function. From [22, Sect. 6]
we get the following identities (replacing λ by b)

−b3 (6 h − 1) X ′′ + (1 − 6 h b2) Y ′′ + (b − b3) M′ = 0 (34)

b X ′′ − Y ′′ − 6 b h M′′ − 2 b M′ = 0 (35)

where the Abelian integrals X(h), Y(h), M(h) were defined in Sect. 2. The
identity (34) shows that the vector

(−b3 (6 h − 1), 1 − 6 h b2, b − b3)

is co-linear to the vector(
Wδ1δ2

(∇2ωY ,∇ ωM
)
,−Wδ1δ2

(∇2ωX,∇ ωM
)
, Wδ1δ2

(∇2ωX,∇2ωY
))

and hence
Wδ1δ2

(∇2ωY ,∇ ωM
) = −b3 (6 h − 1) k1

−Wδ1δ2

(∇2ωX,∇ ωM

) = (1 − 6 h b2) k1

Wδ1δ2

(∇2ωX,∇2ωY
) = (b − b3) k1 .
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In the same way we use (35) to obtain

Wδ1δ2

(
b∇2ωX −∇2ωY ,∇ ωM

) = −6 b h k2

Wδ1δ2

(
b∇2ωX − ∇2ωY ,∇2ωM

) = −2 b k2

Wδ1δ2

(∇2ωM,∇ ωM
) = −k2 .

From the above formulae we get twodifferent expressions for Wδ1 δ2(b∇2ωX−
∇2ωY ,∇ ωM) involving k1 and k2 respectively which gives

−6 b h k2 = b (1 − 6 h b2) k1 + b3 (6 h − 1) k1 .

It is easy to see that k1 and k2 are linear functions in h, divided by the
discriminant

∏4
i=1(h − hi), and hence, up to multiplication by a non-zero

constant in h we have

k1 = 6 h∏4
i=1(h − hi)

, k2 = −12 b2 h + b2 + 1∏4
i=1(h − hi)

.

We obtain finally

Wδ1δ2(ω(0),∇ ωM) = Wδ1δ2

(
b∇2ωX + ∇2ωY ,∇ ωM

)
= (b − b3)

6 h∏4
i=1(h − hi)

which shows that the imaginary part of F(h) does not vanish on

(1/6, h3) ∪ (h3, h4) ∪ (h4,∞) .

Repeating the proof of Theorem 4.1 we get that the Abelian integral

d2

dh2
Ib10(h) =

∫ ∫
{H≤h}

(b x + y) dx dy

has at most two zeros in the complex domain D . As the real analytic function
d2

dh2 Ib10(h) already vanishes at h = 0, then if it had a second zero in D , this
zero would belong to the interval (−∞, 1/6). Proposition 1 implies that in
a neighborhood of h = ∞ holds

X ′′(h) = −1

6
cM h−4/3 + o(h−4/3)

Y ′′(h) = 1

6 b
cM h−4/3 + o(h−4/3)

M′(h) = −3 cM h−1/3 + o(h−1/3)
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and hence

F(h) =
d2

dh2 Ib10(h)

d
dh I001(h)

= b X ′′(h)+ Y ′′(h)

M′(h)
= 1 − b2

6 b h
+ o

(
1

h

)
.

As 0 < b < 1 then if |h| is sufficiently big and h is negative, the function
F(h) is also negative. On the other hand as in the proof of Corollary 5 we
have

F(h) = α(0)x2 + β(0)y2 + γ(0)

(h − 1/6) ln(1/6 − h)
+ o

(
1

(h − 1/6) ln(1/6 − h)

)

= b

(h − 1/6) ln(1/6 − h)
+ o

(
1

(h − 1/6) ln(1/6 − h)

)
which shows that if |h − 1/6| is sufficiently small, but h − 1/6 is negative,
the function F(h) is positive. Thus the number of the zeros of the function
F(h) (and hence of d2

dh2 Ib10(h)) on the interval (−∞, 1/6) is odd, which
completes the proof of Theorem 4.2. ��

5. The geometry of the centroid curve

Denote by {H ≤ h} the interior of the oval δ1(h) of the curve Γh , where
h ∈ [0, 1/6]. For h = 0 it reduces to a point and for h = 1/6 it is a closed
loop containing the saddle point (1, 0) of the vector field X H . Recall that
the centroid point (ξ(h), η(h)) of {H ≤ h} has coordinates

(ξ(h), η(h)) =
(∫∫

{H≤h} x dx ∧ dy∫∫
{H≤h} dx ∧ dy

,

∫∫
{H≤h} y dx ∧ dy∫∫
{H≤h} dx ∧ dy

)
, h ∈

[
0,

1

6

]

and consider the centroid curve

Lab = {(ξ(h), η(h)) : h ∈ [0, 1/6]}
associated to the polynomial

H(x, y) = H(x, y; a, b) = 1

2
(x2 + y2) − 1

3
x3 + axy2 + 1

3
by3 .

The importance of the curve Lab lies in the fact that it is an affine
invariant of H(x, y), containing a complete information on the number and
the multiplicity of the zeros of the Abelian integral

Iαβγ (h) =
∫ ∫

{H≤h}
(α x + β y + γ) dx ∧ dy
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on the interval (0, 1/6]. Indeed, Iαβγ (h) vanishes at h ∈ [0, 1
6 ] if and only

if the affine line

{(x, y) ∈ R2 : α x + β y + γ = 0} (36)

intersects Lab at the point (ξ(h), η(h)). Note also that we have always
Iαβγ (0) = 0, and d

d h Iαβγ (0) = 0 if and only if the line (36) intersects Lab at
the point

(ξ(0), η(0)) = lim
h→0+

(ξ(h), η(h)).

In the sequel it will be useful to consider the curve L∗
ab ⊂ (RP2)∗ dual to the

centroid curve Lab ⊂ R2. L∗
ab is the set of tangent lines to Lab. Let [α : β : γ ]

be homogeneous coordinates in (RP2)∗. Then [α : β : γ ] ∈ L∗
ab if and only

if the line (36) is tangent to Lab. It is also clear that the sections Bab of
the bifurcation set B live in (RP2)∗ too. For example the projective line
lab
i ⊂ (RP2)∗ is just the set of affine lines in R2 containing the critical point
(xi, yi). The study of the position of the dual centroid curve L∗

ab with respect
to the bifurcation set Bab in (RP2)∗ will be one of the main ingredients in
the proof of the main result of the present paper.

5.1. The regularity of the centroid curve

Theorem 5.1. The curve Lab is smooth.

On its hand the above result will follow from the following stronger

Theorem 5.2. There exist real constants r, s such that

r ξ ′(h)+ s η′(h) �= 0, ∀h ∈ [0, 1/6) . (37)

Corollary 7 (see Proposition 7.1. in [22]). When running the centroid
curve Lab, the tangential vector rotates within an angle less than π.

Proof of Theorem 5.1 assuming Theorem 5.2. As ξ ′(h) and η′(h) can
not vanish simultaneously, then L is locally smooth, except eventually
at (ξ(1/6), η(1/6)). The smoothness of L at this point is equivalent to
the claim that the direction of the tangent vector (ξ ′(h), η′(h)) tends to
a given direction as h tends to 1/6. In fact it tends to the direction of
the line through the centroid point (ξ(1/6), η(1/6)) and the saddle point
(1, 0) ([19, Theorem 3.1.(ii), Fig. 4]). It remains to show that Lab has no
points of self-intersection. Indeed, if (ξ(h ′), η(h ′)) = (ξ(h ′′), η(h ′′)) for
some h ′, h ′′ ∈ [0, 1/6], then the function r ξ(h) + s η(h) takes the same
values at h ′, h ′′, and hence its derivative vanishes for some h̃ ∈ (h ′, h ′′) in
contradiction with Corollary 7. ��
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Proof of Theorem 5.2. Following [19, Sect. 4], we note that it is enough
to find constants r, s ∈ R, such that for every k ∈ R, the number of the
zeros of r X ′(h) + s Y ′(h) − k M′(h) in the complex domain D is less or
equal to one. For then the function r X(h) + s Y(h) − k M(h) will have at
most two zeros on [0, 1/6) one of them being h = 0, which shows that
(r X(h) + s Y(h))/M(h) − k has at most one simple zero on [0, 1/6) (we
used that X(0) = Y(0) = M(0) = 0, but M′(0) �= 0). This would imply
that (r X(h) + s Y(h))/M(h) is a strictly monotone function on [0, 1/6),
and hence (37).

From now on we shall suppose that the vector field X H has two centers
and two saddle points. The case when X H has one center and one saddle
is simpler (because the interval (1/6,∞) does not contain critical values
of H(x, y)) and will not be considered in detail. The case when X H has
one center and three saddles is studied in [19]. The differential one-forms
∇ωX and ∇ωY on Γ̄h are of third kind and have three simple poles at
∞1,∞2,∞3. Moreover their residues are constant in h. Let γi , be cycles
on Γh represented by small loops around ∞i , i = 1, 2, 3. The cycles γi are
homologous to zero in H1(Γ̄h,Z) and

2 π
√−1 Res∞i ω =

∫
γi

ω

for every meromorphic one-form ω on Γ̄h . For h ∈ R the curve Γh has an
obvious real structure. The corresponding anti-holomorphic involution (the
complex conjugation) induces involutions of H1(Γh,Z) and H1

DR(Γh,C).
Without loss of generality we may suppose that

∞̄1 = ∞2, ∞̄2 = ∞1, ∞̄3 = ∞3

and hence
γ̄1 = γ2, γ̄2 = γ1, γ̄3 = −γ3 .

It follows that for every real meromorphic one-form on Γ̄h , h ∈ R holds

Res∞3ω ∈ R, Res∞1ω = Res∞2ω .

The residues of the real one-forms ∇ωX and ∇ωY are however constant in h
and therefore the above holds even for h �∈ R. We conclude that there exist
real constants r and s (unique up to multiplication by a non-zero constant)
such that

Res∞3(r ∇ωX + s∇ωY ) = 0 . (38)

We note for a further use that also

Res∞1(r ∇ωX + s ∇ωY) + Res∞2(r ∇ωX + s∇ωY ) = 0

and hence √−1 Res∞1(r ∇ωX + s ∇ωY) ∈ R . (39)
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Denote
F(h) = (rX ′(h)+ sY ′(h)− kM′(h))/M′(h) .

We shall use the argument principle to show that the holomorphic function
F(h) has at most one zero in the complex domain D . We shall copy the
proof of Theorem 4.1, as well the notations introduced there, except in the
computation of Im(F(h)) along (1/6,∞). In a neighborhood of h = 1/6
we have

F(h) = (r x2 + s y2)− k + O

(
1

log
(
h − 1

6

)
)

where (x2, y2) = (1, 0) and hence the increase of the argument of F(h) along
the circle {h : |h − 1/6| = r, h �= 1/6 + r} is close to zero. In particular
the imaginary part of F(h) restricted to this circle vanishes exactly once (at
h = 1/6 − r).

In a neighborhood of h = ∞ we have

F(h) = h
1
3
(
c + O(h− 1

3 )
)

where c is a suitable real constant (possibly equal to zero). Therefore the
increase of the argument of F(h) along the circle {h ∈ C : |h| = R, h �= R}
is close to 2 π/3 (or less if c = 0).

Consider now the imaginary part of F along the intervals [h2+r, h3−r],
[h3 + r, h4 − r], [h4 + r,∞]. We have

Im(F(h)) = Wδ+1 δ−1 (r ∇ωX + s∇ωY ,∇ωM)

2
∫

δ+1 (h)
∇ωM

∫
δ−1 (h)

∇ωM
.

The denominator does not vanish, and to compute the numerator above we
shall use the reciprocity law for Abelian integrals of third and first kind.
Namely, let δ′, δ′′ be two smooth loops on Γ̄h which are transversal and
represent cycles with intersection index one. Let Π = Γ̄h\{δ′ ∪ δ′′} be the
period parallelogram of Γ̄h . Let P, P0 ∈ Π be fixed points. Integrating the
meromorphic one-form

(r ∇ωX + s∇ωY )

∫ P

P0

∇ωM

along the border of Π we obtain the following reciprocity law for differential
forms of first and third kind

(

∫
δ′

r ∇ωX + s∇ωY )

∫
δ′′
∇ωM − (

∫
δ′′

r ∇ωX + s∇ωY )

∫
δ′
∇ωM

= 2 π i
∑
P∈Π

ResP(r ∇ωX + s∇ωY )

∫ P

P0

∇ωM
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(see [17] for details). If we put P0 = ∞1, and taking into account that the
intersection index of δ+1 and δ−1 is non-zero, the above formula becomes

c Wδ+1 δ−1 (r ∇ωX + s∇ωY ,∇ωM)

= 2 π i Res∞2(r ∇ωX + s∇ωY )

∫ ∞2

∞1

∇ωM (40)

where c is a non-zero integer. The residue Res∞2(r ∇ωX + s ∇ωY) can not
vanish. Indeed, otherwise (38) would imply that r ∇ωX +s∇ωY is holomor-
phic on Γ̄h . But ∇ωM is holomorphic too in contradiction with Lemma 1.
Further z = ∫ P

P0
∇ωM is an uniformizing parameter on the compact elliptic

curve Γ̄h , and hence ∫ ∞2

∞1

∇ωM �= 0

(because ∞1 �= ∞2 on Γ̄h).
Consider finally the behavior of F(h) in a neighborhood of hi ∈(1/6,∞),

i = 3, 4. We have

F(h) = (r xi + s yi)− k + O

(
1

log
(
h − 1

6

)
)

where (xi, yi) is the critical point associated to hi , and hence the increase of
the argument of F(h) along the circle {h : |h − hi| = r} is close to zero. We
shall show that, moreover, the imaginary part of F+(h) takes the same sign
at hi − r and at hi + r. This would imply that the embedded semi-circle

F
({

h = hi + r eiϕ : 0 ≤ ϕ ≤ π
})

has a zero intersection index with the line {Im(h) = 0} and hence (summing
up the preceding information) we get that F(h) has at most one zero in the
complex domain D̃ (and hence in D).

Consider first the case h = h3. The sign of Im(F(h)) at h3 ± r is the
same as the sign of

Wδ+1 δ−1 (r ∇ωX + s ∇ωY ,∇ωM)

where
δ̄+1 (h) = δ−1 (h), h = h3 ± r .

On the other hand, using the Picard-Lefschetz formula and the Dynkin
diagram shown on Fig. 3, we obtain

δ−1 (h3 − r) = δ+1 (h3 − r)− < δ+1 , δ2 > δ2(h3 − r)

and

δ−1 (h3 + r) = δ+1 (h3 + r)− < δ+1 , δ2 > δ2(h3 − r)− < δ+1 , δ3 > δ3(h3 + r) .



The infinitesimal 16th Hilbert problem in the quadratic case 483

The cycle δ2 − δ3 has zero intersection index with δi , ∀i and hence it is
homologous to zero on Γ̄h . It is also an “imaginary” cycle on [h2+r, h4−r]
and hence for a suitable non-zero integer c we have δ2 − δ3 = c γ3 which
implies ∫

δ2(h)

r ∇ωX + s ∇ωY ≡
∫

δ3(h)

r ∇ωX + s∇ωY .

Thus the sign of Im(F(h)) at h3 − r is the same as the sign of

−Wδ+1 δ2
(r ∇ωX + s ∇ωY ,∇ωM)

and the sign of Im(F(h)) at h3 + r is the same as the sign of

−2 Wδ+1 δ2
(r ∇ωX + s∇ωY ,∇ωM) .

The Picard-Lefschetz formula shows that the last Wronskian is a holomor-
phic function in a neighborhood of h3. It remains to check that it does not
vanish at h3. For this purpose we take the limit h → h3 in (40). We already
noted that ∫ ∞2

∞1

∇ωM �= 0

for regular values of h. This hold true also for h = h3. Indeed, the path
of integration connecting ∞1 to ∞2 on Γ̄h represents a “relative” cycle
which has a zero intersection index with the cycle δ3 (because the Wron-
skian under consideration is single-valued in a neighborhood of h3). The
desingularization

Γ̄h3 → Γh3

of the singular irreducible affine curve Γh3 is the Riemann sphere CP1.
Denote by (x±3 , y±3 ) ∈ Γ̄h3 = CP1 the two pre-images of (x3, y3) ∈ Γh3 .
If we suppose further that z(x+3 , y+3 ) = 0 and z(x−3 , y−3 ) = ∞, where z is
the uniformizing parameter on CP1, then the differential one-form ∇ωM is
a multiple of dz/z. It follows that

∫∞2
∞1

∇ωM is a multiple of

ln

(
z(∞2)

z(∞1)

)

and hence it is not zero (as ∞1 �= ∞2 on Γ̄h3).
The sign of Im(F+(h)) at h = h4 ± r can be studied in a similar way.

Namely, this sign is the same as the sign of

Wδ+1 δ−1 (r ∇ωX + s ∇ωY ,∇ωM)

where
δ̄+1 (h) = δ−1 (h), h = h4 ± r .
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On the other hand, using the Picard-Lefschetz formula and the Dynkin
diagram shown on Fig. 3, we obtain

δ−1 (h4 − r) = δ+1 (h4 − r)− <δ+1 , δ2 > δ+2 (h4 − r)− <δ+1 , δ3 > δ+3 (h4 − r)

and

δ−1 (h4 + r) = δ+1 (h4 + r)− <δ+1 , δ2 > δ+2 (h4 + r)− <δ+1 , δ3 > δ+3 (h4 + r)

+ <δ+1 , δ4 > δ4(h4 + r) .

The Wronskian

Wδ+1 δ4
(r ∇ωX + s∇ωY ,∇ωM)

is a holomorphic function in a neighborhood of h = h4. On the other hand

Wδ1δ2(r ∇ωX + s ∇ωY ,∇ωM) = Wδ1δ3(r ∇ωX + s∇ωY ,∇ωM) .

Finally (40) and the Picard-Lefschetz formula show that in a neighborhood
of h = h4 holds

2 π i c Res∞2 (r ∇ωX + s∇ωY ) ln(h − h4)

∫
δ4(h4)

∇ωM + O(1)

= Wδ1δ2(r ∇ωX + s∇ωY ,∇ωM) (41)

where c is a non-zero integer. Indeed it is easy to see that (contrary to the
preceding case) the Wronskian (41) is not single valued in a neighborhood
of h = h4. In particular the path of integration connecting ∞1 to ∞2 on Γ̄h
represents a “relative” cycle which has a non-zero intersection index with
the cycle δ4. The cycle δ4(h) is real for h ∈ R in a neighborhood of h4, and
hence ∫

δ4(h4)

∇ωM

is a real non-zero constant. The residue

Res∞2(r ∇ωX + s ∇ωY )

is a non-zero imaginary constant (Lemma 3 and (39)) which shows that
the real part of the Wronskian (41) is c ln(|h − h4|) for suitable non-zero
real constant c. This implies that the sign of Im(F+(h)) at h = h4 + r and
h = h4−r is the same (provided that r is sufficiently small). This completes
the proof of Theorem 5.2. ��
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5.2. The convexity of the centroid curve

Theorem 5.3. Each line intersects at most twice (counting the multiplicity)
the centroid curve Lab.

For (a, b) ∈ Ω0
1 this is the main result of [19]. We consider below the

remaining cases (a, b) ∈ Ω0
2 ∪ Ω0

3. At the point (ξ(1/6), η(1/6)) the claim
of Theorem 5.3 means the following. In a neighborhood of h = 1/6 holds

α X(h)+ β Y(h)+ γ M(h) =
∞∑

k=0

c2k+1 hk + c2k+2 hk+1 log(1/6 − h) .

(42)

We shall say that the line

l = {(x, y) ∈ R2 : α x + β y + γ = 0}
intersects Lab at (ξ(1/6), η(1/6)) with multiplicity k (or has an order of
tangency k), if

c1 = c2 = ... = ck = 0, ck+1 �= 0.

In the proof of Theorem 5.3 we shall need the following

Lemma 7. The sign of the curvature of Lab is one and the same near the
points (ξ(0), η(0)) and (ξ(1/6), η(1/6)).

Denote by tc and ts the lines tangent to Lab at C = (ξ(0), η(0)), Z =
(ξ(1/6), η(1/6)) and let m be the line passing through both C and Z. From
Corollary 7 we see that tc and ts do intersect, and from the above Lemma,
that their intersection point lies on the tangent tc (ts) in the same direction
with respect to C (Z) as the part of Lab near C (Z) (see Fig. 5). This implies

Corollary 8. If the curve Lab is convex then it is entirely contained in the
triangle formed by tc, ts, m as shown on Fig. 5.

Proof of Lemma 7. Denote

κ̃(h; a, b) = det


 X Y M

X ′ Y ′ M′
X ′′ Y ′′ M′′




and let Ω0
23 ⊂ R2 be the connected open domain

Ω0
23 = Ω0

2 ∪Ω0
3 ∪

{
(a, b)∈R2 : b2 − 4 a3= 0, 0<a<

1

2
, 0<b<

√
2

2

}
.

If κ(h; a, b) denotes the curvature of the smooth plane curve Lab, then an
elementary computation shows that

κ(h; a, b) = κ̃(h; a, b)[(ξ ′(h))2 + (η′(h))2]−3/2(M(h))−3
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Fig. 5

where for every h ∈ [0, 1/6), (a, b) ∈ Ω0
12, the function

[(ξ ′(h))2 + (η′(h))2]−3/2(M(h))−3

is analytic and non-vanishing. It follows from [41] that κ̃(0; a, b) = 0 if
and only if Iαβγ ≡ 0. For every fixed (a, b) ∈ Ω0

12 the functions X(h), Y(h),
M(h) are linearly independent over R [15, Proposition 5] and hence

κ̃(0; a, b) �= 0, ∀(a, b) ∈ Ω0
12 .

In a neighborhood of h = 1/6 we have

X(h) = cX
1 + cX

2 (h − 1/6) log(1/6 − h)+ cX
3 (h − 1/6) + o(h − 1/6)

Y(h) = cY
1 + cY

2 (h − 1/6) log(1/6 − h)+ cY
3 (h − 1/6)+ o(h − 1/6)

M(h) = cM
1 + cM

2 (h − 1/6) log(1/6 − h)+ cM
3 (h − 1/6) + o(h − 1/6)
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and hence

κ̃(h; a, b) = 1

1/6 − h
(D(a, b) + o(1/6 − h))

where

D(a, b) = det




cX
1 cY

1 cM
1

cX
2 cY

2 cM
2

cX
3 cY

3 cM
3


 .

It follows from [20] that D(a, b) = 0 if and only if Iαβγ ≡ 0 and as above
we conclude that

D(a, b) �= 0, ∀(a, b) ∈ Ω0
12 .

The Picard-Lefschetz formula implies that cX
i , cY

i , cM
i are analytic functions

in (a, b) ∈ Ω0
12 and hence D(a, b) is analytic too. Therefore it is enough to

compare the signs of the curvature κ(h; a, b) of Lab at h = 0 and for h ∼ 1/6
for at least one centroid curve Lab, (a, b) ∈ Ω0

12. Indeed, this is already
proved in the so called centro-symmetrical case, a = 0, b ∈ (0, 1) [22]. ��

Recall that in the case when the non-perturbed vector field X H has
three saddles and one center Theorem 5.3 is proved in [22] (see also the
Introduction).

Proof of Theorem 5.3 in the case when X H has one center and one saddle. It
follows from [19] and Theorem 4.1. For convenience of the reader we recall
the proof. First we note that the centroid curve is entirely contained (except
its ends C and Z) in the triangle formed by the lines tc, ts and m. Indeed,
otherwise Lab would intersect one if these lines at four points (counting
the multiplicity). This implies the existence of an Abelian integral Iαβγ (h)
which has four zeros on the interval (0, 1/6). As Iαβγ (0) = 0, then the
second derivative of Iαβγ (h) has at least three zeros which contradicts to
Theorem 4.1. More generally, the same reasonings show that every line l
intersects Lab in at most three points. Suppose further that there exists a line
l which intersects Lab in exactly three points. Using a suitable continuous
deformation of l we may always suppose that l is one of the lines tc, ts or m,
but still intersects Lab in exactly three points. This contradicts to the claim
above that the centroid curve is entirely contained (except its ends C and Z)
in the triangle formed by the lines tc, ts and m. ��
Proof of Theorem 5.3 in the case when X H has two centers and two saddles.
By definition the ends of L∗

ab are the tangents tc, ts. From (32) we get
tc = [α(0), β(0), γ(0)] ∈ ∆ab. The saddle point (x2, y2) lies on the line
ts [19] so ts ∈ lab

2 . We begin by establishing the following

Lemma 8. If (a, b) ∈ Ω0
2 and the claim of Theorem 5.3 holds true then

L∗
ab ∩ lab

3 = ∅, L∗
ab ∩ lab

4 = ∅, L∗
ab ∩ lab

2 = ts .
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Proof. The convexity of Lab and Corollary 8 show that the only tangent of
Lab containing the point (x2, y2) is ts and hence L∗

ab ∩ lab
2 = ts. To find the

position of L∗
ab with respect to lab

3 , lab
4 we shall use a deformation argument.

As in [22] let us denote by Li , i = 1, 2 the centroid curves of X H and let Ci ,
Si be the corresponding center and saddle points. Denote further by ti

c the
tangent to Li at Ci of X H , and by ti

s, the tangent to Li at the centroid point
Zi of the loop area. Let Ri denotes the sector formed by ti

s, ti
c, where the

centroid curve Li near Zi , Ci lies and let Rop
i be the opposite sector. In the

centro-symmetrical case a = 0, 0 < b < 1 the mutual position of the sets
we just defined is determined in [22] (Fig. 8) and it is shown on Fig. 5. More
precisely, every line intersects at most twice the centroid curves Li (counting
the multiplicity) and hence Li ⊂ Ri (Corollary 8). The central symmetry
implies that the tangent t1

c is parallel to t2
c , and the tangent t1

s is parallel
to t2

s . It is proved that the centroid curve L1 is contained in Rop
2 , and L2 is

contained in Rop
1 . In particular C2 ⊂ Rop

1 and hence L∗
0b ∩ lab

4 = ∅. Finally
the saddle point Si lies on the tangent ti

s, in the direction with respect to the
the centroid point Zi , opposite to the part of Li near Zi [19, Theorem 3.1].
This implies that S2 = (x3, y3) ∈∈ Rop

1 and hence L∗
0b ∩ lab

3 = ∅.
To study the general case, a �= 0, consider a continuous deformation

s → (a(s), b(s)) of the centroid curve La(0),b(0), where

a(0) = 0, b(0) ∈ (0, 1), (a(s), b(s)) ∈ Ω0
2, s ∈ [0, 1] .

It is enough to check that the critical points (x3, y3) and (x4, y4) remain
contained in the sector Rop

1 (which also depends on a, b), or equivalently

(x3, y3) �∈ t1
s , t1

c , (x4, y4) �∈ t1
s , t1

c .

The tangent t1
s contains the saddle (x2, y2) and intersects the period

annulus of (x1, y1) (as it contains the centroid point Z1). Therefore t1
s

intersects a continuous orbit of X H and hence it is tangent to X H at some
point contained in the period annulus. As X H is a quadratic vector field,
then t1

s does not contain any other equilibrium point of X H , so (x3, y3) �∈ t1
s ,

(x4, y4) �∈ t1
s

The equation of the tangent t1
c is b x + (a − 1) y = 0 (33) and an easy

computation (see (28) and the explications after) shows that

b xi + (a − 1) yi �= 0, i = 2, 3, 4.

This completes the proof of Lemma 8. ��
Suppose that the deformation of the centroid curve La(0),b(0)

s → (a(s), b(s)), a(0) = 0, b(0) ∈ (0, 1), (a(s), b(s)) ∈ Ω0
2, s ∈ [0, 1]

is such that La(s),b(s) is convex for s ∈ [0, 1) and it is not convex for s = 1.
The curvature of La(1)b(1) can not vanish at its ends (Lemma 7) and hence it
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vanishes at some internal point (ξ(h ′), η(h ′)), h ′ ∈ (0, 1/6). The curvature
has moreover a double zero at h ′ and hence the Abelian integral Iαβγ (h)
associated to the line {αx+βy+γ = 0} tangent to La(1)b(1) at (ξ(h ′), η(h ′))
has a zero at h ′ of order four. Thus d2

dh2 Iαβγ (h) has at least three zeros
(counting the multiplicity) on the open interval (0, 1/6). This implies that
there exists s0 ∈ (0, 1) such that the Abelian integral d2

dh2 Iαβγ (h) associated
to the line tangent to La(s0)b(s0) at ξ(h ′), η(h ′) has at least three zeros in the
complex domain D = C\[1/6,∞). We shall show that this is impossible.

Lemma 8 (after an obvious modification of the proof) shows that for
every s ∈ [0, s0] holds

L∗
a(s)b(s) ∩ la(s)b(s)

3 = ∅, L∗
a(s)b(s) ∩ la(s)b(s)

4 = ∅, L∗
a(s)b(s) ∩ la(s)b(s)

2 = ts .

The set Ba(s)b(s) is, however, an union of lines la(s)b(s)
i , la(s)b(s)∞ and one segment

∆a(s)b(s) (Theorem 3.1). This implies that if L∗
a(s)b(s) intersects an open

connected component of

(RP2)∗\Ba(s)b(s)

then this component is either U or U′, or U′′, where U was defined in
Theorem 4.2, and U, U′, U′′ are shown on Fig. 4. Note that U, U′ , U′′ are the
only connected components containing the point [α(∞) : β(∞) : γ(∞)].
If [α : β : γ ] ∈ U the Abelian integral d2

dh2 Iαβγ (h) has exactly one zero
in the complex domain D and if [α : β : γ ] belongs to U′ or U′′ then
d2

dh2 Iαβγ (h) has at most two zeros in the complex domain D (Corollary 4
and Proposition 2). This contradicts to the claim that the Abelian integral
d2

dh2 Iαβγ (h) associated to the line tangent to La(s0)b(s0) at ξ(h ′), η(h ′) has at
least three zeros in the complex domain D = C\[1/6,∞). We conclude
that the centroid curve La(1)b(1) is convex, which on its hand implies that for
every (a, b) ∈ Ω0

2 the centroid curve Lab is convex.
Suppose that there exists a line which intersects Lab in three points. The

convexity of Lab implies that at least two of them are distinct and hence
there exist h ′, h ′′ ∈ (0, 1/6) such that the tangent vectors to Lab at h ′ and h ′′
are co-linear. Using once again the convexity of Lab we see that when h is
running the interval [h ′, h ′′] the tangent vector to Lab at (ξ(h), η(h)) rotates
within an angle π in contradiction to Corollary 7. This completes the proof
of Theorem 5.3. ��

6. Proof of Theorem 1

The proof of Theorem 1 is based on Theorem 5.3 and on results of Rous-
sarie [35,36]. Let X0 be an analytic vector field with a center at the origin
0. This means that there is an open neighborhood V of O which is an union
of O and periodic orbits of X0. The maximal open neighborhood of O with
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this property is called the (open) period annulus Π of O. The closed period
annulus Π̄ is the closure of the open one. Consider an analytic unfolding
Xλ, λ ∈ RΛ, O of X0. Our first task is to define the notion of cyclicity of
the period annulus of X0 with respect to Xλ. The usual definition of cyclic-
ity of limit periodic sets which uses the Hausdorf metric (e.g. [35]) is not
convenient here. Indeed, the period annulus is an union of limit periodic
sets.

Definition 3. Let Xλ be a germ of a family of smooth plane vector fields,
λ ∈ (RΛ, 0), and let K ⊂ R2 be a compact invariant set of X0. We say
that the pair (K, Xλ) has cyclicity N = Cycl(K, Xλ) if N is the smallest
integer having the property: there exists ε0 > 0 and a neighborhood VK
of K, such that for every λ, |λ| < ε0, the vector field Xλ has no more than
N limit cycles contained in VK . If K̃ is an invariant set of X0 (possibly
non-compact), then the cyclicity of the pair (K̃, Xλ) is

Cycl(K̃, Xλ) = sup{Cycl(K, Xλ) : K ⊂ K̃ , K is a compact}.
In the case when K is a limit periodic set our definition coincides with the
usual one [35].

From now on we put X0 = X H , where X H is the quadratic Hamiltonian
vector field satisfying the genericity conditions imposed in Theorem 1.
Consider the unfolding

Xλ = X Hλ +
(

λ1 x y + λ2
y2

2
+ λ3 y

)
∂

∂y

where X Hλ is the Hamiltonian vector field associated to

Hλ(x, y) = H(x, y)+
∑

1≤i+ j≤3

λij x
i y j, H0(x, y) = H(x, y),

λ = (λ10, λ01, ..., λ33, λ1, λ2, λ3) ∈ R12 .

Every quadratic unfolding of X0 is induced by Xλ, that is to say Xλ

is versal among all quadratic unfoldings of X0. According to a Theo-
rem of Il’yashenko [25] Xλ has a center at the origin if and only if
λ1 = λ2 = λ3 = 0. This suggest to consider a “blow up” defined by the
change of parameters

λ1 = ε α, λ2 = ε β, λ3 = ε γ

where
(α, β, γ) ∈ S2 = {(α, β, γ) : α2 + β2 + γ 2 = 1} .

We obtain a family of plane vector fields X(λij ,ε,α,β,γ) defined in a neigh-
borhood of the sphere 0 × S2 ⊂ R10 × S2. The next step is to localize this
family along 0 × S2.
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Namely, for every fixed point (0, α0, β0, γ 0) consider a local diffeomor-
phism

µ : R12, 0 → R
10 × S2, (0, α0, β0, γ 0) .

The localized vector field

Xµ = X(λij (µ),ε(µ),α(µ),β(µ),γ(µ))

is an unfolding of the Hamiltonian vector field X0 = X H .

Theorem 6.1.
Cycl(Π̄, Xµ) ≤ 2 .

Proof of Theorem 1 assuming Theorem 6.1. The compactness of the em-
bedded sphere 0× S2 implies that there is a neighborhood U ⊂ R10 × S2 of
0 × S2 and a neighborhood V ⊂ R2 of the closed period annulus Π̄, such
that for every (λij , ε, α, β, γ) ∈ U the vector field X(λij ,ε,α,β,γ) has at most
two limit cycles in V . On its turn this shows that

Cycl(Π̄, Xλ) ≤ 2 . (43)
��

It can be shown that each limit cycle of a quadratic vector field surrounds
exactly one equilibrium point which is of focus type [38]. This implies that
every limit periodic set of X0 = X H on the Poincaré compactification of
the plane, is contained in a closed period annulus (we used that H(x, y) is
generic). If X H has only one period annulus Π, then Theorem 1 is proved.

Suppose that X H has two period annuli Π1 and Π2 with centroid curves
L1 and L2. It is shown in [21, Theorem 3.5] that

If both centroid curves are strictly convex then any line can intersect
their union at most in two points (counting the multiplicities).

It is easy to deduce from this (generalizing Theorem 6.1) that

Cycl(Π̄1, Xλ) + Cycl(Π̄2, Xλ) ≤ 2 .

We prefer to use, however, the following recent result due to Zegeling and
Kooij [40].

The only possible limit cycle distributions in quadratic systems with four
real singular points are (1, 1) and (n, 0) where n is an integer (examples
with n = 0, 1, 2, 3 are well known).

This combined to (43) completes the proof of Theorem 1. ��
Proof of Theorem 6.1. We shall prove first that Cycl(Π, Xµ) ≤ 2. Without
loss of generality we suppose that µ1 = ε. The vector field has a center if
and only if µ1 = 0. We may also suppose that Xµ(0) = 0.

Consider the displacement function

δµ(h) = Pµ(h)− h
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where Pµ(h) is the first return map associated to Xµ and to the arc l =
{(x, 0) : x ∈ [0, 1]} parameterized by h = H(x, y)|l. Let K ⊂ Π be
a compact invariant set of X H . As µ1 = 0 implies δµ(h) ≡ 0, then

δµ(h) = µ1 F(h, µ)

where F(h, 0) = Iαβγ (h) is the Pontryagin function defined in the Intro-
duction (the proof is the same as in [33]). Let h̃ < 1/6. For every fixed µ
in a sufficiently small neighborhood of 0 ∈ R12 the function δµ(h) has an
analytic continuation in a neighborhood of [0, h̃] and hence in a complex
neighborhood U ⊂ C of [0, h̃]. On the other hand F(h, µ) depends also
analytically on µ. By Rouché’s theorem F(h, µ) and F(h, 0) have the same
number of zeros in h (counted with multiplicity) in U . We may always
suppose that the zeros of F(h, 0) in U are contained in [0, h̃]. Their number
equals to the number of intersection points of the line

l = {(x, y) ∈ R2 : α x + β y + γ = 0}
with the piece of centroid curve {L(h) : h ∈ [0, h̃]} plus one (because
F(h, µ) always vanishes at h = 0).

Similarly, according to [35, Theorem 25(i)], the cyclicity of the homo-
clinic loop ∂ Π is bounded by the number of the vanishing coefficients in
the expansion (42) of F(h, 0) near h = 1/6. This number also equals to the
multiplicity of the intersection of the line L above with the centroid curve
L at the endpoint (ξ(1/6), η(1/6)). Theorem 5.3 implies that

Cycl(Π, Xµ)+ Cycl(∂ Π, Xµ) ≤ 2

and hence Cycl(Π̄, Xµ) ≤ 2. ��

7. Concluding remarks

The systematic study of global phase portraits of plane polynomial vector
fields has been initiated by Poincaré [31,32]. As most fundamental prob-
lems he recognized the problem of finding the limit cycles, and the problem
of distinguishing between a center and a focus of such fields. The ques-
tion about the maximal number and position of the limit cycles of a plane
polynomial vector field of degree n was explicitly asked later by Hilbert in
the second part of his 16th problem [18]. Recall that the first part of this
problem asks for a (projective) classification of the ovals of a real plane
algebraic curve

{(x, y) ∈ R2 : H(x, y) = 0} (44)

where H(x, y) is an arbitrary real polynomial of degree n. The analogy
between limit cycles (which are transcendental curves in general) and ovals
remains, however, very incomplete. Thus, according to Harnack’s theorem,
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the number of the connected components of a smooth real plane projective
curve is less or equal to pg +1 where pg = (n−1)(n−2)/2 is the genus of
(44) (the bound is exact). The analogue of Harnack’s theorem for differential
equations would be to find an exact upper bound H(n) for the number of
limit cycles of any plane polynomial vector field of degree at most n.
Hilbert suggested that the the problem “may be attacked by the method of
continuous variation of the coefficients”. The latter was successfully used
in the study of ovals of algebraic curves, and is actually known as the
Hilbert-Rohn method.

To establish even the finiteness of the Hilbert numbers H(n) turned out
to be beyond the reach of the 20th century mathematics. The deepest known
result in this direction is the following

Theorem. The number of limit cycles of a given plane polynomial vector
field is finite.

For a long time this result was attributed to Dulac [8] which contained in
fact an important gap. Complete proofs were obtained more recently by
Ecalle [9] and Il’yashenko [26,28].

The study of bifurcations of limit cycles (as suggested by Hilbert) leads
naturally to the notions of limit periodic set and cyclicity of such sets with
respect to a given family of vector fields [35]. The limit periodic sets can be
classified according to their co-dimension in the space of all polynomial (or
analytic) plane vector fields. If a polynomial vector field has a limit periodic
set of infinite co-dimension, then it has a period annulus which is an infinite
union of periodic orbits, each of them being a limit periodic set. Therefore
in this case we have to study rather the cyclicity of the whole period annulus,
than the cyclicity of an individual limit periodic set. An important example
is the following. Consider a real polynomial H(x, y) of degree n + 1 which
is generic in the sense that it has n2 distinct critical values. We shall also
suppose that the differential equation dH = 0 has a center which is placed
at the origin. Consider the perturbed Hamiltonian system

d H + ε ω = 0, ω = P dx + Q dy

where P = P(x, y), Q = Q(x, y) are real polynomials of degree n, and ε is
a “small” real parameter. Denote by γ(h) ⊂ {H = h} the continuous family
of ovals of {H = h} which tend to the origin as h → 0.

Theorem ([25, Il’yashenko]). Either d ω ≡ 0 (in which case the perturbed
Hamiltonian system d H + εω = 0 is Hamiltonian), or the Pontryagin
function

I(h) =
∫

γ(h)

ω (45)

does not vanish identically.

We explained in the Introduction, that in the above situation limit cycles
bifurcate from ovals γ(h), such that I(h) = 0. Therefore the cyclicity of
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an open period annulus is bounded by the maximal number of zeros which
an Abelian integral I(h) on a suitable interval can have (this holds true
even for the closed period annulus [34]). Based on this Arnold [4, p. 313]
formulated a weakened (or rather infinitesimal) version of the 16th Hilbert
problem, which asks for the maximal number of zeros of Abelian integrals
of the form (45) (see also [5]). It should be stressed, however, that if the
polynomial H(x, y) is not generic, or the degree of the polynomial one-
form ω is strictly greater than deg(H)− 1, the problem of finding the limit
cycles of d H + εω = 0 is not equivalent to a problem on the zeros of
Abelian integrals. The reason is that I(h) ≡ 0 does not imply in general that
the return map is equal to the identity map. The higher order Pontryagin
functions [10] have to be computed in this case and they are not always
Abelian integrals (see Iliev [24] for examples). On the contrary, when the
conditions of the Il’yashenko’s theorem are satisfied, then the problem of
finding the limit cycles becomes a problem in algebraic geometry. Because
of its importance we shall formulate this infinitesimal 16th Hilbert problem
in detail.

Let Xλ, λ ∈ RΛ, be the space of all plane vector fields of degree n.
Suppose that

X0 = X H = Hy
∂

∂x
− Hx

∂

∂y

where H(x, y) is a real polynomial of degree n + 1. Let Z(n, H) =
Cycl(Π̄, Xλ) be the maximal cyclicity which a closed period annulus Π̄
of X H can have with respect to Xλ (of course X0 can have several period an-
nuli). We shall say that a real polynomial H(x, y) of degree n + 1 is generic
if it has n2 distinct critical values in a complex domain. The infinitesimal
16th Hilbert problem is then

Find the numbers

Z(n) = sup{Z(n, H) : deg H ≤ n + 1, H(x, y) is generic}.
As the dimension of the vector space of Abelian integrals

An = {I(h) : I(h) =
∫

γ(h)

ω, (46)

ω = P(x, y) dx+ Q(x, y) dy, deg(P), deg(Q) ≤ n}
equals to n(n + 1)/2 [25], then

Z(n) ≥ n(n + 1)

2
− 1

and by a theorem of Varchenko [39] and Khovanskii [29]

Z(n) < ∞ .
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The main result of the present paper (Theorem 1) says that

Z(2) = 2

which suggests that in general

Z(n) = n(n + 1)

2
− 1 . (47)

This is equivalent to say that the space of Abelian integrals (46) is a Chebi-
shev space (i.e. the number of the zeros of a function which belongs to the
space is less than its dimension).

Consider now the following vector space

A′
n =

{
d

d h
I(h) : I(h) =

∫
γ(h)

ω, (48)

ω = P(x, y) dx+ Q(x, y) dy, deg(P), deg(Q) ≤ n

}
.

We have dim An = dim A′
n and it can be shown that A′

2 is a Chebishev
space (we just repeat the proofs of the present paper given for the space A2).
As I(h) ∈ An implies that I(0) = 0 then the Chebishev property of A′

n
implies the Chebishev property of An . There is one more reason, however,
which makes the space A′

n more natural than An . The space A′
n is inti-

mately related to the Jacobian variety of a singular curve Γsing constructed
canonically from the plane affine curve Γh = {(x, y) ∈ C2 : H(x, y) = h}.
Namely, let Γ̄h be the compactified and normalized curve Γh . Consider the
divisor

D∞ =
n+1∑
i=1

∞i = Γ̄h\Γh .

The singularized curve Γsing is a compact singular curve with topological
space Γh ∪ ∞ (we identify all points ∞i ∈ Γ̄h “at infinity” into a sin-
gle point ∞). The structure sheaf of Γsing is the sheaf of functions f
which are regular on the affine curve Γ̄h and take the same value at ∞i ,
f(∞i) = f(∞ j) (see Serre [37]). Let Ω1(D∞) be the sheaf of meromorphic
differentials on Γ̄h which are regular over Γh and have at most a simple pole
at D∞ =∑n+1

i=1 ∞i . An easy exercise (which generalizes Lemma 3, and is
proved in the same way) shows that the vector space of covariant derivatives
of polynomial one-forms of a given degree

SpanC{∇ω : ω = P(x, y) dx + Q(x, y) dy, deg(P), deg(Q) ≤ n}
coincides with H0(Γ̄h,Ω

1(D∞)). The generalized Jacobian [37] J(Γsing) of
the singular curve Γsing is

J(Γsing) = H0(Γ̄h,Ω
1(D∞)

)∗
/H1(Γh,Z) .
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Therefore the Abelian integrals

d

d h
I(h) =

∫
γ(h)

∇ω ∈ A′
n

are coefficients of the period matrix of Γsing. We expect that in the case
n > 2 the generalized Jacobian J(Γsing) will play the role of the elliptic
curve Γh (isomorphic to its Jacobian J(Γh)) in the case n = 2. As the
arithmetic genus of Γsing is pa = n(n + 1)/2 then (47) becomes

Z(n) = pa − 1

which could be considered as a (partial) analogue of the Harnack’s theorem.

References

1. N. A’Campo, Le groupe de monodromie du déploiment des singularités isolées de
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