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Abstract We study degree polynomial perturbations of quadratic reversible Hamiltonian
vector fields with one center and one saddle point. It was recently proved that if the first
Poincae—Pontryagin integral is not identically zero, then the exact upper bound for the
number of limit cycles on the finite planeris— 1. In the present paper we prove that if the
first Poincae—Pontryagin function is identically zero, but the second is not, then the exact
upper bound for the number of limit cycles on the finite plangis21). In the case when

the perturbation is quadratie & 2) we obtain a complete result—there is a neighborhood
of the initial Hamiltonian vector field in the space of all quadratic vector fields, in which
any vector field has at most two limit cycles.

1. Introduction
To study the limit cycles in small polynomial perturbations of Hamiltonian vector fields in
a plane, the inspection of higher-order derivatives of the first return mapping is necessary
in the two following cases:
(&) when the Hamiltonian vector field is degenerate in some sense (e.g. has a symmetry),
(b) when the degree of the perturbation is greater than the degree of the original
Hamiltonian system.
The reason is that in both of these cases, the second varddi@n of the displacement
function
d(h, &) = eMi(h) + e°Ma(h) + €3 M3(h) + - - -

has more isolated zeros and, respectively, produces more limit cycles than the first one,
etc. The order of the PoinaarPontryagin function (2) (also called Melnikov integral),

giving the possible maximum number of zeros, is known only in the quadratic case and
in the symmetric cubic case (when the perturbed field possesses central symmetry). Thus,
the cyclicity under arbitrary quadratic perturbations of the period annulus of a reversible
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guadratic Hamiltonian vector field is determined by the second P@rParitryagin
integral, except for the Hamiltonian triangle, whose cyclicity is determined by the third-
order variation 14, 23. In general, the order of the PoineatPontryagin integral which
generates a module of Abelian integrals of a maximal possible dimension is unknown, and
its determination appears to be a difficult task involving the solution of the corresponding
center-focus problem and viewing the structure of the related center manifold. On the
one hand, the calculation of the higher-order Poiee®0Ontryagin integrals depends on
the relative cohomology decomposition of polynomial one-forms which, in the presence
of symmetry, includes (as a rule) not only polynomials but also some elementary functions
such as log, atanx or even non-elementary functions. One can expect that all the
functions in such a decomposition should take the form of quasi-polynomials (that is
polynomials ofx, y, H and certain transcendental functions which have elementary
functions as their derivatives). The presence of such functions in the relative cohomology
decompositions is a reflection of the specific geometry of the ovals from the corresponding
period annulus. The above discussion on the different structure of the decompositions
suggests that each particular class needs to be considered separately.

In the present paper we determine the exact upper bound for the number of zeros of the
second-order PoincarPontryagin integralf2 (k) related to smalkth-degree polynomial
perturbations

x=Hy,+ef(x,y,e),

. 1
y=—Hy +eg(x,y,¢), (@)
of a Hamiltonian vector fielX g

i = Hy,

. 2

y = _HX1 ( )

corresponding to a reversible cubic HamiltoniBnwith just one saddle point and one
center. The familyH of such Hamiltonians is a codimension-one set in the two-
dimensional space of all cubic Hamiltonians possessing a center. We establish that the
number of isolated zeros a¥f>(k) in a suitable complex domai® does not exceed
2n — 2, which in particular yields for the quadratic case= 2 that any small quadratic
perturbation ofXy, H € ‘H can produce no more than two limit cycles. Using the notion
of a Chebyshev system, this means that the-{21)-dimensional space of second-order
Poincae—Pontryagin functions correspondingrih-degree polynomial perturbations of
Xy, H € H, forms a Chebyshev system for anyWe note that according to a recent result
in [7], the first-order Poinca~Pontryagin functions/1 (k) also belong to a Chebyshev
system (of dimension).

Consider the quadratic Hamiltonian vector figdgy where

H = %yz + %xz - %x3 +axy2, ae (—%, 0).
Our main results are the following.

THEOREM1. Let K c R? be a fixed compact domain. M1(h) # 0, then(1) can have
in K at mostn — 1 limit cycles fore small enough. M1 (k) = 0 but M2(h) # 0, then(l)
can have at mos2(n — 1) limit cycles inK . Both bounds are exact.
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FIGURE 1. Separatrix level curves of the reversible Hamiltonian (13). The corresponding separatrix cycles are:
(i) an elliptic segmen(—oco < a < —3); (i) a saddle-loop(~3 < a < 1); (iii) a hyperbolic segment

(1 < a < o0); (iv) a homoclinic loop through a degenerate saddie= —%); (v) a triangle(e¢ = 1); and
(vi) a parabolic segmerit: = c0).

THEOREM2. There is a neighborhootf of X i in the space of all quadratic vector fields,
such that anyX € U/ has at most two limit cycles.

We recall that whem = 0 (the Bogdanov-Takens case), the analogue of Theorem 1
follows from the results of PetrowB, 19, Mardesi¢ [17] and Li and Zhang1#6]. It should
also be noticed that the Chebyshev property does not hold for some of the reversible cases
[11]. Hence, one cannot expect that Theorem 1, as stated above, will also take place for
the remaining reversible Hamiltonians which correspond to vaiuesR \ (—%, 0), see
Figure 1.

The paper is organized as follows. In the next section we obtain the cohomology
decomposition formulae of polynomial one-forms related to the cubic Hamiltonians. We
use them in 83 to derive, by the Frani®e recursive procedur8][ an appropriate formula
for the second variatioMz (k) of the Poincagreturn map. In 84 we estimate, following
[7], the zeros ofM» and the limit cycles of (1) provided/>(h) # 0. Then the result
from Theorem 2 is a consequence of the fact that in the quadratia:casg, the second
variation of the Poincarimap in the considered case suffices to determine the limit cycles
in the whole planel4].

2. The relative cohomology decomposition of polynomial one-forms
In this section we describe the decompositions of polynomial one-forms related to cubic
Hamiltonians. First we recall the normal form for all cubic Hamiltonians having a center.
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LEmMA 1. [1Q] Any cubic HamiltoniarH (x, y) having a critical point of a center type at
the origin can be put via affine changes of variables into a normal form

H(x,y) = 1% +y?) — 323+ axy? + 1by® (3)
where the parametets b are taken from the set
Q={-3<a<10<b<(l-a)l+2)"?

The closed ovals around the center at the origin are defined for Hamiltonian values
heX = (0 %). The generic Hamiltonians are presented by the internal pointQ of
and the non-generi@reversiblg ones—nby the points on its boundary.

Asin [10, 17, introduce the following basic one-forms
wx = xydx, wy= %yzdx, )3 :xzydx, wy =ydx

and the corresponding integrals

X:/ wx, Y:/ wy, L=/ oL, M= oy, heX, (4)
8(h) 8(h) 8(h) §(h)

whered (k) is the oval contained in the level sgf = h}. We shall consider polynomial
one-forms of degree,

w=gx,y)dx — f(x,y)dy = Z bijx'y) dx — Z aijx'yl dy. (5)
i+j<n i+j<n
Below, [r] denotes the entire part of Our first result in this section is the following.

PROPOSITIONL. Assume that:(b? — 44®) # 0. Then any polynomial one-form of
degreen can be decomposed into

w=dQ(x,y)+q(x,y)dH + §(H)wx + n(H)wy + A(H)or + n(H)oy  (6)

where Q(x, y) and ¢(x, y) are polynomials of degrees + 1 and n — 2 respectively
and &(h), n(h), A(h), u(h) are polynomials of degreedegé = degn = [(n — 2)/3],
degir = [(n — 3)/3] anddegu = [(n — 1)/3].

Proof. The above proposition already follows frois| [ Indeed, consider the Petrd®{/]
modulePy. Recall that this is the quotient vector space formed by polynomial one-forms
w = Pdx + Qdy, modulo one-formd A + B dH whereA, B are polynomialsPy is a
module over the ring of polynomiais[4], under the multiplicatiomR (%) - @ = R(H)w.

As the monomials 1x, y, x2 form a base of the quotient vector spatke, y1/(H., Hy),

then the monomial one-formsy, wy, wr, wy, Where

doy =xdy Ndx, dwy =ydy Ndx, da)szzdy/\dx, doy =dy Ndx

generate the free rank-four moddig . Thus in the decomposition (6) the real polynomials
&, n, A, u are unique, and their degrees satisfy

3degt +2<n, 3degn+2<n, 3degh+3<n, 3degu+1l=<n.
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The polynomialsQ(x, y) and g(x, y) are not unique, but they can be chosen in the
following way. If g, H denote the highest-order homogeneous parig ahd H, then

dg A dH = 0 implies thatj is a polynomial of . Therefore, after an addition of an
appropriate polynomial itf to ¢, we may always suppose thaj Ad H = 0. In particular
we getdeg <n —2,and hencedeg <n + 1. |

PROPOSITION2. Assume thaH is generica(b?>—4a®) # 0and the polynomial one-form
(5) satisfiesfa(h) o = 0in X. Thenw is decomposed into

w=dQx,y)+qx,y)dH (7)
whereQ(x, y), g(x, y) are as in(6).
Proof. This follows from B, Proposition 3.2]. |

Proposition 2 is no longer true for the non-generic Hamiltonians. Below we formulate
the analogue of Proposition 2 concerning the non-generic case. Let us point out that except
for the parabolic segment (given lay= % b = %), all non-generic Hamiltonians can
be obtained from (3) by setting = 0 anda € R, cf. [10, Figure 1] and Figure 1 above.

The parabolic segment then corresponds te co. However, fora € R \ [—%, 1], the
closed orbits around the center at the origin exist for Hamiltonian valu&s+n (0, &;),

h; = (3a + 1)/24a8 instead ofE = (0, %) (h; is the level corresponding to the invariant
line). We also note that the parabolic segment and the Bogdanov-Takens Hamiltonian
(a = b = 0in (3)) were not considered in Proposition 1 becakfse 4a® = 0 for them.

The Hamiltonian triangle (given by = 1, » = 0 in (3)) is another very specific case and

the proposition below does not hold for it as well.

PrROPOSITION3. Assume that is a non-generic Hamiltonian presented in (3)&y- 0,
a € R\ ({0} U {1}). Then any polynomial one-form (5) is decomposed into

o =d[Q(x,y) +n(H)In(L+ 2ax)] + [q(x,y) — n1(H) In(1+ 2ax)]dH
+E(H)wx + MH)op + n(H)oy (8)

wheren1(H) = (2a)~Y(H — h;)n(H) and all other functions are the same ag(®. If, in
addition, f; ) @ = 0in X, thenw is decomposed into

o =d[Q(x,y) +n1(H)In(L+ 2ax)] + [q(x, y) — ny(H) In(1 + 2ax)]dH. (9)

Proof. Considering the decomposition (6), we observe that # 0, then by symmetry,
wy can be expressed as

1 1+3 1+ 3a 1 1+ 3a
a)y=d|:—x3— +od o, 2 x+—<H—ﬁ)ln(1+2ax)]

18" 242" T 243" " 2
1

— ~In(1+ 2ax) dH
2a

1
=dF(x,H) — R In(1+ 2ax)dH.
a
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Using this identity, we can expreg$H) wy in the formdz — zyd H wherez(x, H) =
F(x, Hyn(H). Replacing this in (6) we immediately obtain the representation in (8). If
fa(h) o = 0, then (8) implies
E(h)X (h) + A(h)L(h) + uw(h)M(h) = 0.
Using [7, Proposition 8], we conclude thath) = A(h) = w(h) = 0. m|
Remark.(1) Whena = 1, b = 0 (the Hamiltonian triangle case), there are three axes of
symmetry in the Hamiltonian vector field. For this case (8) should be replaced with
w=d[0(x,y) + E(H)IN(A — x + yv/3) + n1(H) IN(1 + 2x)]

+1q(x, ) — & (H)IN(L = x + y/3) — nj(H) IN(1 + 2x)]| dH

+ A(H)or + p(H)oy (10)
wherey(H) = —J5(H — §)§(H), m(H) = 3(H — §)ln(H) — =£(H)], andQ, g, efc.

are as above.
(2) Inthe Bogdanov—Takens case= b = 0 the decomposition takes the form (3]

w=dQ(x,y,H)+qx,y, H)dH + §(H)wx + n(H)wy (11)

whereQ(x, y, H) andq(x, y, H) are weighted polynomials of degrees- 1 andn — 1,
respectively (the weight attached to y is one whilst the weight attached # is two),
and deg = [(n — 2)/2], degu = [(n — 1)/2]. We are not going to derive (10) and (11) in
detail here.

3. The first return map
We consider polynomial perturbations of the Hamiltonian vector figid

)‘CZH)‘+8f(xay58)a

. 12
)’:_Hx+58(x’ya8)’ ( )
whereH is the non-generic cubic Hamiltonian

H= %(x2 + y2) — %xs + axyz, a#0,1 (13)

In (12), f andg are polynomials inc, y of degrees at most with coefficients depending
analytically on the small parameter In a more general context, assume that we have
a Hamiltonian vector fieldl H = 0 with a center at the origin which is surrounded by
continual set of periodic orbit&(h), h € X (the period annulus). Using the energy level
H = h as a parametek, € 3, we can express the first return mapping of (12) in ternis of
ande. The corresponding displacement functitin, ¢) = P (h, ¢)—h has arepresentation
as a power series i

d(h, &) = eM1(h) + Mo (h) + e3Mz(h) + - - - (14)

which is convergent for small. The zeros inT of the first non-vanishing Poinoa+
Pontryagin functionM (k) in (14) determine the limit cycles in (12) emerging from the
period annulus. Moreover, if the period annulus is surrounded by a homoclinic loop
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through a non-degenerate saddle, then the P@r&amtryagin functions can be used
to determine the total number of limit cycles produced from the center itself, the period
annulus around it and the homoclinic loop.

To obtainMy (k) in an appropriate form, we write system (12) as a Pfaff equation
dH — w1 — %wp —--- =0 (15)

wherew; = g;(x, y)dx — fj(x,y)dy withdegf; < n, degg; <n. Then

Mai(h) = / 01
§(h)

and, by (8), in our particular case (13), this yields
Mi(h) = E(h) X (h) + A(h)L(h) + p(h)M(h). (16)

We next recall in brief the Frangse’s recursive procedur8][for a calculation of the
higher-order PoincarPontryagin functionas; (k) related to a perturbation (12) of any
Hamiltonian vector field having a period annulus (&f.12, 23).

PrRoPOSITION4. (Franoise’s recursion formuled]) Assume that for somie> 2 one has
My(h) =--- = M;_1(h) =0in (14). Then

My (h) = / Qi 17)
8(h)
where
Qr=w1, Qun=wy+ Z riwj, 2<m<k, (18)
i+j=m

and the functions;, 1 < i < k — 1 are determined successively from the representations
Qi =dR; +ridH.

Proof. The proof is by induction o, cf. [12, 2]. The fact that the module of Abelian
integrals is free (see e.d]) yields that

/ Q=0 Q; =dR;+ridH
5(h)

with certain functionsR;, r; that are analytic in a neighborhood&f:) (in fact the proof
uses only the fact that they are uniformly Lipschitz continuous there). We multiply (15)
with 1+ er1 + - - - + e¥r and then rearrange the monomials in the resulting expression to
obtain

dH +&(ridH — w1) + 2(radH — riw1 — w2) + - - -

+e* (e dH — ri—101 — -+ — riog—1 — ax) = 0 (.
By (18), this is equivalent to

dH — (edR1 +€%dRo+ - + e YdRe_1) + " (e dH — Qi) = O (5.
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We integrate the last equation along the phase curtieat was used to define the first
return map. Taking into account the fact that

/ dH =d(h, ), /(s dR1+&’dRy+ -+ "1 dRi_1) = O (51
Y 14

(the last estimate follows from the fact thédth, ¢) = O(¢*) and from the Lipschitz
condition, cf. L2]), we obtain

d(h,e) = &* / (% —rrdH) + 0 (M = gk/ Qi + 0 (M. m
Y 3(h)
Applying Franoise’s procedure to determiré, (k) for our particular case (13), we
point out that the argument presented above also holds in a neighborhood of the saddle
loop contained iIfH = %}, because the functiorfg andr; are Lipschitz continuous near
the loop, as can be seen from (8). Recall that (13) has a saddle Iom&f()#%, 1) only.
Introduce the following rational one-formr and the related integral,

_ydx
© 14 2ax’

WR R(h) = / WR, heXx. (19)
S§(h)

PrRoOPOSITIONS. The second-order PoincérPontryagin function for (12) and (13) can
be expressed in the form

Mz(h) = &(h) X (h) + o(h)R(h) + pn(h) M (h) (20)

whereé, o, u are polynomials of degreds2n — 4)/3], [(2n — 2)/3] and [(2n — 3)/3],
respectively.

Proof. We have to integrate the one-forfly = w2 + riwi. From (9) we obtain (the
calculations below are performed modulo one-forhis+ p dH)

riw1 = [g — ny(H) IN(L+ 2ax)1d[Q + n1(H) In(1 + 2ax)]
=qdQ + Qd[ny(H)In(1+ 2ax)] + qd[n1(H) In(1 + 2ax))
=qdQ + 2a(1+ 2ax) [ Qn}(H) + qni(H)) dx.
We then use the definition gf and the equalities
H — h; = (14 2ax)Ho(x,y), degHp= 2,
O(x,y) = (1+ 2ax)Qo(x,y) + Q1(y), degQo=n, degQ1=n+1

to obtain

, 01(y)dx

Qo =w2+qdQ +[Qon(H)+ QHon (H) + qHon(H)]dx + n(H)m
o Q1(y)dx
=Q2+ n(H)il_i_ ax

with degQ, = 2n — 2. From the identity

2H — 2h 1 1+ 3a 1+ 3a

2 ! 2

- "Ny~ 2 + =R(x, H
1+ 2ax 3ax 6a2 * 1243 (x, #)

y
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we have
¥, R(x, H)dx = y*[dR(x, H) — 0y R(x, H)dH] = y* dy?> — y*ou'R(x, H) dH,

therefore (modulo formgP + pdH)

1+2ax 1+2ax

k+2 k
y<edx  y*Rdx X R R K c2
_ ) dx = d
1+2ax+ 2a =Y CO+Clx+l+2ax x

with some constants. This means

Q1(y)dx

H
n(H) 1+ 2ax

= Qo+ cen(H)wg

where ded2, = 2n — 2 andc is a constant. We now apply Proposition 3te= Qo + Q22
and then integrate alorégh), which yields

Ma(h) = /5(h> Q2 =&)X (h) + A(W)L(h) + (h)M (h) + cn(h)R(h)
where deg = [(2n — 4)/3], degh = [(2n — 5)/3] and degi = [(2n — 3)/3]. Finally, we
use the identity
L(h) = AX(h) + B(h — h))R(h) + CM(h) (A, B, C = constants (21)
to obtain (20). |
PROPOSITIONG. The derivativeM,(h) can be expressed as
My(h) = E(h)X'(h) 4+ &(h)R'(h) + ji(h)M' (h)
where&, § and i have the same degrees@g and u, respectively.
Proof. Denotel = col(R, M, X). Thenl (h) satisfies a Picard—Fuchs system of the form
| = (Ah +B)I (22)

and the validity of the result in the proposition depends on whether the néatsixower-
triangular. To check this, we can use the system (1.5) derivetbn Ve need to perform
an affine change of variables there, taking: 1 + 2ax, y = y/+/2. Then the integrals in
[15) become, the modulo is an inessential factdr,1, Jo, J1) = (R, M, 2aX + M). After
elementary algebraic manipulations, we obtain a system in the form of (22), with

3 0 0
A= ( —3(a +1)/4 3/2 0) .

9a+51—-a)/l6a (a—1)/8a 1
Using this, the proof follows by differentiation of (20). |

Consider the linear spa@®' of polynomial one-forms of degreex,

w=wE) =01+ 2w+, o =g y)dx— fix,y)dy.
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Lety (¢) be the trajectory of the vector fiettH = w beginning at pointxg, 0) and ending
at (x1, 0) whereH (xo, 0) = h € ¥ andx; is determined by the first return mapping. Let
y(0) = 8(h). Define the space of integrals

d
1= Mi“(h):Mi"(h):—/ () heX, we Py,
de Jy )

e=0
Clearly, MY’ (h) = faao w1. In other words,M] is the linear space of the (first-order)
Poincae—Pontryagin functions corresponding to /ah degree polynomially perturbed
Hamiltonian vector fieldl H = 0. LetZ; : P" — M] be the linear mapping defined
by w — M{(h). ThenZ; is an isomorphism of modules (s&g [/] whereZ; is studied in
detail). This implies that dinM] = n and

- Span{th(h), k < ["—32} RL(h) k < [%ﬂ KM (R, k < [”—;1“ .

Next, define the space

n w . w 1d2
n= MG (h): My (h) = 5@/;/(6)0)(8)

,heX we KerIl}.

e=0

By Proposition 4,M5(h) = /23(11) w2 + riw1 and thereforeM?} is the space of the
second-order Poinca+rPontryagin functions corresponding to ile degree polynomially
perturbed Hamiltonian vector fielldH = 0 by one-forms from the linear subspace Ker

ProPOSITION7. We have
. n k 2n—4 k 2n — 2
(i) 5 = Spant i X (), k < | =—— |, KR, k < | ==,

KM (), k < [?“

(i) dim M2 =20 — 1.

Proof. Denote byL the linear span in the right-hand side. By Proposition 5, we only have
to prove that the (nonlinear) mappifg : KerZ; — L defined byw — MZ%(h) is onto.
Take the following one-forrw € P": w = sw1 + 2wy wherew; has the form (9) with

0 = (&1(H) — E1(h)xy + (M (H) — A1(h)x2y + (ua(H) — ua(hp)y + 1oy,
q=x/TtHOT3DB = j(mod 3, nu(H) = %(H — hp).
a

and w2 = &(H)wx + A2(H)wr + u2(H)wy. In the above formulaeg; etc. are
polynomials of degrees respectively dgg= [(n — k)/3], deghx = [(n — k — 1)/3],

deguir = [(n —k+1)/3] andug is a constant. Then cleardy € KerZ; and one can easily
check (which we do next) that given any elemé(i) € £, then an appropriate choice of

the coefficients im exists so thad5’(h) = I(h). To see this, we use the formulae derived

in proving Proposition 5 above. For our particular perturbation, one obtains (as before, the
calculations are modulo form&P + pdH)

w2 +riw1 = w2 + 01 + LowR
— (G + DH TP () 4 A (H)x®H 4 pa(H)x /1y dx
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where dego; = n. Forj = 0, this yields immediately

w2 + riw1 = @1 + powr + (G2 — H" " Pepwx + (o — H" 30w,
+ (u2 — H" 7 Punoy
which together with (21) yields (20) with all the 2 1 coefficients irg, o, 1 independently
free. Forj = 1, one obtains
w2 + riw1 = @1 + powr + (E2 — 2H" Y Pupwy + (h — 2H" 3w,
+ (2 — 2H "33 1 x3wy. (23)

We can then use the identity

(1 + 2ax)*3R(x, H)ydx = (14 2ax)*y[dR(x, H) — 4y R(x, H) dH]
=1+ Zax)ky dy2 = —%ak(l + 2ax)k71R(x, H)ydx

(with k£ = 2) to obtain the representation formula
2la+1 2la —9
4002 X" 204

Replacing this expression in (23) and using (21), we obtain formula (20) with all the
coefficients independent. Finally, if= 2, one obtains

3w ——E(H—h)a) +
M = 10 )M

wr,.

Wy + riw = @1 + powr + E — 3H 31 x3wx + (k2 — 3BH D84 wp
+ (u2 — 3H" 130y

and the proof is completed in a similar way. |

4. Non-oscillation of Abelian integrals

Let
Xy =Hy o — H
H="%x x8y
be a reversible quadratic Hamiltonian vector field with one center and one saddle point. In
the normal form (13), any such Hamiltonian is presentiby (—%, 0]. In what follows,
we will assume that # 0. Recall that the case= 0 is the Bogdanov—Takens case.

Consider the following real vector space
An = {J(h) : J(h) = EMX'(h) + oW R (h) + ()M (1)} (24)

whereég, o, u are polynomials of degreg2n — 4)/3], [(2n — 2)/3] and[(2n — 3)/3],
respectively, and the Abelian integraigh), R(h), M (h) are defined in (4), (19).

THEOREM 3. The vector spacel,, has the Chebyshev property in the complex domain
D= (C\[%, 00) (see Figure 2). This means that any functibit) € A, can have at most

dimA, —1=degé +dego +degu +2=2n—2

zeros inD.
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hz=hg hy=0 ho=1/6

v

FIGURE 2. The complex domai® = C\[A5, 00).

The proof repeats the arguments 6f. [To find a bound for the number of the zeros of
J(h) € A, in D we shall evaluate the increment of the argument ¢t) = J(h)/M’(h)
along the boundary db. We recall that),, is a holomorphic form and hendé’(z) does
not vanish §]. Denote byF* (k) (F~(h)) the analytic continuation of (k) on [%, 0),
along a path contained in the half-plane/im> 0 (Imik < 0). The Picard—Lefschetz
formula implies

E(M)Wsy s, (0, )y) + 0(h) Wy, s, (g, @)

ImFE(h) = +
m k) M2

(25)

wheres1, 82 are the cycles vanishing af = 0, 42 = % and
[, 01 [5, @2 '
[, 01 [5, @2

An elementary computation shows that on a fixed leve| Bet= i} the following identity
holds

Ws,.s,(w1, w2) = d6t<

—2dy =4a(h — h)wk + %a)/z + %wﬁw (26)
where

hi = Ba+1)/24a® and wz = (3a — Dwyx — dawy.
As the one-form/, is of the second kindl[1] thenw’, is of second kind too (that is to say
it has no residues). The Picard-Lefschetz formula impliesWhas, (v, @),) is single-
valued ink on the complex plan€, and (26) implies that it has a single polelat h;.
Moreover for|h| ~ oo the asymptotic estimates

\M'(h)| ~ [h|7Y3, |R'(h)| S |h|7%3

imply that (& — hy) Ws, s,(w, @},) is bounded ink. It follows that it is a (non-zero)
constant. Furthermore, the reciprocity law for meromorphic differentials of the first and
third kind [6] implies

Py
Ws, 5, (0, 0)y) = 21/ —1Regp, oy /;D wy 27)

where the path of integration frola_ to P, in the integral above is contained if, cut
along the loops1(h) andsz(h) as shown on Figure 3. Note that Resy is a purely
imaginary constant in, andf,f,[i+ w), is also imaginary. We finally obtain the fact that on
the interval[ g, oo) the following holds:

p(h)
h—h

- Py
Ws,.5,(00, @)y) = é(h)/P why + (28)
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FIGURE 3. The vanishing cycles on the elliptic curig, —% <a<O.

whereg (h), o(h) are real polynomials of the same degreé asdo, respectively. Denote
by B, the vector space of functions (28), continued analytically to holomorphic functions
in the larger domai©\ (—oo, i1]. Obviously

dimB, = dim& + dimg + 2.

LEMMA 2. The space of functiorts,, is Chebyshev in the complex dom&ig(—oo, 41].
Proof. For|h| ~ oo we have that

p(h)
h—h

- Py
‘é(h)/ wy +
P

grows no faster thafk|9€% -1 and its imaginary part o—oo, i;) equals

+Eh) | )y, 8(h) € HL(H X(h),Z).
8(h)
As the one-formw), is holomorphic on the elliptic curve), then the integrays(h) W)y,
cannot vanish. The argument principle implies that the number of the zeros minus one
(because of the pole at= h;) of every function of the form (28) is less than or equal to
degé) + degd) — 1+ 1 = dimB, — 2, in the domairC\ (—oo, h1). i

Proof of Theorem 3Let R be a large enough constant ande a small enough constant.
Denote byD’ the set obtained by removing the small digk — i2| < r} fromD N {|k| <
R}. To estimate the number of zeros of the Abelian intedi@l) in D’ (and hence iD)
we shall evaluate the increment of the argument of the fundtigr) along the boundary
of D'.

Along the circle{|2| = R} we have

|F(h)| S |h|%e9"
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and on the intervalhz, co) the imaginary part of'(h) has at most ding +dimo + 1 zeros
(Lemma 2). The change of the argumenti:), whenh makes one turn along the circle
{Ilh — ha| = r}is close to zero (or negative, seéd)[ This yields that the increment of the
argument off' (k) along the boundary @@’ is less than or equal to

2w (degu + degé + dego + 1+ 1) < 2n(degA4, — 1)
and hence” (k) can have at most ditd,, — 1 zeros inD’. O

To count limit cycles in a neighborhood of the homoclinic trajectory we shall need a
stronger version of Theorem 3, which establishes the Chebyshev property of thedspace
in a domain which ‘includes’ the poiritz = .

Recall the following definition of ‘multiplicity’ at: = k3 (see B, 8, 17).

Definition 1. We shall say that a functiod (k) € A, has a zero of multiplicityk at
h2 € 9D, provided that in a neighborhood bf= A5 in D either the estimate

[J(h)| ~ |(h — h2)*?log(h — hp)|, wherek is even; (29)
or the estimate
[J(h)| ~ |(h — ho)*~D/2| wherek is odd; (30)
holds.
The next theorem establishes the generalized Chebyshev property of thedspace

THEOREMA4. If the Abelian integral/ (h) € A, has a zero of multiplicity at i, = %,
then it has at mogdim A,, — k — 1 zeros inD. This bound is exact.

The proof of this theorem is the same as of Theorem 3 and therefore will be omitted.
The reader may consul][for the details.

Proof of Theorem 1If M1(h) # 0 then Theorem 1 is proved i, Theorem 3]. Suppose
that M1(h) = 0, butMz(h) # 0. If ¢ is sufficiently small, then the compact domdin
contains only two critical points of the vector field defined by (12). Whea — 0, a
limit cycle of X, tends either to a periodic solution &fy, or to the origin(0, 0), or to
the homoclinic loodH = %}. According to the PoincarPontryagin criterion the number
of limit cycles of X, which tend to a periodic solution of ; is less than or equal to the
number of zeros of the Abelian integré> (k) on the open intervalo, %), which equals
the number of the zeros of(h) = M,(h) (asM2(0) = 0). The number of limit cycles
which tend to the origin is less than or equal to the ordeWefr) ath = 0 minus one, and
hence equals the order @{k) ath = 0. Finally, to evaluate the number of limit cycles
which tend to the homoclinic trajectory &fy, we shall use Roussarie’s theore?d In
our case it can be stated in the following form (s&g):

Suppose that limit cycles tend to the homoclinic trajectory as—> 0. Then
the Abelian integral (1) has a zero of multiplicity at leagtath = h».

Theorem 4 implies Theorem 1. m|
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Proof of Theorem 2If in (14) all My (h) vanish, then the perturbation is integrable and
hence has no limit cycles. So I&f; () be the first non-vanishing function in (14). Then
eitherk = 1 ork > 2 andM;(h) has the same structure &% (k) [14]. Moreover, the
unperturbed fieldXyz corresponding to (13) has no degenerate critical point at infinity,
provideda € (—%, 0). Therefore no limit cycle can appear from infinity as a result of

a quadratic perturbation. Thus Theorem 2 is a consequence of Theorem 1, applied for
n=2. O
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