
r

inte-

tion of

ectronic

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 12 DECEMBER 1999

Downloaded
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Let q1 ,q2 , . . . ,qN be the coordinates ofN particles on the circle, interacting with
the integrable potential( j ,k

N `(qj2qk), where` is the Weierstrass elliptic func-
tion. We show that every symmetric elliptic function inq1 ,q2 , . . . ,qN is a mero-
morphic function in time. We give explicit formulas for these functions in terms of
genusN21 theta functions. ©1999 American Institute of Physics.
@S0022-2488~99!01512-1#

I. INTRODUCTION

The elliptic Calogero system,1

d2

dt2
qi52(

j Þ i
`8~qi2qj !, i 51,2,. . . ,N ~1.1!

is a canonical Hamiltonian system, describing the motion ofN particles on the circleS1

5R/vZ, vPR, with Hamiltonian~energy!

H5
1

2 (
j 51

N

pj
21(

j ,k

N

`~qj2qk!, ~1.2!

where`(q)5`(quv,v8) is the Weierstrass elliptic function

`~quv,v8!5 (
m,nPZ

~q1mv1nv8!22, v8/v¹R. ~1.3!

Denote byG1 the elliptic curveC/$2vZ12v8Z% with period lattice generated by 2v and 2v8.
The HamiltonianH is invariant under the obvious action of the permutation groupSn , so the
phase space of the compexified system is the cotangent bundleT* (SNG1) of the Nth symmetric
productSNG1 .

It is known that this system has two Lax representations~Refs. 1, 2, also see Ref. 3 fo
details!. The Lax operatorL definesN integrals of motionI k(p,q)5k21tr(Lk),k51, . . . ,N. It was
proved in Ref. 4 that these integrals are in involution and hence this system is completely
grable in the Jacobi–Liouville sense.5,6

The Krichever Lax pair has a spectral parameter. This means that the equations of mo
the system under consideration are equivalent to the matrix equation

i L̇ ~l!5@L~l!,M ~l!#, ~1.4!
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whereL(l)5L(p,q; l) andM (l)5M (p,q; l) are two matrices of orderN,

$L~l!% jk5pj d jk1 i ~12d jk! F~qj2qk , l!; ~1.5!

$M ~l!% jk5d jk S (
lÞ j

`~qj2ql !2`~l! D 1 ~12d jk! F8~qj2qk , l!; ~1.6!

F~q,l!5
s~q2l!

s~q! s~l!
exp~z~l! q!; ~1.7!

s~q!5q ) 8
m,n

S 12
q

vmn
DexpF q

vmn
1

1

2 S q

vmn
D 2G , ~1.8!

z~q!5
s8~q!

s~q!
, vmn5mv1nv8.

As it was shown by Krichever,2 the equations of motion may be ‘‘linearized’’ on the Jacobian
the spectral curve

GN5$~l,m!: f ~l,m![det~L~l!2mI !50%. ~1.9!

Namely, let

u~zuB!5 (
NPZN

ep i ^N,BN&12p i ^N,z&, zPCN ~1.10!

be the Riemann theta function with period matrixB, where

B5~Bi j !, B5Bt, Im B.0, ^x,y&5(
j

xj y j , i , j 51, . . . ,N.

It has been shown by Krichever2 that, if B is the period matrix of the curveGN, then for suitable
constant vectorsU,V,WPCN and for a fixed parametertPC, the equation

u~Uq1Vt1W!50, qPC ~1.11!

has exactlyN solutionsq5qj (t) on the Jacobian Jac (GN) of the curveGN . The functionsqj (t)
provide solutions of the elliptic Calogero system~1.1!. The equation~1.11! for these solutions is,
however, not explicit and seems to be not well understood.

The aim of the present paper is to give ‘‘the effectivization’’ of these formulas based o
projection method by Olshanetsky and Perelomov7,8 of explicit integration of the equations o
motion in the rational and the trigonometric cases, as well as on the algebro-geometric ap
of Krichever.9,2

II. EXPLICIT SOLUTIONS

Let GN be a genusN Riemann surface which is anN-sheeted covering of an elliptic curveG1 ,

GN→
p

G1 . ~2.1!

It follows from a theorem of Weierstrass~see, for example, Refs. 10, 11, 12, and 13, Theorem!
that the period matrix of the curveGN in a suitable basis has the form (I ,B), where
I 5diag(1,1,. . . ,1), and
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B5S t

N

k

N
0 . . . 0

k

N
b22 b23 . . . b2N

0 b32 b33 . . . b3N

A A A A A

0 bN2 bN3 . . . bNN

D ~2.2!

for a suitable positive integerk. Consider the Riemann theta functionu(x,t)5u(x,tuB), wheret
5(t1 ,t2 , . . . ,tN21), (x,t)PCN . We have

u~x11,t!5u~x,t!,u~x1t,t!5e22p iNx2p iNtu~x,t!,i 5A21 ~2.3!

and therefore for any fixedt the functionu(x,t) is an elliptic theta function of orderN.14 In
particular it has exactlyN zeros onG15C/$Z1tZ% which we denote byxi(t), i 51,2,. . . ,N.

Lemma 2.1: The following identity holds:

]2

]x2
log u~x,tuB!5(

i 51

N

`~x2xi~ t!ut!1N
u1-~0!

3u18~0!
,

where15

u1~xut!5u F1/2

1/2G ~xut!.

Proof: The relations

u1~x11!52u1~x!,u1~x1t!52e22p ix2p i tu1~x! ~2.4!

compared to~2.3! imply that

S u~x,t!

) i 51
N u1~x2xi~ t!! D

2

~2.5!

is a meromorphic function inx on G1 which has no poles, and hence it is a constant~in x!. It
follows that

]2

]x2
log

u~x,t!

) i 51
N u1~x2xi~ t!!

[0.

Finally we use that

`~x!52
]2

]x2
logs~x!, u1~x!5c exp~hx2! s~x!, ~2.6!

where

h52
u1-~0!

6u18~0!

andc is a suitable constant.15 h
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Theorem 2.2: The Krichever curveGN is an N-sheeted covering of an elliptic curveG1

5C/$Z1tZ%. There exists a canonical homology basis and a normalized basis of holomo
one-forms onGN, such that the corresponding period matrix ofGN takes the form(I ,B), where
I 5diag(1,1,. . . ,1),and

B5S t

N

1

N
0 . . . 0

1

N
b22 b23 . . . b2N

0 b32 b33 . . . b3N

A A A A A

0 bN2 bN3 . . . bNN

D . ~2.7!

In the same basis the vectors U and V in~1.11! read

U5~1,0, . . . ,0!,V5~0,V2 , . . . ,VN!. ~2.8!

A direct proof~without using the Weierstrass theorem! of the above Theorem will be given in th
last section. From now on we make the convention that 2v51 so the period lattice ofG1 is

Z1tZ, t52v8/2v52v8.

Corollary 2.3: The symmetric functions

f k~ t !5(
i 51

N

` (k)~qi~ t !!

are meromorphic in t. Explicit formulas for them are obtained from Lemma 2.1,

f 0~ t !5
]2

]x2
log u~x,t!ux502N

u1-~0!

3u18~0!
,

f k~ t !5~21!k
]k12

]xk12
log u~x,t!ux50 , k.0,

where

t5~V2t1W2 ,V3t1W3 , . . . ,VNt1WN!.

Our next construction is motivated by Refs. 7, 8, and 2. Let us define the function

F~x,t !5)
j 51

N
s~x2qj~ t !!

s~x!s~qj~ t !!
5@u18~0!#2N] )

j 51

N
u1~x2qj~ t !!

u1~x!u1~qj~ t !!
, (

j 51

N

qj~ t !50, ~2.9!

where

qj~ t !, tPC, j 51,2,. . . ,N,

is a solution of the elliptic Calogero system.
Lemma 2.4: F(x,t) is a meromorphic function in x onG1 and meromorphic function in t on

C, explicitly given by
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F~x,t !5@2u18~0!#2N]
u~Ux1Vt1W!

u1~x!Nu~Vt1W!
. ~2.10!

Proof: We already noted that the function~2.5! is a constant inx, and hence

u~x,t!

) i 51
N u1~x2xi~ t!!

[
u~0,t!

) i 51
N u1~2xi~ t!!

.

This combined with~2.8! gives

) i 51
N u1~x2qi~ t !!

) i 51
N u1~qi~ t !!

5~21!N
u~Ux1Vt1W!

u~Vt1W!
.

h

The expansion ofF(x,t) on the basis of first order theta functions inx defines (N21)
meromorphic functions in the variablesq1 , . . . ,qN which are also meromorphic functions int
with only simple poles. Hence we can take them as new ‘‘good’’ variables. The expansi
F(x,t) can be obtained by making use of the addition formulas for elliptic functions. In the
N52, we have the following ‘‘addition formula’’15

F~x,t !52
s~x2q! s~x1q!

s2~x!s2~q!
5`~x!2`~q!, ~2.11!

which generalizes for arbitraryN in the following way
Lemma 2.5: For anyq5(q1 ,q2 , . . . ,qN),x, such that(qj50 define

F~x,q!5)
j 51

N
s~x2qj !

s~x!s~qj !
, ~2.12!

D~q!5~N21!!detU 1 `~q1! `8~q1! . . . ` (N23)~q1!

1 `~q2! `8~q2! . . . ` (N23)~q2!

. . . . . . . . . . . . . . .

1 `~qN21! `8~qN21! . . . ` (N23)~qN21!

U . ~2.13!

The following identity holds:

F~x,q!D~q![detU 1 `~x! `8~x! . . . ` (N22)~x!

1 `~q1! `8~q1! . . . ` (N22)~q1!

. . . . . . . . . . . . . . .

1 `~qN21! `8~qN21! . . . ` (N22)~qN21!

U . ~2.14!

Remark:The substitutionx5qN in ~2.14! gives the following addition formula for the Weier
strass̀ -function:

detU 1 `~q1! `8~q1! . . . ` (N22)~q1!

1 `~q2! `8~q2! . . . ` (N22)~q2!

. . . . . . . . . . . . . . .

1 `~qN! `8~qN! . . . ` (N22)~qN!

U[0. ~2.15!
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: For fixed q5(q1 ,q2 , . . . ,qN) the functions in the left and right-hand side of th
identity ~2.14! are meromorphic inx on the elliptic curveG1 . Both of them have a pole of orde
N at x50 and simple zeros atx5q1 , . . . ,qN21 . It follows that their ratio is a first order elliptic
function, and hence a constant inx. To compute this constant we use thats(x)5x1 . . . , `(x)
51/x21 . . . , andthen compare the Laurent series of the two functions in a neighborhoodx
50. h

Note finally that if for fixedq and q̃ holds F(x,q)[F(x,q̃), then up to a permutationq
5q̃. Therefore there is a one-to-one correspondence between the coefficients of`k(x) in the
expansion ofF(x,q), and the points of the (N21)th symmetric power of the elliptic curve
G1\$0%. In particular every meromorphic function on this symmetric power is a rational func
in the above coefficients. This implies the following:

Corollary 2.6: Let f(x) be a meromorphic function on the elliptic curveG1, and let S be a
symmetric rational function in N21 variables. If q1(t),q2(t), . . . ,qN(t), (qi[0 is a solution of
the elliptic Calogero system, then S( f (q1(t), f (q2(t)), . . . ,f N21(qN21(t))) is a meromorphic
function in t.

The further analysis of the explicit formulas for the solutions of the elliptic Calogero sys
can be based on Lemma 2.4, Lemma 2.5, and the identity

F~x,t ![F~x,q~ t !!.

Consider the seemingly trivial case of two particles (N52). Let us give first an explanation
of the Krichever formula~1.11! for the solutionsq1(t)52q2(t). Put q12q25q and p152p2

5p. The HamiltonianH becomesH(p,q)5p21`(q), and the reduced Hamiltonian system is

d

dt
q52p,

d

dt
p52 `8~q!, ~q,p!PT* G1 . ~2.16!

The Lax matrixL is

L~l!5S p iF~q,l!

iF~2q,l! 2p D
and the corresponding spectral polynomial

det~L~l!2mI !5m22p21F~q,l!F~2q,l!5m22p21`~l!2`~q!5m21`~l!2H~p,q!

defines a spectral curve

G25$~m,l!:m21`~l!5h%.

Suppose thath5H(p,q) is fixed in such a way, that the meromorphic function`(l)2h has two
distinct zeros onG1 . The spectral curveG2 is a double ramified covering over the elliptic curv
G1 with projection mapp:G2→G1 :(m,l)→l. It follows that G2 is a genus two curve with
holomorphic differentials

v15dl, v25
dl

m
.

On the other handG2 is identified to the orbit

$~p,q!PT* G15:H~p,q!5h%

under the map

~p,q!→~m,l!.
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Consider further the embedding of the orbitG2 into its Jacobian variety Jac(G2)

G2→Jac~G2!:P→S E
P0

P

dl,E
P0

P dl

m D . ~2.17!

By the Riemann theorem,16 the curveG2,Jac(G2) defines a divisor which coincides, up t
addition of a constant, with the Riemann theta divisorQ,Jac(G2) on the Jacobian variety
Jac(G2).

Let (p(t),q(t)) be a solution of the elliptic Calogero system, with initial conditio
(p(t0),q(t0))5P0 . Taking into consideration that

dl

m
52 dt, dl5dq, ~l,m!PG2 ,

formula ~2.17! takes the form

T* G15C3G1{~p~ t !,q~ t !!→~2t22t0 ,q~ t !2q~ t0!!PJac~G2!. ~2.18!

It follows that there exist constant vectorsa,b,cPC2 such that

u~aq~ t !1bt1c![0. ~2.19!

Of course these constants depend on the choice of symplectic homology basis and the ch
normalized basis of holomorphic one-forms. Namely, leta,b be two loops onG1, such that
p21(a)5$a1 ,a2%, p21(b)5$b1 ,b2%, where ai ,bj represent an integer symplectic homolo
basis onG2 : ai+bj5d i j , ai+aj50, bi+bj50. Then,

E
a1

dl5E
a2

dl, E
b1

dl5E
b2

dl,

E
a1

dl

m
52E

a2

dl

m
, E

b1

dl

m
52E

b2

dl

m
.

If we define a new symplectic basis

ã15a11a2 ,ã25b12b2 ,b̃15b1 ,b̃25a2

and normalize the two holomorphic one-forms as

dl→ dl

* ãp* dl
5

dl

2*adl
,

dl

m
→ dl/m

* ã2dl/m

,

then the period matrix ofG2 takes the form

S 1 0 t1/2 1/2

0 1 1/2 t2/2D ,

where

t15
*bdl

*adl
,t25

*a2
dl/m

*b1
dl/m

.

This, together with~2.18! implies that
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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a5S 1

* ã1
dl

,0D 5S 1

2*adl
,0D ,b5S 0,

1

*b1
dl/m D .

Finally the vectorc is arbitrary and plays the role of initial condition. The functionF(x,t) defined
in ~2.9! takes the form

F~x,t !52
s~x2q~ t !! s~x1q~ t !!

s2~x!s2~q~ t !!
~2.20!

and hence15,17

F~x,t !5`~x!2`~ t !. ~2.21!

So the elliptic functioǹ (quv,v8), and also

sn2~q,k!;
u1

2~quk!

u4
2~quk!

, cn2~q,k!;
u2

2~quk!

u4
2~quk!

, dn2~q,k!;
u3

2~quk!

u4
2~quk!

~2.22!

are ‘‘good’’ variables~in the sense that they are meromorphic int!. The equation of motion for
them takes a very simple form. We get

sn2~q,k!512a21a2 sn2~gt,k̃!, ~2.23!

where

a25
h21

h
, g52~h2k2!, k̃25

h21

h2k2
k2. ~2.24!

One can easily show that the even functions cn (q,k) and dn (q,k) ~but not sn (q,k)) are ‘‘good’’
variables and we get as in3

cn~q,k!5a cn~gt,k̃!, ~2.25!

dn~q,k!5b dn~gt,k̃!, b5~k/ k̃!a. ~2.26!

III. REDUCTION OF THETA FUNCTIONS

The reduction theory was elaborated by Weierstrass~see, for example, Ref. 10! and
Poincare´.11,12 Consider first the caseN52. The Riemann theta function associated with the R
mann matrix~2.7! has the form,

u~z1 ,z2!5 (
ni ,nj

exp$ ip @Bi j ninj12njzj #%, i , j 51,2, ~3.1!

where

B115t1/2, B225t2/2, B125B2151/2.

A straightforward computation gives
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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u~z1 ,z2!5 (
n1 ,n2

expH ip Ft1

n1
2

2
1n1n21t2

n2
2

2
12n1z112n2z2G J

5 (
k1 ,n2PZ

exp$ ip @2t1k1
214k1z1#%expH ip Ft2

n2
2

2
12n2z2G J

1 (
k1 ,n2PZ

expH ip F2t1S k11
1

2D 2

14S k11
1

2D z1G J expH ip Ft2

n2
2

2
12S n21

1

2D z2G J
5u3~2z1u2t1! u3S z2U t2

2 D1u2~2z1u2t1! u4S z2U t2

2 D ,

whereu1 ,u2 ,u3, andu4 are defined by formulas,

u1~zut!5uF1/2

1/2G~zut!52q1/4(
n51

`

~21!nqn(n11) sin@~2n11!pz#; ~3.2!

u2~zut!5uF1/2

0 G~zut!52q1/4(
n51

`

qn(n11) cos@~2n11!pz#; ~3.3!

u3~zut!5uF0

0G~zut!5112(
n51

`

qn2
cos~2pnz!; q5exp~ ipt!; ~3.4!

u4~zut!5uF 0

1/2G~z,t!5112(
n51

`

~21!n qn2
cos~2pnz!. ~3.5!

So in this case, the equationu(z1 ,z2)50 is equivalent either to

A dn~2z1u4t1! dn~z2ut2!1cn~2z1u4t1!50, ~3.6!

or to

A dn~2z2u4t2! dn~z1ut1!1cn~2z2u4t2!50, ~3.7!

where

A5
u3~0u4t1! u3~0ut2!

u2~0u4t1! u4~0ut2!
~3.8!

or

dn~z1ut1!5B dn~2iz21Ku t̃2!. ~3.9!

Let us give also a more symmetric form of the theta divisor for this case,

dn~2z1 ,k1! dn~2z2 ,k2!1dn~2z1 ,k1! cn~2z2 ,k2!1cn~2z1 ,k1! dn~2z2 ,k2!

2cn~2z1 ,k1! cn~2z2 ,k2!50. ~3.10!

Using the constraintu(ax1bt1c)50 and takingz15q, z25(1/2)K1 igt, we get once again
~2.25! and ~2.26!.

Consider now the case of arbitraryN. Let u(z1 ,z2 , . . . ,zNuB) be the Riemann theta functio
with period matrix as in Theorem 2.2. In a quite similar way we get
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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u~z1 ,z2 , . . . ,zN!5 (
j 50

N21

u j~z1! Q j~z2 , . . . ,zN!, ~3.11!

where

u j~z1!5uF j /N

0 G~Nz1uN2t1!, ~3.12!

Q j~z2 , . . . ,zN!5QF 0 0 ¯ 0

j /N 0 ¯ 0G~z2 , . . . ,zNuB̂!. ~3.13!

In the above formulaB̂ is the right lower (N21)3(N21) minor of B ~2.7!, and the theta
functions with fractional characteristics are defined, for example, in Refs. 19,18,14,13. A r
tion formula similar to~3.11!, but containingN2 terms, can be found in Ref. 13, Corollary 7.3

IV. GEOMETRY OF THE SPECTRAL CURVE

In this section we prove Theorem 2.2.
Let GN be a genusN Riemann surface which is anN-sheeted covering of an elliptic curveG1

GN→
p

G1 . ~4.1!

Choose two loopsa,b which generate the fundamental groupp1(G1 ,P), PPG1, and denoteǦ1

5G1\$aøb%. Let us suppose for simplicity that the ramification points of the projection map

are distinct. Connect further these ramification points by non-intersecting arcsg i,Ǧ1 . The set
p21(Ǧ1\ø ig i) is a disjoint union ofN ‘‘sheets.’’ To reconstruct the topological covering~4.1!
we have to indicate how the opposite borders of the cutsg i are glued, as well how the opposit
borders of the~preimages of the! cutsa andb respectively are glued together. Thus there is o
a finite number of topologically different coverings~4.1!. It may be shown that the Kricheve
curve ~1.9! is of genus at mostN, and for generic (pi ,qi) its genus is exactlyN. The projection
mapp ~4.1! is defined then byp~m,l!5l. From now on we shall always assume that (pi ,qi) are
generic. In the case whenGN is the genusN Krichever spectral curve~1.9!, andG1 is the elliptic
curve with half periodsv,v8, the covering~4.1! has a number of special properties.

To prove~2.7! we shall need the following:
Proposition 4.1: LetGN be the Krichever curve~1.9!. There exist loops a,bPp1(G1 ,P) such

that, if Ǧ15G1\$aøb%, ]Ǧ15a+b+a21+b21, then (i) p21(Ǧ1) is connected; (ii)p21(]Ǧ1) has
exactly N connected components.

On its hand the above proposition implies the following:
Proposition 4.2: There exists loops a,bPp1(G1 ,P), PPG1, such that

p21~a!5$a1 ,a2 , . . . ,aN%,p21~b!5$b1 ,b2 , . . . ,bN%,

where ai ,bi represent a symplectic homology basis of H1(GN ,Z), ai+bj5d i j .
Proof of (2.7) assuming Proposition 4.2:Let dl be the holomorphic one-form onG1 . Then

the pullbackp* dl of dl is a holomorphic one-form onGN and we have

E
ai

p* dl5E
a
dl,E

bi

p* dl5E
b
dl.

Choose the following new integer homology basis ofGN:

ã15a11a21 . . . aN , b̃15b1 ,
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ã25Nb12b12b22 . . . 2bN , b̃25a2 ,

and

ãi5bi2b1 , b̃i5a22ai , i 53, . . . ,N.

This is also a symplectic basis ofH1(GN ,Z), as

(
i 51

N

ãi`b̃i5(
i 51

N

ai`bi .

Let v1 ,v2 , . . . ,vN be a basis of holomorphic one-forms onGN , such that

v15
dl

* ã1
dl

, E
ãi

v j5d i j .

ThenB5(* b̃ j
v i) i , j

N,N is a symmetric matrix with positive definite imaginary part, such that

E
b̃1

v15
t

N
, E

b̃2

v15
1

N
, E

b̃i

v150, i>3

which completes the proof of 2.7.
Proof of Proposition 4.1:First of all let us note that if the claim holds for some Krichev

curve, then it holds for any Krichever curve. Indeed, the space of all such curves is parame
by CN21 ~the first integrals of the integrable Hamiltonian system~1.4!! and hence it is connected
Let us fix a generic point (pi ,qi), i 51,2,. . . ,N. It is enough to prove now our proposition for a
least one pair of half-periodsv,v8, for example foruvu,uv8u;`.

Let us representǦ1,C5P1\` as the interior of the period parallelogram formed by 2v and
2v8. When uvu→`, uv8u→`, the boundary.]Ǧ15a+b+a21+b21 tends to`PP1, andǦ1 tends to
Ǧ1

`5C. In a similar way we define the ‘‘limit’’ curveǦN
` which is explicitly described in the

following way. When uvu→`, uv8u→`, then on any compact set the Weierstrass functi
s(q),z(q),`(q) tend toq,1/q,1/q2 respectively, and hence the functionF(q,l) tends to

q2l

ql
exp~q/l!.

Denote the corresponding ‘‘limit’’ Lax matrix~1.5! by L`(l). The curveǦN
` is the affine curve

$~l,m!:det~L`~l!2mI N!50%

completed withN distinct points corresponding tol50. The last holds true if and only if the
ramification points of the projection mapp ~4.1! tend to some values different froml50 ~it is
easy to check that this is a generic condition on (pi ,qi)). We shall also suppose that these valu
are different froml5` ~another generic condition!. Under these restrictions one may prove~as in
Ref. 2! that ǦN

` is a Riemann sphere, withN punctures~the preimages ofl5`!. We obtain thus a
map p:P1→P1 with 2N22 ramification points different froml50,̀ . The fact thatp21(C) is
connected implies the part~i! of the proposition, and the fact thatp21(`) is a disjoint union ofN
points implies~ii !.

Proof of Proposition 4.2:Let us representǦN by a graph withN vertices. A vertex corre-
sponds to a sheet~see the beginning of this section!, an edge connects two vertices if and only
the corresponding sheets have a common ramification point. Proposition 4.1~i! implies that the
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graph is connected, and~ii ! that each sheet contains an even number of ramification points. A
total number of ramification points is 2N22 and each point belongs to exactly two sheets, the
addition the graph ofǦN is simply connected.

Consider now the punctured curve

G̃15Ǧ1\ø iRi ,

whereRi ,i 51, . . . ,2N22 are the ramification points ofp. The fundamental groupp1(G̃1 ,P) has
a natural representation in the permutation groupSn . Namely, when a pointQPG1 makes one
turn along a loopaPp1(G̃1 ,P), the setp21(P)5ø i 51

N Pi is transformed to itself. If the loopsa
andb induce the identity permutation, thenp21(a), p21(b) are disjoint unions ofN loops with
obvious intersections, which implies Proposition 4.2. If not, we shall modifya andb.

Let cPp1(G̃1 ,P) be a loop which makes one turn around some ramification point ofp. Then
c induces a permutation which exchanges the two sheets containing the ramification point.
graph ofǦN is connected then all such transpositions generate the permutation groupSn . Thus for
suitablec the loopa+c induces the identity permutation. It remains to substitutea→a+c and to
note thata5a+c in p1(G1 ,P).

Proof of (2.8) (compare to Ref. 13, Theorem 7.14):Let 0PG1 be the pole of̀ (z). We denote

p21~0!5$`1 ,`2 , . . . ,̀ N%, ` iPGN .

In a neighborhood of each point̀i on the Krichever curve$(l,m): f (l,m)50% the meromorphic
function m has the following Laurent expansion:9

m52
1

l
1O~1!, i 51,2,. . . ,N21,

m5
N21

l
1O~1!.

It follows that if

v j5 f j~P!dl, P5~l,m!PGN

is a differential of first kind~i.e., holomorphic! on GN , thenmv j is a differential of third kind with
simple poles at̀ i . The sum of the residues ofmv j is equal to

(
i 51

N21

f j~` i !2~N21! f j~`N!50. ~4.2!

Let V be a differential of second kind onGN with a single pole at̀ N . Such is for example the
differential

m22`~l!

] f

]m
~l,m!

dl.

If moreoverV is normalized as

E
ãi

V50,

then it is well known that the vectorV is collinear to
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S E
b̃1

V,E
b̃2

V, . . . ,E
b̃N

V D
~see, for example, Ref. 13!. Equivalently, if we apply the reciprocity law to the differentials
second and first kindV,v i , we get thatV is colinear to

~ f 1~`N!, f 2~`N!, . . . ,f N~`N!!.

On the other hand

ã15a11a21 . . . 1aN5p21~a!

and hence

E
ã1

v i5 (
k51

N E
a
f i~l,mk!dl,

where (l,mk)PGN are theN preimages oflPG1 . It is clear that(k51
N f i(l,mk) is a single-valued

function onG1 . As v i is a holomorphic differential onGN anddl is the holomorphic differential
on G1, then (k51

N f i(l,mk) is a holomorphic function onG1 and hence a constant. Asv i is a
normalized basis of holomorphic forms, then* ã1

v i50 for i>2, and hence

(
k51

N E
a
f i~l,mk!dl5 (

k51

N

f i~l,mk!E
a
dl[0, ~l,m!PGN , i>2.

Therefore,

(
k51

N

f i~l,mk![0, i>2,

which combined with~4.2! implies that

f i~`N!50, i>2

and hence the vectorV is colinear to~1,0, . . . ,0!. In fact V is equal to this vector, becaus
qi(t)PG15C/$Z1tZ%. Finally, we may always suppose thatU5(0,U2 , . . . ,UN). Indeed the
Calogero system~1.1! is invariant under the translation

qi→qi2V1t.

h
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4A. M. Perelomov, ‘‘Completely integrable classical systems connected with semisimple Lie algebras,’’ Lett. Math.
1, 531–540~1977!.

5C. Jacobi, ‘‘Vorlesungen u¨ber Dynamik,’’ which Jacobi gave at 1842–1843 at Ko¨nigsberg University; these lecture
were edited by Clebsch and published in Berlin, Reimer, 1866 .
 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



olution

ms,’’

6352 J. Math. Phys., Vol. 40, No. 12, December 1999 L. Gavrilov and A. M. Perelomov

Downloaded
6J. Liouville, ‘‘Note sur les e´quations de la dynamique,’’ J. Math. Pures Appl.20, 137–138~1855!.
7M. A. Olshanetsky and A. M. Perelomov, ‘‘Geodesic flows on symmetric spaces of zero curvature and explicit s
of the generalized Calogero model for the classical case,’’ Funct. Anal. Appl.10, 237–239~1976!.

8M. A. Olshanetsky and A. M. Perelomov, ‘‘Explicit solutions of some completely integrable Hamiltonian syste
Funct. Anal. Appl.11, 66–68~1977!.

9I. M. Krichever, ‘‘Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems ofn particles on
line,’’ Funct. Anal. Appl.12, 59–61~1978!.
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