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Letqs,q5, ...,y be the coordinates dfl particles on the circle, interacting with
the integrable potentlaIJ<kp(qj—qk), whereg is the Weierstrass elliptic func-
tion. We show that every symmetric elliptic functiondn,q,, . . . ,qQy iS @ mero-
morphic function in time. We give explicit formulas for these functions in terms of
genusN—1 theta functions. ©1999 American Institute of Physics.
[S0022-24889)01512-1

I. INTRODUCTION

The elliptic Calogero syster,

d2
EQi 2 9'(di— i=12....N (1.2

is a canonical Hamiltonian system, describing the motionNoparticles on the circleSt
=R/wZ, weR, with Hamiltonian(energy

1 N N
=5 2 P2 pla=av, (1.2
2 = 1<k
wherep () =g (q|w,w") is the Weierstrass elliptic function
p(glw,0")= 2 (gtmo+ne’) 2 o'lo&R. 1.3
mneZ

Denote byl'; the elliptic curveC/{2wZ+2w'Z} with period lattice generated byw2and 2v'.
The HamiltonianH is invariant under the obvious action of the permutation gréyp so the
phase space of the compexified system is the cotangent buh¢®&'T';) of the Nth symmetric
productSVT; .

It is known that this system has two Lax representatifRefs. 1, 2, also see Ref. 3 for
detail9. The Lax operatot definesN integrals of motior ,(p,q) =k~ *tr(L¥),k=1,... N. It was
proved in Ref. 4 that these integrals are in involution and hence this system is completely inte-
grable in the Jacobi—Liouville sen3é.

The Krichever Lax pair has a spectral parameter. This means that the equations of motion of
the system under consideration are equivalent to the matrix equation

iL(N)=[LN),M(M)], (1.4
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whereL(N)=L(p,q; \) andM(\)=M(p,q; \) are two matrices of orddX,

{LV}jk=p; Sjti (1= 8jk) (qj— ., N); (1.5
{M()\)}jkzajk<;j 9(Qj—a)—e(N) |+ (1= 6) ' (d;—ayx, N); (1.9
a(q—X\) _
Cb(q,?\):mexﬂé(?\)w, (1.7
1 2
cr(q)=q1m_[n’ (1— wq )ex;{wq +5 wq ) } (1.8
_o'(q) B ,
§(Q)——U(q) , Omp=Mo+ne’.

As it was shown by Kricheverthe equations of motion may be “linearized” on the Jacobian of
the spectral curve

IN={(\,u):f(\,u)=det(L(\)— ul)=0}. (1.9
Namely, let
0(Z|B): 2 ewi(N,BN)+27Ti(N,Z>, ZECN (110
NezN

be the Riemann theta function with period matBixwhere
B=(B;), B=B!, ImB>0, (xy)=2 Xy, i,j=1,...N.
i

It has been shown by KricheVethat, if B is the period matrix of the curvEN, then for suitable
constant vectort),V,We CN and for a fixed parametér= C, the equation

O(Ug+Vt+W)=0, qeC (1.11)

has exactlyN solutionsq=q;(t) on the Jacobian Jad'l) of the curvel'N. The functionsy; (t)
provide solutions of the elliptic Calogero systéinl). The equatior(1.11) for these solutions is,
however, not explicit and seems to be not well understood.

The aim of the present paper is to give “the effectivization” of these formulas based on the
projection method by Olshanetsky and Perelofifosf explicit integration of the equations of
motion in the rational and the trigonometric cases, as well as on the algebro-geometric approach
of Krichever®?

II. EXPLICIT SOLUTIONS

LetI'y be a genud Riemann surface which is atsheeted covering of an elliptic cur¥g ,

m

It follows from a theorem of Weierstragsee, for example, Refs. 10, 11, 12, and 13, Theorem 7.4
that the period matrix of the curvé’y in a suitable basis has the form,B), where
I =diag(1,1,..,1), and
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T Kk

—_ - 0 ... o0

N N

k

N b22 b23 b2N

B=| N (2.2)

O b32 b33 b3N

0 by, bnys ... by

for a suitable positive integde Consider the Riemann theta functiex,t) = 6(x,t|B), wheret
=(ts,tp, ... tn_1), (1) eCN. We have

O(X+ 1) = 0(x,1), 0(x+ 7,t)=e 2mNx—miNTgy ¢} j=[—1 (2.3

and therefore for any fixedl the function 6(x,t) is an elliptic theta function of ordeN.}* In
particular it has exactlN zeros onl";=C/{Z+ 7Z} which we denote by;(t), i=1,2,...,N.

Lemma 2.1: The following identity holds:

7 . 61/(0)
— log 6(x,t|B)= X—=X;(t)|7)+N ,
2109 00xB) 2, p(x=x(0]7) 3610)
wherg?®
1/2
0.(x|7)=6 12 (x| 7).
Proof: The relations
O1(x+1)=—01(X), 0,(x+ 7)=—e 27X~ 77g (x) (2.9
compared tg2.3) imply that
( A(x,t) )2 25
M3 61 (x=%(1)) '
is @ meromorphic function ix on I'y which has no poles, and hence it is a constamix). It
follows that
3 | A(x,t) 0
—lo =0.
ax2 O 63 (x— (1))
Finally we use that
&2
p(X)=— P logo(x), 61(x)=c exp(7x?) o(X), (2.6)
where
A
" 603(0)
andc is a suitable constant. O
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Theorem 2.2: The Krichever curve™ is an Nsheeted covering of an elliptic curdg,
=Cl{Z+ 7Z}. There exists a canonical homology basis and a normalized basis of holomorphic
one-forms o™N, such that the corresponding period matrix df takes the forn(l,B), where

I =diag(1,1,..,1),and

T 1
— — 0 0
N N
1
N b22 b23 b2N

B=| N (2.7
0 b32 b33 b3N
0 bN2 bN3 e bNN

In the same basis the vectors U and V(inl]) read
U=(1,0,...,0,V=(0\V,,... V). (2.9

A direct proof(without using the Weierstrass theoreaf the above Theorem will be given in the
last section. From now on we make the convention tha&t 2 so the period lattice of ; is

Z+7Z, 1=20'l2w=2w'.

Corollary 2.3: The symmetric functions

N
fk(t>=i:El W (qi(1)

are meromorphic in.tExplicit formulas for them are obtained from Lemma 2.1,

folt) ” log 6(x,1)] N %1(0)
=— 10 X! =0 1
o= 0k 0 =% 3050
k+2
fk(t)=(—1)kﬁxk+2 log O(x,t)|x=0, k>0,

where
t:(V2t+W2,V3t+W3, P IVNt+WN)'

Our next construction is motivated by Refs. 7, 8, and 2. Let us define the function

i oeq) o aegi)
Fon =11 ogetqm O Gy & am=0. @9

where
gj(t), teC, j=12,...N,
is a solution of the elliptic Calogero system.

Lemma 2.4: Kx,t) is a meromorphic function in x ohi; and meromorphic function in t on
C, explicitly given by
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O(UX+Vi+W)

Fox,H)=[—61(0)] N—F——. (2.10
L= 62(0)] ]01(X)N0(Vt+W)
Proof: We already noted that the functid®.5) is a constant irx, and hence
o(x,t) B 6(0t)
ML 163 (x=x,(1) 165 (=xi (1)
This combined with(2.8) gives
L 101 (x—qi(t) y O(UX+VE+W)
I 1 01(ai(1)) 6(Vt+W)
O
The expansion of(x,t) on the basis of first order theta functions jxndefines N—1)
meromorphic functions in the variableg, . .. ,qy which are also meromorphic functions in

with only simple poles. Hence we can take them as new “good” variables. The expansion of
F(x,t) can be obtained by making use of the addition formulas for elliptic functions. In the case
N=2, we have the following “addition formula®

__ox=@ox+tq)
F(x,t)= 2(x)0%(q) P(x)—p(a), (2.19

which generalizes for arbitrafy in the following way
Lemma 2.5: For any=(q;,dz, - - - .dn).X, such thatzq;=0 define

F(x,q)=f[1:((;)—;(q(;j)), (2.12
1 pla)  e'a) ... 9N gy
AQ) = (N-1)1det 1 p@ 9@ ... N3y  1s
1 p(Un-0 ¢'(dn-1) - 9N Ian-1)
The following identity holds:
1 e ') o pNTAX
E O A(Q) = de 1 p@)  ¢'@ ... ™3 | (14
1 plan-0) o'(an-y) - 9™ Py

Remark:The substitutiorx=qy in (2.14) gives the following addition formula for the Weier-
strassp-function:

1 p(@) ¢ (@) ... pMN"2(qy)
1 ' cooptNTA

de 9(d2)  ¢'(d2) 1Y (g2) —0. (2.15
1 ey ¢'an) ... oM Dy
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Proof: For fixed g=(q4,05, . ..,dy) the functions in the left and right-hand side of the
identity (2.14) are meromorphic irx on the elliptic curvel’; . Both of them have a pole of order
N atx=0 and simple zeros at=q4, ... ,qn_1 . It follows that their ratio is a first order elliptic
function, and hence a constantxnTo compute this constant we use thgx)=x+ ..., p(X)
=1/x%+ ..., andthen compare the Laurent series of the two functions in a neighborhogrd of
=0. O

Note finally that if for fixedq and g holds F(x,q)=F(x,q), then up to a permutatioq

=4q. Therefore there is a one-to-one correspondence between the coefficigntéxpfin the
expansion ofF(x,q), and the points of theN—1)th symmetric power of the elliptic curve
'\ {0}. In particular every meromorphic function on this symmetric power is a rational function
in the above coefficients. This implies the following:

Corollary 2.6: Let f(x) be a meromorphic function on the elliptic curVg, and let S be a

symmetric rational function in N 1 variables. If g(t),q.(t), ... ,qn(t), 2g;=0 is a solution of
the elliptic Calogero system, then(1%q,(t),f(d»(t)), ... ,fn_1(an-1(t))) is a meromorphic
function in t

The further analysis of the explicit formulas for the solutions of the elliptic Calogero system
can be based on Lemma 2.4, Lemma 2.5, and the identity

F(x,t)=F(x,q(1)).

Consider the seemingly trivial case of two particl®s<2). Let us give first an explanation
of the Krichever formula1.11) for the solutionsg,(t)= —q»(t). Putq;—qg,=q andp;=—p,
=p. The HamiltonianH becomesH (p,q)=p?+¢(q), and the reduced Hamiltonian system is

d d
aq=2p, &p=—p’(q), (q,p)eT*I'y. (2.16

The Lax matrixL is

p id(q,\)
i®(—q,\) —p

and the corresponding spectral polynomial

L(N)=

de(L(\)— ul)=p?=p?+@(q,M)P(—q,\)=u?—p*+p(N) —p(a)=u’+p(\)—H(p,q)
defines a spectral curve
To={(p,\):p?+p(N)=h}.

Suppose that=H(p,q) is fixed in such a way, that the meromorphic functipf\) —h has two
distinct zeros o’ . The spectral curvé', is a double ramified covering over the elliptic curve
I'y with projection mapwm:I'y—I';:(u,\)—A\. It follows thatI', is a genus two curve with
holomorphic differentials

d\
a)1=d)\, Wo=—"".

On the other hand', is identified to the orbit

{(p,q) e T*I'y=:H(p,q)=h}

under the map

(P,d)— (a,N).

Downloaded 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 40, No. 12, December 1999 The elliptic Calogero system 6345

Consider further the embedding of the orbit into its Jacobian variety Jake)

(2.17

P Pd\
F2—>Jac(F2):P—>(f dh, —)
Po

Po M

By the Riemann theoreff, the curvel',CJac(,) defines a divisor which coincides, up to
addition of a constant, with the Riemann theta divisdc Jac(",) on the Jacobian variety

Jac(’,).
Let (p(t),q(t)) be a solution of the elliptic Calogero system, with initial condition

(p(tg),qa(ty)) =Py. Taking into consideration that
dA
7=2dt, dr=dq, (\,u)el’y,

formula(2.17) takes the form
T =CXT13 (p(1),q(t))— (2t —2to,q(t) —q(to)) e JagI',). (2.18
It follows that there exist constant vectab,ce €2 such that
f(aq(t)+bt+c)=0. (2.19

Of course these constants depend on the choice of symplectic homology basis and the choice of
normalized basis of holomorphic one-forms. Namely, dgb be two loops onl';, such that

m Ya)={a;,a,}, 7 }(b)={b;,b,}, wherea, ,b; represent an integer symplectic homology
basis onl';: aj°bj=&j;, a°a;=0, bj°b;=0. Then,

[ o [of o
ay ap by b,

d\ dn d\ dn
a, M a, v o by M

If we define a new symplectic basis
51: a;t+a, ,52: bl_ b2 ,51: bl ,52: ao
and normalize the two holomorphic one-forms as

d\ dv dh dM/u

d\— = , —— —,
fa’iT* dn 2fad)\ M fazd)\//.l,

then the period matrix of , takes the form

1.0 mf2 12
0 1 12 102

where

[l Ja M
= ,To= .
JadN""2 [p AN u

1

This, together with2.18 implies that
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= ! 0 —( ! 0) b= 0;
lrpan”) lzrat) ‘( ToydN

Finally the vectorc is arbitrary and plays the role of initial condition. The functie(x,t) defined
in (2.9 takes the form

Fixt) = — o(x—q(t)) o(x+q(t)) 2.20

o?(x)a?(q(t))

and henc®'’
F(x,t)=p(X)—p(1). (2.20)

So the elliptic functionp (q|w,®’), and also

62(qlk) 63(qlk) 63(qlk)
~ , CI’\2( K)~ , dn2( K)~
#2(qlk) RIS PO Rk

sre(q,k) (2.22

are “good” variables(in the sense that they are meromorphic)inThe equation of motion for
them takes a very simple form. We get

sr(g,k)=1—a?+a?sr(yt,K), (2.23
where

h—1 - 1
2_ _ 2 2_ 2
al=—p=. y=2(h=kd), K= k2 (2.24)

One can easily show that the even functionsak) and dn @,k) (but not sn §,k)) are “good”
variables and we get as®in

cn(g,k)=acn(yt,k), (2.25
dn(q,k)=Bdn(yt,k), b=(k/k)a. (2.26

[lI. REDUCTION OF THETA FUNCTIONS

The reduction theory was elaborated by Weierstrésese, for example, Ref. 10and
Poincare'1? Consider first the casd=2. The Riemann theta function associated with the Rie-
mann matrix(2.7) has the form,

0(21,2,)= E explim[Bnin;+2n;z1}, i,j=1,2, (3.1

n;j ,nJ
where
Bllz 7'1/2, 822: 7'2/2, 812: BZl: 1/2

A straightforward computation gives
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|

+2n,2,

[ ond n3
0(z1,2,)= 2 exp im 71?+n1n2+727+2n121+2n222

ny,No

2
n;

7'22

|
e
3

= > exp[ia-r[27-1k§+4klzl]}exp{i7r

ky,npeZ
n3 1
7'274'2 n,+ =

27'1 2

+ 2 exp{iﬂ-

ky,npeZ

1\? 1
kl+§ +4 k1+§ Zl

T2

2 + 02(221|27'1) 64

Z

= 05(224|12,) 93( Z;

where 6, ,0,,65, and 6, are defined by formulas,

01(Z| T) =0

/2] *
(zlm)=2q¥*> (—1)"q""* Y sinf(2n+1)7z];
1/2_ n=1

1/2 >
0,(z|7)=6 0 (z|)=2q"> "D cos[(2n+1)7Z];
n=1

0 * )
63(z]7)=6 0 (zZl)=1+2>, q" cog2mnz); q=expim7);
n=1
0 ” 5
04(z|T)=10 (z,7)=1+22, (—1)"g™ cos(2mnz).
1/2 n=1

So in this case, the equatidi{z,,z,) =0 is equivalent either to

Adn(2z,|47;) dn(z,|7,) +cn(2z,|47,) =0,

or to
Adn(2z,]47,) dn(zy|71) +cn(22z,/47,) =0,
where
_ 03(0]471) 050 77)
02(0|471) 04(0|75)
or

dn(21| Tl) =B dn(2i22+ K|n7"2)
Let us give also a more symmetric form of the theta divisor for this case,

dn(2z,,ky) dn(2z,,k,) +dn(2z; k) cn(2z,,k,) +cn(2z, k) dn(2z,,k>)
- Cn(221 Vkl) Cn(222 ,kz) = 0

Z

6347

|

(3.2
(3.3
(3.9

(3.9

(3.6)

3.7)
(3.9

(3.9

(3.10

Using the constrainf(ax+ bt +c¢)=0 and takingz,=q, z,=(1/2)K +iyt, we get once again

(2.25 and(2.26).

Consider now the case of arbitraly Let 6(z;,2,, . . . ,zy|B) be the Riemann theta function

with period matrix as in Theorem 2.2. In a quite similar way we get
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N—-1
021,25, ..., ZN)= ;O 0(21) ©(2y, . .. Zn), (3.11)
where
j/IN
0j(zl)=0[ 0 (Nzy|N27)), (3.12
0 0o --- 0 ~
®j(22""1ZN):® ]/N 0 -« 0 (Zz,...,ZN|B). (313

In the above formulaB is the right lower N—1)X(N—1) minor of B (2.7), and the theta
functions with fractional characteristics are defined, for example, in Refs. 19,18,14,13. A reduc-
tion formula similar to(3.11), but containingN? terms, can be found in Ref. 13, Corollary 7.3.

IV. GEOMETRY OF THE SPECTRAL CURVE

In this section we prove Theorem 2.2.
LetI'y be a genud\ Riemann surface which is atsheeted covering of an elliptic cuntg

FN_W’Fl- (4.2

Choose two loops,b which generate the fundamental groap(I';,P), PeI';, and denotd’,
=I";\{aUb}. Let us suppose for simplicity that the ramification points of the projection map

are distinct. Connect further these ramification points by non-intersectingyafg, . The set

7 YT'1\U,y,) is a disjoint union of\ “sheets.” To reconstruct the topological coverifi1)
we have to indicate how the opposite borders of the gutare glued, as well how the opposite
borders of thgpreimages of thecutsa andb respectively are glued together. Thus there is only
a finite number of topologically different coveringd.1). It may be shown that the Krichever
curve (1.9 is of genus at mosiN, and for generic [§; ,q;) its genus is exactliN. The projection
map 7 (4.1) is defined then byr(w,\)=\. From now on we shall always assume that,();) are
generic. In the case whdry is the genudN Krichever spectral curvél.9), andIl'; is the elliptic
curve with half periodso,w’, the covering(4.1) has a number of special properties.

To prove(2.7) we shall need the following:

Proposition 4.1: Lef" be the Krichever curvé€l.9). There exist loops @ e 7,(I"1,P) such
that, if I';=T";\{aub}, al';=achea b1, then (i) = (I';) is connected; (ii)y= *(4I;) has
exactly N connected components.

On its hand the above proposition implies the following:

Proposition 4.2: There exists loopstee 7(I';,P), PeT'4, such that

W_l(a):{al,az, P ,aN},ﬂ'_l(b):{bl,bz, e ,bN},
where a,b; represent a symplectic homology basis of(Hy,Z), aj°bj=6;; .

Proof of (2.7) assuming Proposition 4.Ret dA be the holomorphic one-form di;. Then
the pullback#*d\ of d\ is a holomorphic one-form oh'y and we have

[ wrore [ [ wone [
a; a bi b

Choose the following new integer homology basidgf

51:a1+a2+ . .aN, Elzbl,
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52=Nb1—b1—b2— P _bN! Ezzaz,
and
a,=bi—b1, Bi:az_ai, i:3,...,N.

This is also a symplectic basis bf;(I'y,2), as

N N
z aiABi:E ai/\b
i=1 i=1

Let wq,w,, ...,wy be a basis of holomorphic one-forms bR, such that
dA J 5
W= y | 0= 05 .
1 fald)\ i ] 1]

Then B=(f5jwi)i'\"j‘N is a symmetric matrix with positive definite imaginary part, such that

T 1 f
wi=—, |. wi=—, |. w;=0, i=3
fBl N sz VN T

which completes the proof of 2.7.

Proof of Proposition 4.1First of all let us note that if the claim holds for some Krichever
curve, then it holds for any Krichever curve. Indeed, the space of all such curves is parameterized
by CM~! (the first integrals of the integrable Hamiltonian systéin#)) and hence it is connected.
Let us fix a generic pointg; ,q;), i=1,2,...,N. Itis enough to prove now our proposition for at
least one pair of half-periods,’, for example forjw|,|w’|~c.

Let us represeni,CC=P'\ o as the interior of the period parallelogram formed hiy &nd
20'. When|w|—%, |o'|—%, the boundarydl';=acboa™tcb~* tends tox e P!, andI"; tends to
F1 C. In a similar way we define the “limit” curvel“N which is explicitly described in the
following way. When |w|—®, |o'|—%, then on any compact set the Weierstrass functions
a(q),£(9),#(q) tend toq,1/q,1/g? respectively, and hence the functidr(q,\) tends to

a-A /
q—)\exp(q N).

Denote the corresponding “limit” Lax matrix1.5 by L*(\). The curvelv"‘;fl is the affine curve

{(\,p):det L (\) — uly) =0}

completed withN distinct points corresponding te=0. The last holds true if and only if the
ramification points of the projection map (4.1) tend to some values different from=0 (it is
easy to check that this is a generic condition pn,€;)). We shall also suppose that these values
are different from\=c (another generic conditionUnder these restrictions one may prgas in
Ref. 2 thatf“N" is a Riemann sphere, wilk puncturegthe preimages ok=«). We obtain thus a
map :P'— P! with 2N—2 ramification points different froma=0,%. The fact thatz~1(C) is
connected implies the pait of the proposition, and the fact that (=) is a disjoint union oiN
points implies(ii).

Proof of Proposition 4.21 et us represent'y by a graph withN vertices. A vertex corre-
sponds to a sheésee the beginning of this sectipran edge connects two vertices if and only if
the corresponding sheets have a common ramification point. Propositian 4iplies that the
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graph is connected, ar{d) that each sheet contains an even number of ramification points. As the
total number of ramification points id\— 2 and each point belongs to exactly two sheets, then in

addition the graph of y is simply connected.
Consider now the punctured curve

lefl\UiRil

whereR, ,i=1,...,2N—2 are the ramification points of. The fundamental group,(T';,P) has
a natural representation in the permutation gr&Jp Namely, when a poinQ € I'y makes one

turn along a loopm e m(T';,P), the setm%(P)= UiNzlPi is transformed to itself. If the loops
andb induce the identity permutation, ther *(a), = (b) are disjoint unions oN loops with
obvious intersections, which implies Proposition 4.2. If not, we shall maaliéynd b.

Letce 71(T';,P) be a loop which makes one turn around some ramification point @hen
¢ induces a permutation which exchanges the two sheets containing the ramification point. As the

graph ofl"y is connected then all such transpositions generate the permutationrodipus for
suitablec the loopacc induces the identity permutation. It remains to substiateacc and to
note thata=acc in 7(I'1,P).
Proof of (2.8) (compare to Ref. 13, Theorem 7.14t 0 I'; be the pole of»(z). We denote
77'_1(0):{001'002'...,00,\‘}, OOiEFN.
In a neighborhood of each poimt; on the Krichever curvé(\,«):f(\,u) =0} the meromorphic
function u has the following Laurent expansidn:

1
p=--+0(1), i=12...N-1,

N—1
p=——+0(1).

It follows that if

is a differential of first kindi.e., holomorphigon Ty, thenuw; is a differential of third kind with
simple poles ate; . The sum of the residues pfw; is equal to

N—1
2, fi(=) = (N=1)fj(2) =0. (4.2
Let Q) be a differential of second kind dny with a single pole atey,. Such is for example the
differential
2
me=p(N)
a()\,ﬂ)

If moreover() is normalized as

[a-o
8

then it is well known that the vectdr is collinear to
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fﬁlﬂ’ﬁszﬂ' o ’JENQ>

(see, for example, Ref. 13Equivalently, if we apply the reciprocity law to the differentials of
second and first kind), w;, we get thatV is colinear to

(fa(en), faleon), ..o Fn(en).

On the other hand
a=a;ta,t ... tay=7 %a)

and hence

Jalwi:kil fafi()hﬂk)d)\.

where (,u,) e I'y are theN preimages ok eT'; . Itis clear tha}_,f;(\, ) is a single-valued
function onI"; . As w; is a holomorphic differential o'y, anddX is the holomorphic differential
onTy, then=},fi(\,u) is a holomorphic function of’; and hence a constant. As; is a
normalized basis of holomorphic forms, thép w;=0 fori=2, and hence

N N
> ffi<x,uk>dx=2 ﬁ(x.uk)deso, (\wely, i=2
k=1 Ja k=1 a

Therefore,

N
> filh,m)=0, =2,
k=1

which combined with(4.2) implies that
fi(OON):O, |>2

and hence the vectov is colinear to(1,0,...,0. In fact V is equal to this vector, because
gi(t) e 'y=C/{Z+ 7Z}. Finally, we may always suppose thdt=(0,U,, ... ,Uy). Indeed the
Calogero systenil.l) is invariant under the translation

gi—q;—Vit.
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