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Abstract. We study degreen polynomial perturbations of quadratic reversible Hamiltonian
vector fields with one center and one saddle point. It was recently proved that if the first
Poincaré–Pontryagin integral is not identically zero, then the exact upper bound for the
number of limit cycles on the finite plane isn− 1. In the present paper we prove that if the
first Poincaré–Pontryagin function is identically zero, but the second is not, then the exact
upper bound for the number of limit cycles on the finite plane is 2(n−1). In the case when
the perturbation is quadratic (n = 2) we obtain a complete result—there is a neighborhood
of the initial Hamiltonian vector field in the space of all quadratic vector fields, in which
any vector field has at most two limit cycles.

1. Introduction
To study the limit cycles in small polynomial perturbations of Hamiltonian vector fields in
a plane, the inspection of higher-order derivatives of the first return mapping is necessary
in the two following cases:
(a) when the Hamiltonian vector field is degenerate in some sense (e.g. has a symmetry),
(b) when the degree of the perturbation is greater than the degree of the original

Hamiltonian system.
The reason is that in both of these cases, the second variationM2(h) of the displacement

function
d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · ·

has more isolated zeros and, respectively, produces more limit cycles than the first one,
etc. The order of the Poincar´e–Pontryagin functionMk(h) (also called Melnikov integral),
giving the possible maximum number of zeros, is known only in the quadratic case and
in the symmetric cubic case (when the perturbed field possesses central symmetry). Thus,
the cyclicity under arbitrary quadratic perturbations of the period annulus of a reversible
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quadratic Hamiltonian vector field is determined by the second Poincar´e–Pontryagin
integral, except for the Hamiltonian triangle, whose cyclicity is determined by the third-
order variation [14, 22]. In general, the order of the Poincar´e–Pontryagin integral which
generates a module of Abelian integrals of a maximal possible dimension is unknown, and
its determination appears to be a difficult task involving the solution of the corresponding
center-focus problem and viewing the structure of the related center manifold. On the
one hand, the calculation of the higher-order Poincar´e–Pontryagin integrals depends on
the relative cohomology decomposition of polynomial one-forms which, in the presence
of symmetry, includes (as a rule) not only polynomials but also some elementary functions
such as logx, atanx or even non-elementary functions. One can expect that all the
functions in such a decomposition should take the form of quasi-polynomials (that is
polynomials ofx, y, H and certain transcendental functions which have elementary
functions as their derivatives). The presence of such functions in the relative cohomology
decompositions is a reflection of the specific geometry of the ovals from the corresponding
period annulus. The above discussion on the different structure of the decompositions
suggests that each particular class needs to be considered separately.

In the present paper we determine the exact upper bound for the number of zeros of the
second-order Poincar´e–Pontryagin integralM2(h) related to smallnth-degree polynomial
perturbations

ẋ = Hy + εf (x, y, ε),

ẏ = −Hx + εg(x, y, ε),
(1)

of a Hamiltonian vector fieldXH

ẋ = Hy,

ẏ = −Hx,
(2)

corresponding to a reversible cubic HamiltonianH with just one saddle point and one
center. The familyH of such Hamiltonians is a codimension-one set in the two-
dimensional space of all cubic Hamiltonians possessing a center. We establish that the
number of isolated zeros ofM2(h) in a suitable complex domainD does not exceed
2n − 2, which in particular yields for the quadratic casen = 2 that any small quadratic
perturbation ofXH , H ∈ H can produce no more than two limit cycles. Using the notion
of a Chebyshev system, this means that the (2n − 1)-dimensional space of second-order
Poincaré–Pontryagin functions corresponding tonth-degree polynomial perturbations of
XH , H ∈ H, forms a Chebyshev system for anyn. We note that according to a recent result
in [7], the first-order Poincar´e–Pontryagin functionsM1(h) also belong to a Chebyshev
system (of dimensionn).

Consider the quadratic Hamiltonian vector fieldXH where

H = 1
2y2 + 1

2x2 − 1
3x3 + axy2, a ∈ (−1

2, 0).

Our main results are the following.

THEOREM 1. Let K ⊂ R2 be a fixed compact domain. IfM1(h) 6≡ 0, then(1) can have
in K at mostn − 1 limit cycles forε small enough. IfM1(h) ≡ 0 butM2(h) 6≡ 0, then(1)

can have at most2(n − 1) limit cycles inK. Both bounds are exact.
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FIGURE 1. Separatrix level curves of the reversible Hamiltonian (13). The corresponding separatrix cycles are:
(i) an elliptic segment(−∞ < a < − 1

2); (ii) a saddle-loop(− 1
2 < a < 1); (iii) a hyperbolic segment

(1 < a < ∞); (iv) a homoclinic loop through a degenerate saddle(a = − 1
2); (v) a triangle(a = 1); and

(vi) a parabolic segment(a = ∞).

THEOREM 2. There is a neighborhoodU ofXH in the space of all quadratic vector fields,
such that anyX ∈ U has at most two limit cycles.

We recall that whena = 0 (the Bogdanov–Takens case), the analogue of Theorem 1
follows from the results of Petrov [18, 19], Mardešić [17] and Li and Zhang [16]. It should
also be noticed that the Chebyshev property does not hold for some of the reversible cases
[11]. Hence, one cannot expect that Theorem 1, as stated above, will also take place for
the remaining reversible Hamiltonians which correspond to valuesa ∈ R \ (−1

2, 0), see
Figure 1.

The paper is organized as follows. In the next section we obtain the cohomology
decomposition formulae of polynomial one-forms related to the cubic Hamiltonians. We
use them in §3 to derive, by the Franc¸oise recursive procedure [3], an appropriate formula
for the second variationM2(h) of the Poincar´e return map. In §4 we estimate, following
[7], the zeros ofM2 and the limit cycles of (1) providedM2(h) 6≡ 0. Then the result
from Theorem 2 is a consequence of the fact that in the quadratic casen = 2, the second
variation of the Poincar´e map in the considered case suffices to determine the limit cycles
in the whole plane [14].

2. The relative cohomology decomposition of polynomial one-forms
In this section we describe the decompositions of polynomial one-forms related to cubic
Hamiltonians. First we recall the normal form for all cubic Hamiltonians having a center.
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LEMMA 1. [10] Any cubic HamiltonianH(x, y) having a critical point of a center type at
the origin can be put via affine changes of variables into a normal form

H(x, y) = 1
2(x2 + y2) − 1

3x3 + axy2 + 1
3by3 (3)

where the parametersa, b are taken from the set

� = {−1
2 ≤ a ≤ 1, 0 ≤ b ≤ (1 − a)(1 + 2a)1/2}.

The closed ovals around the center at the origin are defined for Hamiltonian values
h ∈ 6 = (0, 1

6). The generic Hamiltonians are presented by the internal points of�

and the non-generic(reversible) ones—by the points on its boundary.

As in [10, 11], introduce the following basic one-forms

ωX = xy dx, ωY = 1
2y2 dx, ωL = x2y dx, ωM = y dx

and the corresponding integrals

X =
∫

δ(h)

ωX, Y =
∫

δ(h)

ωY , L =
∫

δ(h)

ωL, M =
∫

δ(h)

ωM, h ∈ 6, (4)

whereδ(h) is the oval contained in the level set{H = h}. We shall consider polynomial
one-forms of degreen,

ω = g(x, y) dx − f (x, y) dy =
∑

i+j≤n

bij x
iyj dx −

∑
i+j≤n

aij x
iyj dy. (5)

Below, [r] denotes the entire part ofr. Our first result in this section is the following.

PROPOSITION1. Assume thata(b2 − 4a3) 6= 0. Then any polynomial one-formω of
degreen can be decomposed into

ω = dQ(x, y) + q(x, y) dH + ξ(H)ωX + η(H)ωY + λ(H)ωL + µ(H)ωM (6)

whereQ(x, y) and q(x, y) are polynomials of degreesn + 1 and n − 2 respectively
and ξ(h), η(h), λ(h), µ(h) are polynomials of degreesdegξ = degη = [(n − 2)/3],
degλ = [(n − 3)/3] anddegµ = [(n − 1)/3].
Proof. The above proposition already follows from [5]. Indeed, consider the PetrovR[h]
modulePH . Recall that this is the quotient vector space formed by polynomial one-forms
ω = P dx + Qdy, modulo one-formsdA + B dH whereA,B are polynomials.PH is a
module over the ring of polynomialsC[h], under the multiplicationR(h) · ω = R(H)ω.
As the monomials 1, x, y, x2 form a base of the quotient vector spaceR[x, y]/〈Hx,Hy〉,
then the monomial one-formsωX,ωY , ωL, ωM , where

dωX = x dy ∧ dx, dωY = y dy ∧ dx, dωL = x2 dy ∧ dx, dωM = dy ∧ dx

generate the free rank-four modulePH . Thus in the decomposition (6) the real polynomials
ξ, η, λ, µ are unique, and their degrees satisfy

3 degξ + 2 ≤ n, 3 degη + 2 ≤ n, 3 degλ + 3 ≤ n, 3 degµ + 1 ≤ n.
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The polynomialsQ(x, y) and q(x, y) are not unique, but they can be chosen in the
following way. If q̃, H̃ denote the highest-order homogeneous parts ofq andH , then
dq̃ ∧ dH̃ ≡ 0 implies thatq̃ is a polynomial ofH̃ . Therefore, after an addition of an
appropriate polynomial inH to q, we may always suppose thatdq̃ ∧dH̃ 6≡ 0. In particular
we get degq ≤ n − 2, and hence degQ ≤ n + 1. 2

PROPOSITION2. Assume thatH is generic,a(b2−4a3) 6= 0 and the polynomial one-form
(5) satisfies

∫
δ(h) ω ≡ 0 in 6. Thenω is decomposed into

ω = dQ(x, y) + q(x, y) dH (7)

whereQ(x, y), q(x, y) are as in(6).

Proof. This follows from [5, Proposition 3.2]. 2

Proposition 2 is no longer true for the non-generic Hamiltonians. Below we formulate
the analogue of Proposition 2 concerning the non-generic case. Let us point out that except
for the parabolic segment (given bya = 1

2, b = 1√
2
), all non-generic Hamiltonians can

be obtained from (3) by settingb = 0 anda ∈ R, cf. [10, Figure 1] and Figure 1 above.
The parabolic segment then corresponds toa = ∞. However, fora ∈ R \ [−1

2, 1], the
closed orbits around the center at the origin exist for Hamiltonian values in6 = (0, hl),
hl = (3a + 1)/24a3 instead of6 = (0, 1

6) (hl is the level corresponding to the invariant
line). We also note that the parabolic segment and the Bogdanov–Takens Hamiltonian
(a = b = 0 in (3)) were not considered in Proposition 1 becauseb2 − 4a3 = 0 for them.
The Hamiltonian triangle (given bya = 1, b = 0 in (3)) is another very specific case and
the proposition below does not hold for it as well.

PROPOSITION3. Assume thatH is a non-generic Hamiltonian presented in (3) byb = 0,
a ∈ R \ ({0} ∪ {1}). Then any polynomial one-form (5) is decomposed into

ω = d[Q(x, y) + η1(H) ln(1 + 2ax)] + [q(x, y) − η′
1(H) ln(1 + 2ax)] dH

+ ξ(H)ωX + λ(H)ωL + µ(H)ωM (8)

whereη1(H) = (2a)−1(H − hl)η(H) and all other functions are the same as in(6). If, in
addition,

∫
δ(h)

ω ≡ 0 in 6, thenω is decomposed into

ω = d[Q(x, y) + η1(H) ln(1 + 2ax)] + [q(x, y) − η′
1(H) ln(1 + 2ax)] dH. (9)

Proof. Considering the decomposition (6), we observe that ifb = 0, then by symmetry,
ωY can be expressed as

ωY = d

[
1

18a
x3 − 1 + 3a

24a2
x2 + 1 + 3a

24a3
x + 1

2a

(
H − 1 + 3a

24a3

)
ln(1 + 2ax)

]

− 1

2a
ln(1 + 2ax) dH

= dF(x,H) − 1

2a
ln(1 + 2ax) dH.
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Using this identity, we can expressη(H) ωY in the formdz − zH dH wherez(x,H) =
F(x,H)η(H). Replacing this in (6) we immediately obtain the representation in (8). If∫
δ(h) ω ≡ 0, then (8) implies

ξ(h)X(h) + λ(h)L(h) + µ(h)M(h) ≡ 0.

Using [7, Proposition 8], we conclude thatξ(h) = λ(h) = µ(h) ≡ 0. 2

Remark.(1) Whena = 1, b = 0 (the Hamiltonian triangle case), there are three axes of
symmetry in the Hamiltonian vector field. For this case (8) should be replaced with

ω = d[Q(x, y) + ξ1(H) ln(1 − x + y
√

3) + η1(H) ln(1 + 2x)]
+ [q(x, y) − ξ ′

1(H) ln(1 − x + y
√

3) − η′
1(H) ln(1 + 2x)] dH

+ λ(H)ωL + µ(H)ωM (10)

whereξ1(H) = − 1√
3
(H − 1

6)ξ(H), η1(H) = 1
2(H − 1

6)[η(H)− 1√
3
ξ(H)], andQ, q, etc.

are as above.
(2) In the Bogdanov–Takens casea = b = 0 the decomposition takes the form (cf. [13])

ω = dQ(x, y,H) + q(x, y,H) dH + ξ(H)ωX + µ(H)ωM (11)

whereQ(x, y,H) andq(x, y,H) are weighted polynomials of degreesn + 1 andn − 1,
respectively (the weight attached tox, y is one whilst the weight attached toH is two),
and degξ = [(n − 2)/2], degµ = [(n − 1)/2]. We are not going to derive (10) and (11) in
detail here.

3. The first return map
We consider polynomial perturbations of the Hamiltonian vector fieldXH ,

ẋ = Hy + εf (x, y, ε),

ẏ = −Hx + εg(x, y, ε),
(12)

whereH is the non-generic cubic Hamiltonian

H = 1
2(x2 + y2) − 1

3x3 + axy2, a 6= 0, 1. (13)

In (12),f andg are polynomials inx, y of degrees at mostn with coefficients depending
analytically on the small parameterε. In a more general context, assume that we have
a Hamiltonian vector fielddH = 0 with a center at the origin which is surrounded by
continual set of periodic orbitsδ(h), h ∈ 6 (the period annulus). Using the energy level
H = h as a parameter,h ∈ 6, we can express the first return mapping of (12) in terms ofh

andε. The corresponding displacement functiond(h, ε) = P(h, ε)−h has a representation
as a power series inε,

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · (14)

which is convergent for smallε. The zeros in6 of the first non-vanishing Poincar´e–
Pontryagin functionMk(h) in (14) determine the limit cycles in (12) emerging from the
period annulus. Moreover, if the period annulus is surrounded by a homoclinic loop
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through a non-degenerate saddle, then the Poincar´e–Pontryagin functions can be used
to determine the total number of limit cycles produced from the center itself, the period
annulus around it and the homoclinic loop.

To obtainMk(h) in an appropriate form, we write system (12) as a Pfaff equation

dH − εω1 − ε2ω2 − · · · = 0 (15)

whereωj = gj (x, y) dx − fj (x, y) dy with degfj ≤ n, deggj ≤ n. Then

M1(h) =
∫

δ(h)

ω1

and, by (8), in our particular case (13), this yields

M1(h) = ξ(h)X(h) + λ(h)L(h) + µ(h)M(h). (16)

We next recall in brief the Franc¸oise’s recursive procedure [3] for a calculation of the
higher-order Poincar´e–Pontryagin functionsMk(h) related to a perturbation (12) of any
Hamiltonian vector field having a period annulus (cf. [3, 12, 21]).

PROPOSITION4. (Françoise’s recursion formula [3]) Assume that for somek ≥ 2 one has
M1(h) = · · · = Mk−1(h) ≡ 0 in (14). Then

Mk(h) =
∫

δ(h)

�k (17)

where

�1 = ω1, �m = ωm +
∑

i+j=m

riωj , 2 ≤ m ≤ k, (18)

and the functionsri , 1 ≤ i ≤ k − 1 are determined successively from the representations
�i = dRi + ri dH .

Proof. The proof is by induction onk, cf. [12, 21]. The fact that the module of Abelian
integrals is free (see e.g. [7]) yields that∫

δ(h)

�i = 0 ⇔ �i = dRi + ri dH

with certain functionsRi , ri that are analytic in a neighborhood ofδ(h) (in fact the proof
uses only the fact that they are uniformly Lipschitz continuous there). We multiply (15)
with 1 + εr1 + · · · + εkrk and then rearrange the monomials in the resulting expression to
obtain

dH + ε(r1 dH − ω1) + ε2(r2 dH − r1ω1 − ω2) + · · ·
+ εk(rk dH − rk−1ω1 − · · · − r1ωk−1 − ωk) = O(εk+1).

By (18), this is equivalent to

dH − (ε dR1 + ε2 dR2 + · · · + εk−1 dRk−1) + εk(rk dH − �k) = O(εk+1).
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We integrate the last equation along the phase curveγ that was used to define the first
return map. Taking into account the fact that∫

γ

dH = d(h, ε),

∫
γ

(ε dR1 + ε2 dR2 + · · · + εk−1 dRk−1) = O(εk+1)

(the last estimate follows from the fact thatd(h, ε) = O(εk) and from the Lipschitz
condition, cf. [12]), we obtain

d(h, ε) = εk

∫
γ

(�k − rk dH) + O(εk+1) = εk

∫
δ(h)

�k + O(εk+1). 2

Applying Françoise’s procedure to determineM2(h) for our particular case (13), we
point out that the argument presented above also holds in a neighborhood of the saddle
loop contained in{H = 1

6}, because the functionsR1 andr1 are Lipschitz continuous near
the loop, as can be seen from (8). Recall that (13) has a saddle loop fora ∈ (−1

2, 1) only.
Introduce the following rational one-formωR and the related integral,

ωR = y dx

1 + 2ax
, R(h) =

∫
δ(h)

ωR, h ∈ 6. (19)

PROPOSITION5. The second-order Poincaré–Pontryagin function for (12) and (13) can
be expressed in the form

M2(h) = ξ(h)X(h) + %(h)R(h) + µ(h)M(h) (20)

whereξ, %, µ are polynomials of degrees[(2n − 4)/3], [(2n − 2)/3] and [(2n − 3)/3],
respectively.

Proof. We have to integrate the one-form�2 = ω2 + r1ω1. From (9) we obtain (the
calculations below are performed modulo one-formsdP + p dH )

r1ω1 = [q − η′
1(H) ln(1 + 2ax)]d[Q + η1(H) ln(1 + 2ax)]

= q dQ + Qd[η′
1(H) ln(1 + 2ax)] + qd[η1(H) ln(1 + 2ax)]

= q dQ + 2a(1 + 2ax)−1[Qη′
1(H) + qη1(H)] dx.

We then use the definition ofη1 and the equalities

H − hl = (1 + 2ax)H0(x, y), degH0 = 2,

Q(x, y) = (1 + 2ax)Q0(x, y) + Q1(y), degQ0 = n, degQ1 = n + 1

to obtain

�2 = ω2 + q dQ + [Q0η(H) + QH0η
′(H) + qH0η(H)] dx + η(H)

Q1(y) dx

1 + 2ax

= �̄2 + η(H)
Q1(y) dx

1 + 2ax

with deg�̄2 = 2n − 2. From the identity

y2 = 2H − 2hl

1 + 2ax
+ 1

3a
x2 − 1 + 3a

6a2
x + 1 + 3a

12a3
≡ R(x,H)
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we have

yk∂xR(x,H) dx = yk[dR(x,H) − ∂HR(x,H) dH ] = yk dy2 − yk∂HR(x,H) dH,

therefore (modulo formsdP + p dH )

yk+2 dx

1 + 2ax
= ykR dx

1 + 2ax
= yk

(
R

1 + 2ax
+ ∂xR

2a

)
dx = yk

(
c0 + c1x + c2

1 + 2ax

)
dx

with some constantsci . This means

η(H)
Q1(y) dx

1 + 2ax
= �̃2 + cη(H)ωR

where deg̃�2 = 2n − 2 andc is a constant. We now apply Proposition 3 toω = �̄2 + �̃2

and then integrate alongδ(h), which yields

M2(h) =
∫

δ(h)

�2 = ξ̄ (h)X(h) + λ̄(h)L(h) + µ̄(h)M(h) + cη(h)R(h)

where deḡξ = [(2n − 4)/3], degλ̄ = [(2n − 5)/3] and deḡµ = [(2n − 3)/3]. Finally, we
use the identity

L(h) = AX(h) + B(h − hl)R(h) + CM(h) (A,B,C = constants) (21)

to obtain (20). 2

PROPOSITION6. The derivativeM ′
2(h) can be expressed as

M ′
2(h) = ξ̃ (h)X′(h) + %̃(h)R′(h) + µ̃(h)M ′(h)

whereξ̃ , %̃ andµ̃ have the same degrees asξ , % andµ, respectively.

Proof. DenoteI = col(R,M,X). ThenI(h) satisfies a Picard–Fuchs system of the form

I = (Ah + B)I ′ (22)

and the validity of the result in the proposition depends on whether the matrixA is lower-
triangular. To check this, we can use the system (1.5) derived in [15]. We need to perform
an affine change of variables there, takingx = 1 + 2ax̄, y = ȳ/

√
2. Then the integrals in

[15] become, the modulo is an inessential factor,(J−1, J0, J1) = (R,M, 2aX +M). After
elementary algebraic manipulations, we obtain a system in the form of (22), with

A =

 3 0 0

−3(a + 1)/4 3/2 0
(9a + 5)(1 − a)/16a (a − 1)/8a 1


 .

Using this, the proof follows by differentiation of (20). 2

Consider the linear spacePn of polynomial one-formsω of degreen,

ω = ω(ε) = εω1 + ε2ω2 + · · · , ωj = gj (x, y) dx − fj (x, y) dy.
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Let γ (ε) be the trajectory of the vector fielddH = ω beginning at point(x0, 0) and ending
at (x1, 0) whereH(x0, 0) = h ∈ 6 andx1 is determined by the first return mapping. Let
γ (0) = δ(h). Define the space of integrals

M
n
1 =

{
Mω

1 (h) : Mω
1 (h) = d

dε

∫
γ (ε)

ω(ε)

∣∣∣∣
ε=0

, h ∈ 6,ω ∈ Pn

}
.

Clearly, Mω
1 (h) = ∫

δ(h) ω1. In other words,Mn
1 is the linear space of the (first-order)

Poincaré–Pontryagin functions corresponding to annth degree polynomially perturbed
Hamiltonian vector fielddH = 0. Let I1 : Pn → M

n
1 be the linear mapping defined

by ω → Mω
1 (h). ThenI1 is an isomorphism of modules (see [5, 7] whereI1 is studied in

detail). This implies that dimMn
1 = n and

M
n
1 = Span

{
hkX(h), k ≤

[
n − 2

3

]
, hkL(h), k ≤

[
n − 3

3

]
, hkM(h), k ≤

[
n − 1

3

]}
.

Next, define the space

M
n
2 =

{
Mω

2 (h) : Mω
2 (h) = 1

2

d2

dε2

∫
γ (ε)

ω(ε)

∣∣∣∣
ε=0

, h ∈ 6,ω ∈ KerI1

}
.

By Proposition 4,Mω
2 (h) = ∫

δ(h)
ω2 + r1ω1 and thereforeMn

2 is the space of the
second-order Poincar´e–Pontryagin functions corresponding to thenth degree polynomially
perturbed Hamiltonian vector fielddH = 0 by one-forms from the linear subspace KerI1.

PROPOSITION7. We have

(i) M
n
2 = Span

{
hkX(h), k ≤

[
2n − 4

3

]
, hkR(h), k ≤

[
2n − 2

3

]
,

hkM(h), k ≤
[

2n − 3

3

]}
.

(ii) dimMn
2 = 2n − 1.

Proof. Denote byL the linear span in the right-hand side. By Proposition 5, we only have
to prove that the (nonlinear) mappingI2 : KerI1 → L defined byω → Mω

2 (h) is onto.
Take the following one-formω ∈ Pn: ω = εω1 + ε2ω2 whereω1 has the form (9) with

Q = (ξ1(H) − ξ1(hl))xy + (λ1(H) − λ1(hl))x
2y + (µ1(H) − µ1(hl))y + µ0y,

q = xj+1H(n−3−j)/3, n ≡ j (mod 3), η1(H) = 1

2a
(H − hl),

and ω2 = ξ2(H)ωX + λ2(H)ωL + µ2(H)ωM . In the above formulae,ξk etc. are
polynomials of degrees respectively degξk = [(n − k)/3], degλk = [(n − k − 1)/3],
degµk = [(n−k +1)/3] andµ0 is a constant. Then clearlyω ∈ KerI1 and one can easily
check (which we do next) that given any elementI (h) ∈ L, then an appropriate choice of
the coefficients inω exists so thatMω

2 (h) = I (h). To see this, we use the formulae derived
in proving Proposition 5 above. For our particular perturbation, one obtains (as before, the
calculations are modulo formsdP + p dH )

ω2 + r1ω1 = ω2 + ω̄1 + µ0ωR

− (j + 1)H (n−j−3)/3[ξ1(H)xj+1 + λ1(H)x2+j + µ1(H)xj ]y dx
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where deḡω1 = n. Forj = 0, this yields immediately

ω2 + r1ω1 = ω̄1 + µ0ωR + (ξ2 − H(n−3)/3ξ1)ωX + (λ2 − H(n−3)/3λ1)ωL

+ (µ2 − H(n−3)/3µ1)ωM

which together with (21) yields (20) with all the 2n−1 coefficients inξ , %, µ independently
free. Forj = 1, one obtains

ω2 + r1ω1 = ω̄1 + µ0ωR + (ξ2 − 2H(n−4)/3µ1)ωX + (λ2 − 2H(n−4)/3ξ1)ωL

+ (µ2 − 2H(n−4)/3λ1x
3)ωM. (23)

We can then use the identity

(1 + 2ax)k∂xR(x,H)y dx = (1 + 2ax)ky[dR(x,H) − ∂HR(x,H) dH ]
= (1 + 2ax)ky dy2 = −4

3ak(1 + 2ax)k−1
R(x,H)y dx

(with k = 2) to obtain the representation formula

x3ωM = − 3

10
(H − hl)ωM + 21a + 1

40a2
ωX + 21a − 9

20a
ωL.

Replacing this expression in (23) and using (21), we obtain formula (20) with all the
coefficients independent. Finally, ifj = 2, one obtains

ω2 + r1ω1 = ω̄1 + µ0ωR + (ξ2 − 3H(n−5)/3λ1x
3)ωX + (λ2 − 3H(n−5)/3µ1)ωL

+ (µ2 − 3H(n−5)/3ξ1x
3)ωM

and the proof is completed in a similar way. 2

4. Non-oscillation of Abelian integrals
Let

XH = Hy
∂

∂x
− Hx

∂

∂y

be a reversible quadratic Hamiltonian vector field with one center and one saddle point. In
the normal form (13), any such Hamiltonian is present bya ∈ (−1

2, 0]. In what follows,
we will assume thata 6= 0. Recall that the casea = 0 is the Bogdanov–Takens case.

Consider the following real vector space

An = {J (h) : J (h) = ξ(h)X′(h) + %(h)R′(h) + µ(h)M ′(h)} (24)

whereξ, %, µ are polynomials of degree[(2n − 4)/3], [(2n − 2)/3] and [(2n − 3)/3],
respectively, and the Abelian integralsX(h), R(h), M(h) are defined in (4), (19).

THEOREM 3. The vector spaceAn has the Chebyshev property in the complex domain
D = C\[1

6,∞) (see Figure 2). This means that any functionJ (h) ∈ An can have at most

dimAn − 1 = degξ + deg% + degµ + 2 = 2n − 2

zeros inD.
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FIGURE 2. The complex domainD = C\[h2 ,∞).

The proof repeats the arguments of [6]. To find a bound for the number of the zeros of
J (h) ∈ An in D we shall evaluate the increment of the argument ofF(h) = J (h)/M ′(h)

along the boundary ofD. We recall thatω′
M is a holomorphic form and henceM ′(h) does

not vanish [9]. Denote byF+(h) (F−(h)) the analytic continuation ofF(h) on [1
6,∞),

along a path contained in the half-plane Imh > 0 (Imh < 0). The Picard–Lefschetz
formula implies

Im F±(h) = ±ξ(h)Wδ1,δ2(ω
′
X,ω′

M) + %(h)Wδ1,δ2(ω
′
R,ω′

M)

|M ′(h)|2 (25)

whereδ1, δ2 are the cycles vanishing ath1 = 0, h2 = 1
6 and

Wδ1,δ2(ω1, ω2) = det

(∫
δ1

ω1
∫
δ1

ω2∫
δ2

ω1
∫
δ2

ω2

)
.

An elementary computation shows that on a fixed level set{H = h} the following identity
holds

−2dy = 4a(h − hl)ω
′
R + 1

3a
ω′

Z + 1 + 3a

6a2
ω′

M (26)

where
hl = (3a + 1)/24a3 and ωZ = (3a − 1)ωX − 4aωL.

As the one-formω′
Z is of the second kind [11] thenω′

R is of second kind too (that is to say
it has no residues). The Picard–Lefschetz formula implies thatWδ1,δ2(ω

′
R,ω′

M) is single-
valued inh on the complex planeC, and (26) implies that it has a single pole ath = hl .
Moreover for|h| ≈ ∞ the asymptotic estimates

|M ′(h)| ≈ |h|−1/3, |R′(h)| / |h|−2/3

imply that (h − hl)Wδ1,δ2(ω
′
R,ω′

M) is bounded inh. It follows that it is a (non-zero)
constant. Furthermore, the reciprocity law for meromorphic differentials of the first and
third kind [6] implies

Wδ1,δ2(ω
′
X,ω′

M) = 2π
√−1 ResP+ ω′

X

∫ P+

P−
ω′

M (27)

where the path of integration fromP− to P+ in the integral above is contained in0h cut
along the loopsδ1(h) andδ2(h) as shown on Figure 3. Note that ResP+ ω′

X is a purely

imaginary constant inh, and
∫ P+
P− ω′

M is also imaginary. We finally obtain the fact that on

the interval[1
6,∞) the following holds:

Wδ1,δ2(ω
′, ω′

M) = ξ̃ (h)

∫ P+

P−
ω′

M + ρ̃(h)

h − hl

(28)
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FIGURE 3. The vanishing cycles on the elliptic curve0h, − 1
2 < a < 0.

whereξ̃ (h), %̃(h) are real polynomials of the same degree asξ and%, respectively. Denote
by Bn the vector space of functions (28), continued analytically to holomorphic functions
in the larger domainC\(−∞, h1]. Obviously

dimBn = dimξ + dim% + 2.

LEMMA 2. The space of functionsBn is Chebyshev in the complex domainC\(−∞, h1].
Proof. For |h| ≈ ∞ we have that∣∣∣∣ξ̃ (h)

∫ P+

P−
ω′

M + ρ̃(h)

h − hl

∣∣∣∣
grows no faster than|h|deg%−1 and its imaginary part on(−∞, hl) equals

±ξ̃ (h)

∫
δ(h)

ω′
M, δ(h) ∈ H1(H

−1(h), Z).

As the one-formω′
M is holomorphic on the elliptic curve0h then the integral

∫
δ(h)

ω′
M

cannot vanish. The argument principle implies that the number of the zeros minus one
(because of the pole ath = hl) of every function of the form (28) is less than or equal to
deg(ξ̃ ) + deg(%̃) − 1 + 1 = dimBn − 2, in the domainC\(−∞, h1). 2

Proof of Theorem 3.Let R be a large enough constant andr be a small enough constant.
Denote byD′ the set obtained by removing the small disk{|h − h2| < r} fromD ∩ {|h| <

R}. To estimate the number of zeros of the Abelian integralJ (h) in D′ (and hence inD)
we shall evaluate the increment of the argument of the functionF(h) along the boundary
of D′.

Along the circle{|h| = R} we have

|F(h)| / |h|degµ
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and on the interval(h2,∞) the imaginary part ofF(h) has at most dimξ +dim%+1 zeros
(Lemma 2). The change of the argument ofF(h), whenh makes one turn along the circle
{|h − h2| = r} is close to zero (or negative, see [6]). This yields that the increment of the
argument ofF(h) along the boundary ofD′ is less than or equal to

2π(degµ + degξ + deg% + 1 + 1) ≤ 2π(degAn − 1)

and henceF(h) can have at most dimAn − 1 zeros inD′. 2

To count limit cycles in a neighborhood of the homoclinic trajectory we shall need a
stronger version of Theorem 3, which establishes the Chebyshev property of the spaceAn

in a domain which ‘includes’ the pointh2 = 1
6.

Recall the following definition of ‘multiplicity’ ath = h2 (see [6, 8, 17]).

Definition 1. We shall say that a functionJ (h) ∈ An has a zero of multiplicityk at
h2 ∈ ∂D, provided that in a neighborhood ofh = h2 in D either the estimate

|J (h)| ≈ |(h − h2)
k/2 log(h − h2)|, wherek is even; (29)

or the estimate

|J (h)| ≈ |(h − h2)
(k−1)/2|, wherek is odd; (30)

holds.

The next theorem establishes the generalized Chebyshev property of the spaceAn.

THEOREM 4. If the Abelian integralJ (h) ∈ An has a zero of multiplicityk at h2 = 1
6,

then it has at mostdimAn − k − 1 zeros inD. This bound is exact.

The proof of this theorem is the same as of Theorem 3 and therefore will be omitted.
The reader may consult [6] for the details.

Proof of Theorem 1.If M1(h) 6≡ 0 then Theorem 1 is proved in [7, Theorem 3]. Suppose
thatM1(h) ≡ 0, butM2(h) 6≡ 0. If ε is sufficiently small, then the compact domainK

contains only two critical points of the vector fieldXε defined by (12). Whenε → 0, a
limit cycle of Xε tends either to a periodic solution ofXH , or to the origin(0, 0), or to
the homoclinic loop{H = 1

6}. According to the Poincar´e–Pontryagin criterion the number
of limit cycles ofXε which tend to a periodic solution ofXH is less than or equal to the
number of zeros of the Abelian integralM2(h) on the open interval(0, 1

6), which equals
the number of the zeros ofJ (h) = M ′

2(h) (asM2(0) = 0). The number of limit cycles
which tend to the origin is less than or equal to the order ofM2(h) ath = 0 minus one, and
hence equals the order ofJ (h) at h = 0. Finally, to evaluate the number of limit cycles
which tend to the homoclinic trajectory ofXH , we shall use Roussarie’s theorem [20]. In
our case it can be stated in the following form (see [17]):

Suppose thatk limit cycles tend to the homoclinic trajectory asε → 0. Then
the Abelian integralJ (h) has a zero of multiplicity at leastk ath = h2.

Theorem 4 implies Theorem 1. 2
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Proof of Theorem 2.If in (14) all Mk(h) vanish, then the perturbation is integrable and
hence has no limit cycles. So letMk(h) be the first non-vanishing function in (14). Then
eitherk = 1 or k ≥ 2 andMk(h) has the same structure asM2(h) [14]. Moreover, the
unperturbed fieldXH corresponding to (13) has no degenerate critical point at infinity,
provideda ∈ (−1

2, 0). Therefore no limit cycle can appear from infinity as a result of
a quadratic perturbation. Thus Theorem 2 is a consequence of Theorem 1, applied for
n = 2. 2
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