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1. Introduction.

Let

XH = Hy
∂

∂x
−Hx

∂

∂y

be a polynomial Hamiltonian vector field. Consider a small polynomial
deformation

Xε = XH + εY + o(ε)

of XH , where

Y = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
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is a polynomial vector field of degree n, degP ≤ n, degQ ≤ n. By abuse of
notations o(ε) denotes a vector field, whose norm on any compact domain
K ⊂ R2 is of type o(ε). The present paper is a contribution in the study of
the number of the limit cycles (isolated periodic orbits) of the perturbed
vector field Xε for sufficiently small |ε|.

Suppose that the vector field XH has a non-degenerate singular point
which is a center. Without loss of generality we assume that it is located at
the origin and

H(x, y) = 1
2

(x2 + y2) + · · · .

Consider the continuous family of ovals

γ(h) ⊂
{

(x, y) ∈ R2 : H(x, y) = h
}

which tend to the origin in R2 as h→ 0, and are defined on a maximal open
interval (0, h̃). Let ` be a closed arc, contained in the open period annulus⋃

h∈(0,h̃)

γ(h),

and transversal to the family of ovals γ(h). For sufficiently small |ε| the arc
` is still transversal to the vector field Xε, and can be parameterized by
h = H(x, y) `. Therefore we can define, on a suitable open subset of `, the
first return map h 7→Pε(h) associated to the vector field Xε and the arc `,
as it is shown on Fig. 1. The limit cycles of the perturbed vector field Xε

correspond to the fixed points of the analytic map Pε(h).

�

����� ���

Figure 1. The first return map Pε(h) associated to

the vector field Xε and the arc `

As P0(h) = h, then we have

Pε(h)− h = −εIY (h) + o(ε),
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where the Poincaré-Pontryagin function IY (h) [25] is given by

(1) IY (h) =
∫ ∫
{H≤h}

div(Y ) dx ∧ dy, div(Y ) = Px +Qy.

One may deduce that if k limit cycles of the perturbed vector field Xε tend
to an oval {H = h0}, h0 ∈ (0, h̃), then the function IY (h) has a zero at h0

of multiplicity at least k (Corollary 4).

In contrast to the first return map Pε(h), the Poincaré-Pontryagin
function IY (h) does not depend on the choice of the arc `. It turns out that
if k limit cycles of the vector field Xε tend to the origin in R2 as ε → 0,
then IY (h) has a zero at h = 0 of multiplicity at least k + 1 (Corollary 5).
Suppose finally that the closure of the period annulus⋃

h∈(0,h̃)

γ(h)

is bounded by a homoclinic loop containing one non-degenerate saddle
point of the vector field Xε. Here once again the number of the limit cycles
of Xε which tend to the closed loop, as ε → 0, is less or equal to the
multiplicity (in a generalized sense) of the zero of IY (h) at h = h̃, as it has
been proved by Roussarie [26].

The above provides a method to find the number and the location of
the limit cycles of Xε, which tend to the closure of the period annulus of the
non-perturbed Hamiltonian system, subject to the following restrictions:

• the Poincaré-Pontryagin function IY (h) does not vanish identically;

• the closure of the period annulus of the vector field XH is bounded
by a homoclinic loop with a non-degenerate saddle point.

A concrete application of this will be given in Section 7.

Consider the real vector space A (of infinite dimension) formed by all
Poincaré-Pontryagin functions I(h) = IY (h) of the form (1), where P (x, y),
Q(x, y) are real polynomials of arbitrary degree. The real functions I(h) are
most naturally studied in a complex domain, h ∈ C. In this case the oval
{H = h} ⊂ R2 represents a cycle γ(h) ∈ H1(H−1(h),Z) on the complex
affine algebraic curve

H−1(h) =
{

(x, y) ∈ C2 : H(x, y) = h
}

and I(h) is called an Abelian integral. The vector space of Abelian integrals
A is a module over the ring R[h] of real polynomials in one variable h:
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if I(h) ∈ A, then hI(h) ∈ A. It was proved in [7] that for a fixed generic
polynomialH the R[h] moduleA is free and has µ generators, where µ is the
number of the critical points of H. In the present paper we consider the case
when H is a Morse polynomial. This means that all its critical points are of
Morse type (but it can have multiple critical values). We also suppose that
for suitable weights the highest order weight-homogeneous part of H has
an isolated critical point at the origin. Under these assumptions we prove
that A is a free R[h] module of rank µ̃ ≤ µ. The rank µ̃ of A is computed
in the following way. The cycle γ(h) ∈ H1(H−1(h),Z) represents a locally
constant section of the global homology Milnor bundle E, associated to
the global Milnor bundle C2 H−−→ C of the polynomial H(x, y). For a fixed
regular value h0, denote by Eγ(h0) ⊂ Eh0 the minimal complex vector
space which contains the orbit of the cycle γ(h0) under the action of the
monodromy group of H. Then (Corollary 2)

µ̃ = dimEγ(h0).

The paper is organized as follows. In Section 2 we recall the definition
of the Petrov module PH associated to a polynomial H and its main
properties. In Section 3 we define the global homology Milnor bundle E of
a semiweighted homogeneous polynomial, and prove some properties of the
subbundle Eγ ⊂ E associated to the locally constant section γ(h) ∈ Eh.
This is used in Section 4, where we establish our main result (Theorem 2).
The rest of the paper is devoted to applications.

Let H be a real cubic polynomial, such that XH has a center at
the origin. The corresponding R[h] modules PH , A and its generators
are computed in Section 6. We compute then the dimension of the
real vector space An ⊂ A, formed by Abelian integrals (1) such that
deg(P ),deg(Q) ≤ n. Part of these results are already known to the
specialists [12], others were used without justification or were erroneously
stated (see Remark 5 after Theorem 4 in Section 7). They can be used
either as an illustration of Theorem 2, or as a reference in further study of
the following Hilbert-Arnold problem.

For a fixed real polynomial H(x, y) denote by Z(H,n) the exact
upper bound for the number of the zeros of degree n Poincaré-Pontryagin
functions (1), degP,degQ ≤ n, on a maximal interval on which the oval
{H = h} exists. The Hilbert-Arnold problem (called “weakened 16th
Hilbert problem” in [4], p. 313, and [17]) is

Find the numbers Z(m,n) = sup
degH≤m

{
Z(H,n)

}
.
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According to Varchenko-Khovanskii Theorem Z(m,n) < ∞. On the other
hand we have obviously

Z(H,n) ≥ dimAn − 1.

It was proved recently [12] that

Z(3, n) ≤ 5n+ 15

but the exact value of Z(3, n) is still unknown (even for n = 2!). For special
Hamiltonians H the numbers Z(H,n) are computed in [22], [23], [24], [8]
and [9].

In the last section we compute Z(H,n) and then study the number
of the limit cycles of Xε for a new class of cubic Hamiltonians H. Namely,
suppose that XH is a quadratic vector field with a center, such that

• XH is reversible (it has an axis of symmetry);

• XH has exactly one center and one saddle equilibrium point.

In this case the Hamiltonian function can be put (after a R-linear
change of the variables) in the following normal form:

H(x, y) = 1
2

(x2 + y2)− 1
3
x3 + axy2, where − 1

2
< a ≤ 0.

We show first that

Z(H,n) = dimAn − 1 = n− 1

(Theorem 4), that is to say the real vector space An has the so called
Chebishev property [3]. In the case a = 0 this result is due to Bogdanov,
Il’yashenko (n = 2, 3) and Petrov [22], [23] (for arbitrary n). The main
difficulty to study the case − 1

2 < a < 0 is that while for a = 0 the
rank of the module A is equal to two, in the case − 1

2 < a < 0 it equals
to three. To prove our result we count zeros of Abelian integrals in a
complex domain by making use of the argument principle. We use the
reciprocity law for differential forms of first and third kind. It should be
noted that the Chebishev property does not hold true in general even for
cubic reversible polynomials [12]. It depends on the monodromy group
of the global homology Milnor bundle of the polynomial H (compare for
example the Dynkin diagrams shown on Fig. 3).

Suppose at last that, in addition, the Poincaré-Pontryagin function
IY (h) associated to the perturbed vector field Xε is not identically zero.
We prove that the exact upper bound for the number of the limit cycles
of the perturbed vector field Xε, in any compact domain K ⊂ R2 is n− 1.
For a = 0 this was proved by Mardes̆ić [19].
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2. Modules of polynomial differential forms.

The results of this section hold over C or R. Therefore we denote by
K either the field of complex numbers C, or the field of real numbers R.
Let f ∈ K[x, y] be a polynomial and consider the quotient vector space Pf
of polynomial one-forms

ω = P dx+Qdy,

modulo one-forms dA + B df where A,B are polynomials. The quotient
space Pf is a module over the ring of polynomials K[t], under the multi-
plication

R(t) · ω = R(f)ω, R ∈ K[t].

Recall that a function f :C2 → C is called weighted homogeneous
(wh) of weighted degree d and type

w = (wx, wy),

wx = weight(x) ∈ R, wy = weight(y) ∈ R if

f(zwxx, zwyy) = zdf(x, y), ∀ z ∈ C∗.

We shall also suppose that wx, wy > 0. By analogy to the case of an isolated
singularity of a germ of an analytic function [2], we give the following

DEFINITION 1. — A polynomial f ∈ K[x,y] is called semiweighted

homogeneous (swh) of weighted degree wdeg(f) = d and type w if it can

be written as

f =
d∑
i=0

fi ,

where fi are wh-polynomials of weighted degree i and type w, and the

polynomial fd(x,y) has an isolated critical point at the origin.
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Note that according to this definition a wh-polynomial with non-
isolated critical point is not semiweighted homogeneous. We define the
weighted degree of a one-form ω = P dx+Qdy as

wdeg(ω) = max
{

wdeg(P ) + wx,wdeg(Q) + wy
}
.

The main feature of a swh polynomial is that its global behavior is exactly
as the local behavior of its highest order weight-homogeneous part [6].
Using this the following theorem can be proved

THEOREM 1 (see [7]). — Let f ∈ K[x,y] be a swh-polynomial of

weighted degree wdeg(f) = d and type w = (wx ,wy). The K[t] module

Pf is free and finitely generated by µ polynomial one-forms ω1 ,ω2 , . . . ,ωµ,
where µ = (d−wx)(d−wy)/wxwy. Each one-form ωi can be defined by the

condition

(2) dωi = gi dxdy

where g1 ,g2 , . . . ,gµ is a monomial basis of the quotient ring K[x,y]/〈fx ,fy〉.
For every polynomial one-form ω there exist unique polynomials ak(t) of

degree at most (wdeg(ω)− wdeg(ωk))/wdeg(f) such that in Pf holds

ω =
µ∑
k=1

ak(t)ωk.

Remark 1. — In [7] the above theorem was proved for K = C. In the
case K = R the proof is the same.

Remark 2. — The number µ = (d − wx)(d − wy)/wxwy is the global
Milnor number of the polynomial f(x, y): every regular fiber f−1(t) ⊂ C2

has the homotopy type of a bouquet of µ circles [6]. It is equal, on another
hand, to the global Milnor number of the highest order weight-homogeneous
part fd of the polynomial f . Let g1, g2, . . . , gµ be a monomial basis of the
quotient ring K[x, y]/〈fdx , fdy 〉. Then one can show that

•
µ∑
i=1

wdeg(gi) = µ;

• wdeg(gi) ≤ 2(d− wx − wy);

• g1, g2, . . . , gµ form a basis of the quotient ring K[x, y]/〈fx, fy〉.
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Remark 3. — Denote by Ω• the complex of polynomial differential
forms on C2 and let Ω•

C2/C be the complex of relative polynomial forms,
where

Ωk
C2/C =

Ωk

Ωk−1 ∧ df
·

Let f ∈ Ω0 = C[x, y] be a polynomial with isolated critical points and
suppose that ω, π ∈ Ω1 represent equivalence classes in the first relative
cohomology group of f

H1(Ω•
C2/C) =

Z(Ω1
C2/C)

dΩ0
C2/C

=
Z(Ω1

C2/C)

dΩ0 + Ω0df

and in the Petrov module

Pf =
Ω1

dΩ0 + Ω0df

respectively. It is easy to check that the identity

dπ = ω ∧ df

defines a K-linear map

[ω]7→[π] : Pf −→ H1(Ω•
C2/C)

which is a bijection. Similarly the map ω 7→π, where dω = π establishes a
K-linear bijection

[ω]7→[π] : Pf −→
Ω2

dΩ0 ∧ df
·

The local results of Brieskorn [5] and Sebastiani [28] combined with
Theorem 1 suggest the following

CONJECTURE. — Let f(x,y) ∈ K[x,y] be a polynomial with isolated

critical points, and such that every fiber f−1(t), t ∈ C is regular at

infinity (see [21]). Then the K[t] module Pf is free and its rank equals the

global Milnor number of f .
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3. Milnor bundles.

In this section we suppose that f ∈ R[x, y] is a semiweighted
homogeneous polynomial. It is well known that the global Milnor fibration

(3) C
2 f−−→ C

is locally trivial on the complement to the set of critical values

Ac = {t1, t2, . . . , tν}

of f (there are no critical points “at infinity” in this case [6]). To the global
Milnor fibration C2 f−−→ C we associate the homology (resp. cohomology)
Milnor bundle E (resp. E∗). This is a holomorphic vector bundle with
base C − Ac and fibers Et = H1(f−1(t),C) (resp. E∗t = H1(f−1(t),C)).
Any two “close” fibers of the global Milnor fibration (3) are isotopic,
which shows that any two “close” fibers of the homology Milnor bundle
are canonically isomorphic. This isomorphism is called the Gauss-Manin
connection of the (co)homology Milnor bundle.

Choose a disc D ⊂ C containing Ac and let ui ⊂ D be paths
connecting a fixed point t0 ∈ ∂D to ti. To each path ui we associate a loop
`i ∈ π1(D−Ac, t0) and each loop `i defines an automorphism (monodromy)

`i∗ :H1

(
f−1(t0),Z

)
−→ H1

(
f−1(t0),Z

)
.

Denote by

Hi ⊂ H1

(
f−1(t0),C

)
the vector space formed by cycles which vanish at the critical value ti
as t→ ti along the path ui (see the beginning of the section).

DEFINITION 2. — The set of planes H1 ,H2 , . . . ,Hν is called a weekly

distinguished basis of vanishing planes, provided that the fundamental

group π1(D −Ac ,t0) is freely generated by the loops `1 ,`2 , . . . ,`ν .

DEFINITION 3. — The image of the fundamental group π1(D−Ac ,t0)
in Aut(H1(f−1(t0)) is called the monodromy group of the global homology

Milnor bundle of the polynomial f(x,y) and it will be denoted by M.
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It is well known that the vanishing cycles form a basis of the middle
homology group of an isolated singularity [2]. Combining this with the
results of [6] implies the following direct sum decomposition

(4) H1

(
f−1(t0),C

)
=

ν⊕
i=1

Hi.

The global Milnor bundle E is equipped with the following structures:

1) Each fiber Et = H1(f−1(t),C) of the homology Milnor bundle E
contains a real vector space H1(f−1(t),R) and a lattice H1(f−1(t),Z).

2) On each fiber Et = H1(f−1(t),C) we have an integer skew-
symmetric bi-linear form 〈. , .〉: the intersection index of cycles on the
affine curve f−1(t) ⊂ C2. The intersection form 〈. , .〉 Et is invariant under
parallel transport, and in particular 〈. , .〉 Et is invariant under the action
of the monodromy group M.

3) The complex conjugation (x, y, t)→ (x̄, ȳ, t̄) induces an involution
on H1(f−1(t),C) for t ∈ R, and an anti-holomorphic involution of the
Milnor bundle E

(5) Et −→ Et̄ : γ(t) 7−→ γ(̄t).

In particular, Et = Et for t ∈ R and (5) is an automorphism.

The intersection form 〈. , .〉 in the fibers Et is degenerate in
general. Let Γt be the compactified and normalized affine algebraic curve
f−1(t) ⊂ C2. We have a natural inclusion

i:f−1(t) −→ Γt.

The kernel of the intersection form 〈. , .〉 on H1(f−1(t),C) coincides with
the kernel of the induced map

i∗ :H1

(
f−1(t),C

)
−→ H1(Γt,C).

PROPOSITION 1. — The cycle δ(t0) is a fixed point of the monodromy

group M, if and only if δ(t0) belongs to the kernel of the intersection

form 〈. ,.〉.

Indeed, if δ(t0) belongs to the kernel of the intersection form, then
the Picard-Lefschetz formula implies that

M · δ(t0) = δ(t0).
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If M · δ(t0) = δ(t0) then we may choose a loop ` ∈ π1(D − Ac, t0) which
makes one turn about all critical values of f . Then `∗ is the operator of
classical monodromy of the weighted homogeneous singularity fd (where fd

is the highest order weight homogeneous part of f). In this case we have

`∗ − id = Varfd ◦i∗
and as Varfd H1(Γt,C) is injective, then the kernel of `∗ − id is the set of
cycles which are homologous to zero on Γt (equivalently, whose relative
homology class is zero) [2]. Therefore δ(t0) belongs to the kernel of the
intersection form 〈. , .〉.

For any locally constant section δ(t) ⊂ H1(f−1(t),Z) of the homology
Milnor bundle E denote by

Eδ(t0) ⊂ Et0 = H1

(
f−1(t0),C

)
the minimal complex vector space containing the orbit M · δ(t0). This gives
rise to a flat complex sub-bundle Eδ of the homology Milnor bundle E,
whose fibers Eδ(t) are obtained from Eδ(t0) by parallel transport. The
holomorphic bundle Eδ carries the structures 1) and 2) above. By analogy
to (5) we give the following

DEFINITION 4. — The bundle Eδ is said to be compatible with the

real structure (the antiholomorphic involution) of E, provided that

Eδ(t) = Eδ(t̄) , ∀t ∈ C.

PROPOSITION 2. — Suppose that the cycle δ(t0) is obtained from some

real cycle δ(t) (that is to say δ̄(t) = δ(t), t ∈ R) by parallel transport.

Then Eδ is compatible with the real structure of the complex bundle E.

Proof. — Suppose that δ(t0) is obtained from the real cycle δ(t), t ∈ R
by parallel transport, and let γ(t) be another cycle obtained by parallel
transport along some path u (the ends of u coincide with t, u ⊂ C − Ac).
The identity ∫

γ(t)

ω =
∫
γ̄(t̄)

ω

implies that the cycle γ̄(t) is obtained from δ(t) by parallel transport along
the path ū, and hence γ(t), γ̄(t) ∈ Et, t ∈ R. As a set of generators of Et
can be obtained in such a way, we conclude that Eδ(t) = Eδ(t). In a similar
way we prove that Eδ(t) = Eδ(t̄) for all t ∈ C.
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DEFINITION 5. — We shall say that the bundle Eδ satisfies the

condition (?) provided that the following direct sum decomposition holds:

(?) Eδ(t0) =
ν⊕
i=1

{Hi ∩ Eδ(t0)}.

The condition (?) is motivated by the direct sum decomposition (4).
Of course the decomposition (4) holds for any choice of the paths ui.
Similarly, the condition (?) does not depend on the choice of the paths ui
(and hence on the choice of vanishing planes Hi), as it follows from the
following simple

PROPOSITION 3. — The bundle Eδ satisfies the condition (?), if and

only if

δ(t0) =
∑
i

δi(t0), where δi(t0) ∈ Hi ∩ Eδ(t0).

COROLLARY 1. — If δ(t) is a vanishing cycle (along an appropriate

path connecting t to a singular value ti) then the bundle Eδ satisfies the

condition (?).

Proof of Proposition 3. — It suffices to prove that if γ(t0) ∈ Eδ(t0),
then

(6) γ(t0) =
ν∑
i=1

γi(t0) where γi(t0) ∈ Hi ∩ Eδ(t0).

If `j∗ ∈ Aut(H1(f−1(t0)) is the monodromy transformation induced by the
loop `j then the Picard-Lefschetz formula [2] shows that

`j∗δ(t0) = δ(t0) + α(t0), α(t0) ∈ {Hj ∩ Eδ(t0)},

and hence γ(t0) = `j∗δ(t0) satisfies (6). The identity (6) follows from the
fact that M · δ(t0) generates Eδ(t0).

To check that the condition (?) does not depend on the choice of
paths ui, we have to prove that if we replace the plane Hi by `j∗Hi, then
the identity of Proposition 3 still holds true. Indeed, as

`j∗δi(t0) = δi(t0) + αj(t0),
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where αj(t0) ∈ {Hi ∩ Eδ(t0)}, then

δ(t0) =
∑
k 6=i,j

δk(t0) + `j∗δi(t0)− αj(t0) + δj(t0)

where `j∗δi(t0) ∈ `j∗Hi ∩ Eδ(t0) and −αj(t0) + δj(t0) ∈ {Hj ∩ Eδ(t0).

Another important case in which the condition (?) is satisfied is given
by the following

PROPOSITION 4. — If M acts on Eδ(t0) without fixed points then the

bundle Eδ satisfies the condition (?).

Proof. — We have

Im(`j∗ − id) Eδ(t0)
⊂ Hj ∩ Eδ(t0)

and hence

(7)
∑
j

dim
{

Im(`j∗ − id) Eδ(t0)

}
≤ dimEδ(t0).

On the other hand

dim
{

Im(`j∗ − id) Eδ(t0)

}
= dimEδ(t0) − dim

{
Ker(`j∗ − id) Eδ(t0)

}
,

dim
{

Im(`(j+1)∗ − id) Eδ(t0)

}
≥ dim

{
Im(`(j+1)∗ − id) Ker(`j∗−id) Eδ(t0)

}
= dim

{
Ker(`j∗ − id) Eδ(t0)

}
− dim

[{
Ker(`(j+1)∗ − id) Eδ(t0)

}
∩
{

Ker(`j∗ − id) Eδ(t0)

}]
and hence

(8)
∑
j

dim
{

Im(`j∗ − id) Eδ(t0)

}
≥ dimEδ(t0) − dim

{⋂
i

Ker(`i∗ − id) Eδ(t0)

}
.

As M acts on Eδ(t0) without fixed points, then⋂
i

Ker(`i∗ − id) Eδ(t0)
= ∅,

which combined with (7), (8) gives

Eδ(t0) =
ν⊕
j=1

{
Im(`j∗ − id) Eδ(t0)

}
and hence (?).
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4. Abelian integrals related to Morse polynomials.

Denote by Aδ the vector space of Abelian integrals

(9) I(t) =
∫
δ(t)

ω

over all polynomial one-forms

ω = P (x, y) dx+Q(x, y) dy, P,Q ∈ R[x, y].

This is a R[t] module with multiplication

t ·
∫
δ(t)

ω =
∫
δ(t)

f(x, y)ω.

The map

(10) Pf −→ Aδ : ω 7−→
∫
δ(t)

ω

is a homomorphism of R[t] modules. In the case when f is a polynomial
with Morse critical points and distinct critical values, the map (10) is an
isomorphism [7], Prop. 3.2, and Eδ(t) = Et = H1(f−1(t),C). In the case
of multiple critical values, however, Eδ may be a proper subbundle of the
homology Milnor bundle E.

In the sequel we shall call δ(t0) ∈ H1(f−1(t0),Z) a vanishing cycle
provided that it vanishes along some path ui as t → ti. Note that
this is less restrictive than the usual definition [2] (as we do not use
“morsification” of f). Recall that a cycle δ(t), t ∈ R is said to be real,
provided that δ̄(t) = δ(t).

The central result of the present paper is the following

THEOREM 2. — Suppose that the semiweighted homogeneous

polynomial f ∈ R[x,y] has only Morse critical points. If the vector bundle

Eδ is compatible with the real structure of the Milnor bundleE, and satisfies

the condition (?), then the R[t] module Aδ is free, finitely generated, and

its rank is equal to the rank of Eδ.

COROLLARY 2. — Suppose that the semiweighted homogeneous

polynomial f ∈ R[x,y] has only Morse critical points. If δ(t) is a real

vanishing cycle, then the R[t] module Aδ is free, finitely generated, and its

rank is equal to the rank of the complex vector bundle Eδ.
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Remark 4. — As the map (10) is surjective, the generators of Aδ may
be chosen among the integrals over monomial one-forms

Ij(t) =
∫
δi(t)

ωj , j = 1, 2, . . . , µ,

where ωj is the basis of Pf defined in Theorem 1.

Proof of Corollary 2. — If the cycle δ(t), t ∈ R is real, then by
Proposition 2 the bundle Eδ is compatible with the real structure of E.
If the cycle δ(t) vanishes along some path connecting t to a critical value
of f , then by Corollary 1 the bundle satisfies the condition (?). The result
follows from Theorem 2.

The proof of Theorem 2 is based on the following

LEMMA 1. — Let δ′1 ,δ
′
2 , . . . ,δ

′
µ′ be a basis of locally constant sections

of Eδ. There exists a permutation σ′ = (σ′1 ,σ
′
2 , . . . ,σ

′
µ′), such that

det
(∫

δ′
j
(t)

∇ωσ′
i

)
is a non-zero constant in t, where ∇ is the covariant derivative with respect

to the Gauss-Manin connection of E, and

µ′∑
i=1

wdegωσ′
i

= µ′ wdeg(f).

Proof of Theorem 2 assuming the above lemma. — As f is a swh-
polynomial (Def. 1) then we may deduce that for sufficiently big |t|, such
that the argument of t is bounded, holds

∣∣∣∣
∫
δ′
j
(t)
ωσ′

i

t
∫
δ′
j
(t)
∇ωσ′

i

∣∣∣∣ = O(1)

(see the proof of Lemma 2.2 in [7]). This implies that for sufficiently big |t|

∣∣∣∣ det(
∫
δ′
j
(t)
ωσ′

i
)

tµ′ det(
∫
δ′
j
(t)
∇ωσ′

i
)

∣∣∣∣ = O(1)
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and hence

p0(t) = det
(∫

δ′
j
(t)

ωσ′
i

)
is a polynomial of degree exactly µ′ = rankEδ. By (?), we have

Eδ(t0) =
⊕
i

{Eδ(t0) ∩Hi}

and hence

deg p0(t) =
∑

dim{Eδ(t0) ∩Hi}.

As f has only Morse critical points, then p0(t) has a zero of order
dim{Eδ(t0) ∩Hi} at t = ti, and hence

p0(t) = Cte

µ′∏
i=1

(t− ti)dim{Eδ(t0)∩Hi}.

In particular p0(t) does not vanish for t 6= ti. If ω is a polynomial one-form,
then the Cramer’s formulae imply that there exist polynomials pi(t), such
that

(11) p0(t)
∫
δ(t)

ω =
µ∑
i=1

pi(t)
∫
δ(t)

ωσ′
i
, ∀ δ(t) ∈ Eδ(t).

Each polynomial pi(t) has a zero of order dim{Eδ(t0) ∩ Hi} at t = ti,
and hence the polynomial p0(t) divides pi(t). It remains to check that
pi(t)/p0(t) is a real polynomial. As Eδ is compatible with the real structure
of the Milnor bundle E, then the complex conjugation γ(t)7→γ̄(̄t) induces
an automorphism a ∈ Aut(Eδ(t)) for t ∈ R. It follows that

pi(t) = det(a) pi(t)

and hence pi(t)/p0(t) ∈ R[t].

Proof of Lemma 1 in the case when the intersection form 〈. , .〉 is

non-degenerate. — Let E⊥δ be the vector sub-bundle of E with fibers

E⊥δ(t) =
{
γ(t) ∈ Et : 〈γ(t), δ(t)〉 = 0, ∀ δ(t) ∈ Eδ(t)

}
.

As the intersection form on Et is non-degenerate, then by Proposition 1
and Proposition 4 the bundles Eδ and E⊥δ satisfy the condition (?). We
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claim further that 〈. , .〉 Eδ(t0)
is non-degenerate. Indeed, if we suppose that

γ(t0) ∈ Eδ(t0), γ(t0) 6= 0, then there exists a vanishing cycle γ′(t0) ∈ Hi,
such that 〈γ(t0), γ′(t0)〉 6= 0. The Picard-Lefschetz formula gives

`i∗γ(t0) = γ(t0)−
∑
j

〈
γ(t0), γ′j(t0)

〉
γ′j(t0)

where γ′j(t0) form a basis of Hi. As

〈
`i∗γ(t0), γ(t0)

〉
=
∑
j

〈γ(t0), γ′j(t0)〉2 ≥
〈
γ(t0), γ′(t0)

〉2 6= 0

and `i∗γ(t0) ∈ Eδ(t0), then we conclude that 〈. , .〉 Eδ(t0)
is non-degenerate.

On its hand this implies that

(12) E = Eδ ⊕ E⊥δ .

Let σ = (σ′, σ′′) be a permutation of the set {1, 2, . . . , µ} such that

σ′ = (σ′1, σ
′
2, . . . , σ

′
µ′), σ′′ = (σ′′1 , σ

′′
2 , . . . , σ

′′
µ′′),

σ′i < σ′i+1, σ′′i < σ′′i+1

and µ′ = dimEδ(t0), µ
′′ = dimE⊥δ(t0). Let ω1, ω2, . . . , ωµ be a “monomial”

base of the Petrov module Pf defined by (2), δ′ = (δ′1, δ
′
2, . . . , δ

′
µ′),

δ′′ = (δ′′1 , δ
′′
2 , . . . , δ

′′
µ′′) be fixed bases of Eδ(t0) and E⊥δ(t0) respectively,

δ = (δ′, δ′′). Denote by(∫
δj

∇ωi
)
,
(∫

δ′
j

∇ωσ′
i

)
,
(∫

δ′′
j

(t)

∇ωσ′′
i

)
the matrices of dimension µ × µ, µ′ × µ′, and µ′′ × µ′′ respectively. The
Picard-Lefschetz formula implies that the functions

∆(t) = det
(∫

δj

∇ωi
)
, ∆σ′(t) = det

(∫
δ′
j

∇ωσ′
i

)
and

∆σ′′(t) = det
(∫

δ′′
j

(t)

∇ωσ′′
i

)
are single-valued on C, and hence they are rational functions. On the other
hand each integral

∫
δj
∇ωi can have only logarithmic singularities (as the
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critical points of f are of Morse type) so the above determinants are in fact
polynomials. We have

(13) ∆(t) =
∑
σ

∆σ′(t) ∆σ′′(t)

where the sum is over all the permutations σ = (σ′, σ′′) as above. It is
proved in [7] that ∆(t) is a non-zero constant, and

µ∑
i=1

wdegωi =
µ′∑
i=1

wdegωσ′
i

+
µ′′∑
i=1

wdegωσ′′
i

= µwdeg(f).

As

deg ∆σ′(t) ≤

µ′∑
i=1

wdegωσ′
i

wdeg(f)
− µ′, deg ∆σ′′(t) ≤

µ′′∑
i=1

wdegωσ′′
i

wdeg(f)
− µ′′,

then

deg ∆σ′(t) + deg ∆σ′′(t) ≤ 0.

This implies that for any permutation σ = (σ′, σ′′) the polynomial
∆σ′(t)∆σ′′(t) is either a non-zero constant, or it is identically zero. We
conclude that there exists a permutation σ = (σ′, σ′′), such that the
polynomial ∆σ′(t)∆σ′′(t) is a non-zero constant.

Proof of Lemma 1 in the case when the intersection form 〈. , .〉 is

degenerate. — Let Γt be the compacified and normalized affine curve
f−1(t). We have

H1(Γt,C) = H1(f−1(t),C)/ ∼
where δ(t) ∼ 0 if and only if δ(t) is in the kernel of the intersection form on
H1(f−1(t),C). Denote

Ẽ = E/ ∼, Ẽδ = Eδ/ ∼, Ẽ⊥δ = E⊥δ / ∼, H̃i = Hi/ ∼ .
As the intersection form is non-degenerate on H1(Γt,C) then as above we
obtain

H1(Γt,C) = Ẽδ(t)
⊕

Ẽ⊥δ(t), Ẽδ(t0) =
ν⊕
i=1

{H̃i ∩ Ẽδ(t0)},

Ẽ⊥δ(t0) =
ν⊕
i=1

{H̃i ∩ Ẽ⊥δ(t0)}.

We already know that

∆σ(t) = det
(∫

δj(t)

∇ωσi
)
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is a non-zero constant [7]. On the other hand if the cycle δ(t) is homologous
to zero on the compactified and normalized fibre f−1(t), then∫

δ(t)

∇ωj

is a polynomial in t which is a linear combination of the residues of ∇ωj . By
Remark 2 the weighted degree of ∇ωj is less than d and hence |

∫
δ(t)
∇ωj |

grows at infinity no faster than a constant. By making use of R-linear change
of the base (ω1, ω2, . . . , ωµ) and C-linear change of the base (δ1, δ2, . . . , δµ)
we may partially diagonalize the µ× µ matrix (

∫
δj
∇ωσi):

(14)
(∫

δj

∇ωσi
)

=
(A ∗

0 Iµ−2g

)
, Iµ−2g = diag(1, 1, . . . , 1),

where g is the genus of the compact Riemann surface Γt, and A is a 2g× 2g
matrix. The first 2g lines of the matrix (14) correspond to integrals over
cycles which form a base of H1(Γt,C), and the last µ − 2g lines of the
matrix (14) correspond to integrals over cycles homologous to zero on Γt.
Respectively the one-forms ω1, ω2, . . . , ω2g have no residues on Γt, and each
of the remaining µ− 2g one-forms is a normalized differential of third kind.
This new base of one-forms is no-more monomial but each one-form can
still be still chosen weighted homogeneous.

We notice now that detA = ∆σ(t), and hence detA is a non-zero
constant. As in the case of a non-degenerate intersection form, we can
find weighted homogeneous (and hence also monomial) one-forms without
residues, such that the determinant of the corresponding rank Ẽδ × Ẽδ is a
non-zero constant. Complete at last the basis of sections of Ẽδ to a basis
of sections of Eδ by adding zero-homology cycles, as well the basis of first
kind forms by adding normalized third kind forms. The determinant of the
obtained in this way rankEδ×rankEδ matrix is a non-zero constant, which
completes the proof of Lemma 1.

5. Polynomial perturbations of conservative vector
fields.

Consider the differential equation

(15) dH + εω + o(ε) = 0, |ε| � 1

whereH(x, y) = 1
2

(x2+y2)+· · · is a real polynomial, ω, o(ε) are polynomial
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one-forms on R2, and the norm of o(ε)/ε tends to zero on any compact
domain K ⊂ R2, as ε→ 0. Let ` be a closed arc transversal to a continuous
family {H = h} of closed integral curves of the equation dH = 0, and
parameterized by h = H(x, y) `. Denote by Pε(h) be the corresponding
first return map associated to (15) and to the arc ` (see Fig. 1). The limit
cycles of (15) intersecting ` are in one-to-one correspondence with the zeros
of Pε(h)− h. The basic tool in their study is the following

LEMMA 2. — One has

Pε(h) = h− εI(h) + o(ε), where I(h) =
∫
{H=h}

ω.

For a proof see [25] or [4], p. 318. Lemma 2 implies immediately the
following

COROLLARY 3 (Poincaré-Pontryagin criterion). — If a limit cycle

of (15) tends to the closed integral curve {H = h0}, as ε → 0,
then I(h0) = 0. If I(h0) = 0 and in addition I ′(h0) 6= 0, then for all

sufficiently small |ε| 6= 0 the equation (15) has an unique limit cycle which

tends to {H = h0} as ε→ 0.

For every fixed sufficiently small |ε| the first return map Pε(h) is an
analytic function in a neighborhood of h = h0 6= 0, and hence it can be
analytically continued in a complex domain, h ∈ C. As the complex zeros
of (Pε(h) − h)/ε in a neighborhood of h = h0 depend continuously on ε

then we get

COROLLARY 4. — Suppose that k limit cycles of (15) tend to {H = h0}
as ε→ 0. Then the Abelian integral I(h) has a zero at h = h0 of multiplicity

at least k.

Finally we note that the Poincaré-Pontryagin function I(h) contains
an information for the limit cycles which tend to the origin

COROLLARY 5. — Suppose that k limit cycles of (15) tend to the

non-degenerate center 0 ∈ R2 as ε → 0. Then I(h) has a zero at h = 0 of

multiplicity at least k + 1.
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Proof. — Without loss of generality we assume that 0 ∈ R2 is a
non-degenerate singular point of (15) for all sufficiently small |ε|. Indeed, if
the coordinates of the singular point are (a(ε), b(ε)), where a(0) = b(0) = 0,
then we substitute

x→ x+ a(ε), y → y + b(ε)

in (15). The Poincaré-Pontryagin function of the new differential equation
coincides with the Poincaré-Pontryagin function of (15). Let ` be a smooth
closed arc through the origin in R2, and transversal to the periodic solutions
{H = h} in a small neighborhood of the center. It is parameterized by the
analytic function ρ =

√
H(x, y) `. It is classically known that the associate

first return map P̃ε(ρ) is an analytic function. Each limit cycle of (15)
which is close to the origin, intersects twice ˜̀. As P̃ε(0) = 0 then it follows
that if k limit cycles of the equation (15) tend to the origin in R2 as ε→ 0,
then P̃ε(ρ)− ρ has at least 2k+ 1 real zeros in a neighborhood of the origin
ρ = 0 on `. As before we may continue analytically the function P̃ε(ρ)−ρ in
a complex domain ρ ∈ C. The zeros of (P̃ε(ρ) − ρ)/ε depend continuously
on ε and hence the Poinacré-Pontryagin function

Ĩ(ρ) = lim
ε→0

P̃ε(ρ)− ρ
ε

has a zero of multiplicity at least 2k + 1 at ρ = 0. We note at last that

dH + εω + o(ε) = 0 ⇐⇒ dρ+ ε
ω̃

2ρ
+
o(ε)
2ρ

= 0, ρ2 = H.

Repeating the arguments from the proof of Lemma 2 in a punctured
neighborhood of the origin in R2 we obtain

Ĩ(ρ) =
I(h)
2ρ

, I(h) =
∫
{H=h}

ω.

As the Abelian integral I(h) is analytic in h = ρ2, then Ĩ(ρ) is an odd
function and I(h) has a zero at the origin of multiplicity at least k+ 1 in h.
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6. Abelian integrals which arise in polynomial
perturbations of quadratic Hamiltonian vector fields

with a center.

The quadratic polynomial vector fields with a center can be divided
in four classes: QLV3 , QH3 , QR3 and Q4 (Zoladek [30]), called Lotka-Volterra
case, Hamiltonian case, reversible case and codimension 4 case respectively.
In this section we shall study the Poincaré-Pontryagin functions

I(h) =
∫
{H=h}

P (x, y) dy −Q(x, y) dx

=
∫∫
{H≤h}

(
Px(x, u) +Qy(x, y)

)
dx ∧ dy, P,Q ∈ R[x, y]

associate to small polynomial perturbations of quadratic polynomial
Hamiltonian vector fields with a center

(16) ẋ =
∂H

∂y
+ εP + o(ε), ẏ = − ∂H

∂x
+ εQ+ o(ε).

If we place the center at the origin and a saddle point at (1, 0), the
Hamiltonian function H(x, y) can be written in the following form [13]:

(17) H(x, y) = 1
2

(x2 + y2)− 1
3
x3 + axy2 + 1

3
by3.

The critical values of H are h1 = 0, h2 = 1
6

, and the roots of the
polynomial

∆(h) = 36
(
−b2 + 4 a3

)2
h2

− (144 a4 − 48 a3 − 72 a2b2 − 36 ab2 − 12 b2 − 6 b4)h

+ 9 a2 + 6 a+ b2 + 1.

The discriminant of ∆(h) is

36(8 a2 + 4 a+ b2)3b2

and we have also

∆
( 1

6

)
= (2 a+ 1)3

(
(1 + 2a)(1− a)2 − b2

)
, ∆(0) = (3a+ 1)2 + b2.
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The Hamiltonian vector field (16) (resp. the Hamiltonian function H (17)),
is said to be reversible, or belongs to QR3 , if it has an axis of symmetry. The
Hamiltonian H(x, y) (17) is reversible if and only if

b
(
(1 + 2a)(1− a)2 − b2

)
= 0

(see [13], Fig. 1, where the non-reversible Hamiltonians with a center were
called “generic”). To state our results we shall use the following standard
notations introduced in [13], [12]

X(h) =
∫∫

H≤h
xdx ∧ dy, Y (h) =

∫∫
H≤h

y dx ∧ dy,

M(h) =
∫∫

H≤h
dx ∧ dy, L(h) =

∫∫
H≤h

x2 dx ∧ dy,

K(h) =
∫∫

H≤h
xy dx ∧ dy,

ωX = −xy dx, ωY = − 1
2
y2 dx, ωM = −y dx,

ωL = −x2y dx, ωK = − 1
2
xy2 dx.

Denote by

δ(h) ⊂
{

(x, y) ∈ R2 : H(x, y) = h
}

the continuous family of ovals surrounding the origin in R2, by Aδ the real
vector space of Abelian integrals of the form∫

δ(h)

P (x, y) dy −Q(x, y) dx, P,Q ∈ R[x, y], h ∈ [h1, h2]

and by An ⊂ Aδ its subspace formed by Abelian integrals of degree n,
where degP,degQ ≤ n.

6.1. Generic quadratic Hamiltonian vector fields with a center.

In this section we suppose that the real polynomial H(x, y) defined
by (17) is not reversible (equivalently b((1 + 2a)(1− a)2 − b2) 6= 0).

PROPOSITION 5.

(i) The R[h] modules PH and Aδ are free. The map

(18) PH −→ Aδ : ω 7−→
∫
δ(h)

ω

is an isomorphism of modules.
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(ii) If b2 − 4a3 6= 0, then the module PH is freely generated by ωX , ωY ,
ωM , ωK . If b2− 4a3 = 0 the module PH is freely generated by ωX , ωY , ωM .

(iii) The real vector space An is of dimension [ 1
3

(4n+ 1)].

Proof. — If b2 − 4a3 6= 0 the polynomial

H0(x, y) = − 1
3
x3 + axy2 +

1
3
by3

has an isolated critical point. It follows that

C[x, y]/〈Hx,Hy〉 = C[x, y]/〈H0
x,H

0
y 〉 = Vect{1, x, y, xy}

and Theorem 1 implies that PH is freely generated by ωX , ωY , ωM , ωK .
In the case b2 − 4a3 = 0 the polynomial − 1

3
x3 + axy2 + 1

3
by3 has non-

isolated critical points and after a real linear change of the variables we
may put the Hamiltonian in the form

(19) c1x
2 + c2xy + c3y

2 + xy2, c22 − 4c1c3 < 0.

As c1 6= 0 then this polynomial is semiweighted homogeneous (in
the sense of Section 2), with 2 wdeg(y) = wdeg(x) and highest weighted
homogeneous part equal to c1x

2 + xy2. Using Theorem 1 we conclude
that PH is free of rank µ = dimC[x, y]/〈Hx,Hy〉. An easy computation
shows that the global Milnor number of H is equal to three, and moreover

C[x, y]/〈Hx,Hy〉 = C[x, y]/〈H0
x,H

0
y 〉 = Vect{1, x, y}

which implies Proposition 5, (ii).

To compute the module of Abelian integrals Aδ we note that

(20) H1

(
H−1(h0),C

)
= Vδ(h0)

which, combined with Theorem 2 implies that the map (18) is an
isomorphism. Indeed, if H has distinct critical values (8a2 + 4a+ b2 6= 0 in
this case) then (20) follows from the fact that the Dynkin diagram of any
(and hence of H) swh polynomial is connected (see for example the proof
of [7], Prop. 3.2). If 8a2+4a+b2 = 0 the polynomialH has two Morse critical
points and one cusp. The identity (20) follows from an explicit computation
of the orbit of δ(h0) under the action of the monodromy group. To do this
we need the Dynkin diagram of H which will be computed in the next
section.
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It remains to compute the dimension of the vector space An. In the
case when H is a weighted homogeneous (b2−4a3 6= 0) polynomial we have

I(h) ∈ An ⇐⇒ I(h) = pX + qY + rK + sM

where p, q, r, s are real polynomials in h of degree [ 1
3

(n − 2)], [ 1
3

(n − 2)],
[ 1

3
(n− 3)], [ 1

3
(n− 1)] respectively. It follows that

dimAn =
[

1
3

(n− 2)
]

+
[

1
3

(n− 2)
]

+
[

1
3

(n− 3)
]

+
[

1
3

(n− 1)
]

+ 4

=
[

1
3

(4n+ 1)
]
.

The above does not work if b2− 4a3 = 0 but we may compute dimAn
in the following way. As Aδ is isomorphic to PH then An is isomorphic (as a
vector space) to the space of degree n polynomial one-forms Pn dx+Qn dy,
modulo polynomial one-forms dA + B dH. Using the isomorphism of the
vector spaces

PH −→ Ω2/dΩ0 ∧ dH : ω 7−→ dω

we conclude that An is isomorphic to the vector space of two-forms

Rn−1(x, y) dx ∧ dy, degRn−1 ≤ n− 1

modulo two-forms

dA ∧ dH, degA(x, y) ≤ n− 2

(see Section 2). Indeed, if g(x, y) is a homogeneous polynomial, then

dg ∧ d(xy2) = 0 ⇐⇒ g(x, y) = (xy2)k.

Using this and (19) we conclude that if Rn−1(x, y) dx ∧ dy = dA ∧ dH
where degRn−1 ≤ n − 1, then there always exists a polynomial An−2 of
degree less or equal to n− 2, such that Rn−1(x, y) dx ∧ dy = dAn−2 ∧ dH.
Similarly

dA ∧ dH ≡ 0, A ∈ R[x, y] ⇐⇒ ∃f ∈ R[h], A(x, y) = f
(
H(x, y)

)
.

Finally we have

dimAn = dim{Rn−1 ∈ R[x, y] ; degRn−1 ≤ n− 1}
− dim{An−2 ∈ R[x, y] ; degAn−2 ≤ n− 2}

+ dim{f ∈ R[h] ; deg f(H(x, y)) ≤ n− 2}

= 1
2
n(n+ 1)− 1

2
(n− 1)n+

[
1
3

(n− 2)
]

+ 1

=
[

1
3

(4n+ 1)
]
.

This completes the proof of Proposition 5.
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6.2. Reversible quadratic Hamiltonian vector fields with a center.

In this section we suppose that the real polynomial H(x, y) defined
by (17) is reversible (equivalently b((1 + 2a)(1−a)2− b2) = 0). As a matter
of fact it suffices to study the Hamiltonians (24) below, that is to say b = 0.
Indeed, any reversible vector field X0 ∈ QR3 can be written in the form [30]

(21) ẋ = y(1 + dx), ẏ = −x− ay2 + cx2.

It has an axis of symmetry {y = 0} and an invariant line {1 + dx = 0}.
If we suppose in addition that (21) is Hamiltonian then we have d = 2a and

(22) H(x, y) = 1
2

(x2 + y2)− c
3
x3 + axy2.

The cubic Hamiltonian H(x, y), a 6= 0, has a reducible level set

(23) H(x, y)− 3a+ c

24a3
=
(
x+

1
2a

)(
ay2 − c

3
x2 +

3a+ c

6a
x− 3a+ c

12a2

)
and vice versa: any real cubic polynomial with an elliptic critical point and
at least one reducible level set is equivalent, under a real linear change of
the variables, to the Hamiltonian (22). A real homothetic transformation of
x, y shows that the family (22) is naturally parameterized by the projective
line PR1 3 [a:c]. If we put c = 1, then we obtain the following normal form
of cubic reversible Hamiltonians with a center:

(24)

{
H(x, y) = 1

2
(x2 + y2)− 1

3
x3 + axy2, a 6=∞

H(x, y) = 1
2

(x2 + y2) + xy2, a =∞.

• For a 6= 0,∞ the critical points of H(x, y) (24) are (x1, y1) = (0, 0),
(x2, y2) = (1, 0), and

(x3, y3) =
(
− 1

2a
, +

1
2a

√
1 + 2a
a

)
, (x4, y4) =

(
− 1

2a
,− 1

2a

√
1 + 2a
a

)
with corresponding critical values

h1 = 0, h2 =
1
6
, h3 = h4 =

3a+ 1
24a3

·

• For a = 0 we have only two critical points (x1, y1) = (0, 0),
(x2, y2) = (1, 0), with corresponding critical values h1 = 0 and h2 = 1

6
.
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• For a =∞ the Hamiltonian function (24) has three critical points

(x1, y1) = (0, 0), (x3, y3) =
(
− 1

2
, 1√

2

)
, (x4, y4) =

(
− 1

2
,− 1√

2

)
with corresponding critical values h1 = 0, h3 = h4 = 1

8
.

In the case when the critical point (xi, yi) is a saddle (center) of
the vector field (16), we shall denote (xi, yi) = (xsi , y

s
i ) ((xci , y

c
i )). Similar

notations will be used for the critical values hi.

The topology of the real fibration

R
2 H−−→ R

is one and the same when a belongs to one of the open intervals ]−∞,− 1
2

[,
]− 1

2
, 0[, ]0, 1[, or ]1,∞[. Selected level curves of H are shown on Fig. 2.

��������

���	�

���	


���
�

Figure 2. Selected level curves of the polynomial (24)
H(x, y) = 1

2 (x2 + y2)− 1
3 x

3 + axy2.

We are going to study now the topology of the global Milnor fibration

C
2 H−−→ C.

Note that the Hamiltonians (24) are semiweighted homogeneous so
the results of [6], Section 2, apply. In particular we have that for regular
values h ∈ C the complex affine curve H−1(h) ⊂ C2 is an elliptic curve
with

• one removed point (a = 0),
• two removed points (a =∞),
• three removed points (a 6= 0,∞).
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Suppose that h3,4 6= h1, h2, that is to say a 6= − 1
2
,− 1

3
, 0, 1. Let h = h0

be a fixed regular value with Im(h0) > 0 and let `1, `2, `3,4 be three mutually
non-intersecting paths, connecting h0 to hi, and contained in the upper
half-plane Im(h) > 0 (except their ends which coincide with hi). Denote
by δi(h) ∈ H1(H−1(h),Z) the continuous families of cycles which vanish
at (xi, yi) as h tends to hi along the path `i. For all regular h the cycles
δi(h) form a basis of the first integer homology group of the affine algebraic
curve H−1(h) ⊂ C2. The families δi(h) define locally constant sections of
the global homology Milnor bundle of H(x, y) with base C\{h1, h2, h3,4}
and fibre H1(H−1(h),Z). Note that although h3 = h4, the sections δ3, δ4
are well defined, due to the fact that δ3(h) and δ4(h) vanish in the same
level set of H, and hence their intersection index is equal to zero.

DEFINITION 6. — The Dynkin diagram of H(x,y) is the graph with

vertices the cycles δi. Two cycles δi ,δj , hi < hj , are connected by an edge

(dotted edge) if the intersection index δi ◦ δj is equal to +1 (−1).

The Dynkin diagram of H describes the intersection indices δi ◦ δj ,
and hence the monodromy groupM . It depends, however, on the homotopy
class of the non-intersecting paths `i.

PROPOSITION 6. — The Dynkin diagram of the polynomial H (24) is

shown on Fig. 3.

����� �����
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�	��
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Figure 3. Dynkin diagram of the polynomial (24).
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Proof. — The critical values of H are easily computed (Table 1).

a < − 1
2

hc1 < hs3,4 < hc2

a = − 1
2

hc1 < h3,4 = h2

− 1
2
< a < − 1

3
hc1 < h3,4 < hs2

a = − 1
3

hc1 = h3,4 < hs2

− 1
3
< a < 0 h3,4 < hc1 < hs2

a = 0 hc1 < hs2

0 < a < 1 hc1 < hs2 < hs3,4

a > 1 hc1 < hs3,4 < hs2

a =∞ hc1 < hs3,4

Table 1. The critical values, for a ∈ RP1, of

H(x, y) = 1
2

(x2 + y2)− 1
3
x3 + axy2.

In the Hamiltonian triangle case a = 1 the polynomial H has only
real Morse critical points, and all saddle points are contained in the same
level set {H = 1

6
}. The Dynkin diagram in this case (as well for a close

to 1) follows from the results of A’Campo and Husein-Zade [1], [14], [2]. For
a ∈ ]0, 1[ or a ∈ ]1,∞[ the polynomial H defines topologically equivalent
global Milnor fibrations (see for example [6], Thm 2.5) and hence its Dynkin
diagram is one and the same.

If a < − 1
2

the polynomial H has only real Morse critical points, and
all the saddle points are contained in the level set {H = (3a+ 1)/24a3}. As
before we may use the method of A’Campo and Husein-Zade. In the same
way we obtain the Dynkin diagram of the parabolic case a = ∞ and the
case a = 0.

Note finally that

H̃(x, y) = H
(

1− x,
√
−1

y√
1 + 2a

)
=

1
6
−
[ 1

2
(x2 + y2)− 1

3
x3 + ãxy2

]
where ã = −a/(1 + 2a) is a real polynomial. If a ∈ ]− 1

2
, 0[ then ã > 0 and

hence the Dynkin diagram of H is obtained from the Dynkin diagram of H̃
(after exchanging δc1 and δs2).
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Denote the compactified and normalized fibre H−1(h) ⊂ C2 by Γh.
For every h the affine elliptic curve H−1(h) ⊂ C2 has an elliptic involution

i : (x, y) 7−→ (x,−y).

This defines an elliptic involution on Γh which permutes its “infinite”
points. We have

• Γh = H−1(h) ∪ P0 ∪ P+ ∪ P−, a 6= 0,∞;

• Γh = H−1(h) ∪ P+ ∪ P−, a =∞;

• Γh = H−1(h) ∪ P0, a = 0

and without loss of generality,

i(P0) = P0, i(P±) = P∓.

If z is an uniformizing parameter on the elliptic curve Γh, such that z = 0
is a fixed point of i, then i(z) = −z. It follows that i acts on H1(Γh,Z)
as − id.

PROPOSITION 7. — The Petrov R[h] module PH associated to the

Hamiltonian (24), is freely generated by the one-forms

• ωX ,ωY ,ωM ,ωL, a 6= 0,∞;

• ωX ,ωY ,ωM , a =∞;

• ωX ,ωM , a = 0.

The proof follows from Theorem 1. Indeed, for a 6= 0,∞ the vector
space C[x, y]/〈Hx,Hy〉 is generated by 1, x, y, x2, for a =∞ by 1, x, y, and
for a = 0 by 1, x.

Denote by δ(h) ⊂ H−1(h) the real oval of H surrounding the origin
in R2, and defined for small positive h and consider the associated R[h]
module A (9) of Abelian integrals.

PROPOSITION 8. — The R[h] module Aδ associated to the Hamilto-

nian (24) is freely generated by the Abelian integrals

• X(h),L(h),M(h) in the case a 6= 0,1,∞;

• L(h),M(h) in the case a = 1;

• X(h),M(h) in the case a = 0,∞.
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Proof. — We have i∗ωY = ωY , i∗δ = −δ, and hence Y (h) ≡ 0.
On the other hand using the Dynkin diagram Fig. 3, Table 1, and the
Picard-Lefschetz formula we get

• if a > 0, a 6= 1, then

Eδc1(t0) = Span
{
δc1(t0), δs2(t0), δs3(t0) + δs4(t0)

}
, rankEδc1 = 3;

• if a < 0, then

Eδc1(t0) = Span
{
δc1(t0), δs2(t0), δ3(t0) + δ4(t0)

}
, rankEδc1 = 3;

• if a = 1, then

Eδc1(t0) = Span
{
δc1(t0), δs2(t0) + δs3(t0) + δs4(t0)

}
, rankEδc1 = 2;

• if a = 0, then

Eδc1(t0) = Span
{
δc1(t0), δs2(t0)

}
, rankEδc1 = 2;

• if a =∞, then

Eδc1(t0) = Span
{
δc1(t0), δs3(t0) + δs4(t0)

}
, rankEδc1 = 2.

If a 6= − 1
2

Proposition 8 follows from Theorem 2. In the case a = − 1
2

the decomposition (12) still holds true which implies Lemma 1 and hence
Theorem 2. Thus Proposition 8 holds also in the case when the cubic
polynomial H is not of Morse type.

Consider the real vector subspace An ⊂ Aδ of Abelian integrals∫
δ

P (x, y) dx+Q(x, y) dy, P,Q ∈ R[x, y], deg(P ),deg(Q) ≤ n.

PROPOSITION 9. — The dimension of the real vector space An is n

if a 6= 1, and [ 1
3

(2n+ 1)] in the Hamiltonian triangle case, a = 1.

Proof. — Suppose first that a 6= 0, 1,∞. In this case the polyno-
mial (24) is semi-homogeneous. An Abelian integral I(h) belongs to the
space An if and only if

I(h) ≡ p(h)X(h) + q(h)L(h) + r(h)M(h)

where p, q, r are real polynomials of degree at most [ 1
3

(n− 2)], [ 1
3

(n− 3)],
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and [ 1
3

(n− 1)] respectively. As the module Aδ is free then

dimAn =
[ 1

3
(n− 2)

]
+
[ 1

3
(n− 3)

]
+
[ 1

3
(n− 1)

]
+ 3 = n.

In a similar way in the case case a = 1 we have

I(h) ≡ q(h)L(h) + r(h)M(h)

where q, r are real polynomials of degree at most [ 1
3

(n− 3) and 1
3

[(n− 1)]
respectively, so

dimAn =
[ 1

3
(n− 3)

]
+
[ 1

3
(n− 1)

]
+ 2 =

[ 1
3

(2n+ 1)
]
.

The case a = 0 follows from [23].

Suppose at last that a =∞. We shall modify the proof of Proposition 5
in the case b2−4a3 = 0. Note first that if a polynomial differential one-form
ω is even in y, i∗ω = ω, i(x, y) = (x,−y), then the corresponding Abelian
integral

∫
δc1(h)

ω is identically zero. So it is enough to consider only integrals
of the form ∫

δc1(h)

ω, i∗ω = ω.

If such an integral is identically zero, then we have also∫
δc1(h)

ω ≡
∫
δs3(h)+δs4(h)

ω ≡ 0.

On the other hand Γh = H−1 ∪ P+ ∪ P− where i permutes P+ and P−. It
follows that ω has no residues, so∫

δs3(h)−δs4(h)

ω ≡ 0.

Thus the restriction of ω on the fibre H−1(h) represents the zero co-
homology class in H1(H−1(h),C), and its “relative cohomology class”
[ω] ∈ PH is zero too [7],Thm 1.2. As in the proof of Proposition 5 we
conclude that the vector space An is isomorphic to the vector space of
two-forms

ω = Rn−1(x, y) dx ∧ dy, degRn−1 ≤ n− 1, i∗ω = ω
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modulo two-forms dA∧dH, where the real polynomial A(x, y) is even in y,
and degA ≤ n− 2. Thus we get

dimAn = dim
{
Rn−1 ∈ R[x, y] : degRn−1 ≤ n− 1,

Rn−1(x,−y) = Rn−1(x, y)
}

− dim
{
An−2 ∈ R[x, y] : degAn−2 ≤ n− 2,

An−2(x,−y) = −An−2(x, y)
}

= n+ (n− 2) + (n− 4) + · · · − (n− 2)− (n− 4)− · · ·
= n.

7. Polynomial deformations of a quadratic Hamiltonian
vector field and non-oscillation of Abelian integrals.

Let

XH = Hy
∂

∂x
−Hx

∂

∂y

be a reversible quadratic polynomial Hamiltonian vector field with one
center and one saddle point. It follows from the preceding section that by a
linear change of the variables x, y and t we can assume that

H(x, y) = 1
2

(x2 + y2)− 1
3
x3 + axy2, where − 1

2
< a ≤ 0.

Consider a polynomial deformation of XH of the form

Xε = XH + εY + o(ε)

where

Y = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

is a polynomial vector field of degree n, degP ≤ n, degQ ≤ n. The first
approximation of the return map associated to Xε is given by the Abelian
integral

IY (h) =
∫∫
{H≤h}

div(Y ) dx ∧ dy, div(Y ) = Px +Qy

where h ∈ [0, 1
6

[.

THEOREM 3. — Let Xε be a polynomial deformation of degree n of

the Hamiltonian vector field XH , and assume that IY (h) is not identically

zero. Let K ⊂ R2 be any compact domain. For all sufficiently small ε the

vector field Xε has at most n− 1 limit cycles in K. This bound is exact.
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The difficult part of the proof is the study of the Abelian integral IY .
If a = 0 this is done in a well known paper by Petrov [23], [3]. Based on
this and on Roussarie’s theorem [26] Mardes̆ić [19] deduced Theorem 3 in
the case a = 0. Therefore further we suppose that − 1

2
< a < 0. Theorem 3

will be proved at the end of this section. We shall find first the exact upper
bound for the number of the zeros of an Abelian integral I(h) ∈ Aδ (we keep
the notations of the preceding sections). Using the method of Petrov, we
shall compute this number in the larger complex domain D = C\[hs2,∞[, in
which I(h) is a holomorphic function. The determination of the domain D
is crucial for the proof, and it amounts to compute the Dynkin diagram
of the polynomial H(x, y) (Proposition 12). The second new observation is
that the imaginary part of the holomorphic function F (h) = I ′(h)/M ′(h)
on [hs2,∞[ is an expression involving the “relative” complete Abelian
integral of first kind ∫ P+

P−

ω′M

(see (27), (25)). This can be used to obtain a more transparent proof of
results in [10], [24].

Recall that, according to the classical terminology a meromorphic
differential one-form on the Riemann surface Γh is said to be of first kind if
it is holomorphic, of second kind if it has no residues, and it is of third kind
if it has only simple poles. Introduce the following notation:

Z(h) = (3a− 1)X(h)− 4aL(h), ωZ = (3a− 1)ωX − 4aωL,

ω′X = ∇ωX = − xdx
Hy

, ω′L = ∇ωL = − x
2 dx
Hy

, ω′M = ∇ωM = − dx
Hy

where the one-forms ωX , ωM , ωL, and the Abelian integrals X(h), M(h),
L(h) were defined in Section 6.

PROPOSITION 10. — Let a 6= 0,∞. The one-form ω′M is of first kind,
ω′Z is of second kind, and ω′X is of third kind. The only residues of ω′X
are at P±.

Proof. — It is easily checked that ω′M is holomorphic, ω′X has only
simple poles, and ω′Z has at most double poles. As i∗ω′X = −ω′X and
i(P0) = P (0), then ResP0ω

′
X = 0. The fact that ω′Z has no residues follows

from [12], Remark 3.4.
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Proposition 10 suggests to replace the Abelian integral I(h) by its
derivative. As the Abelian integral I(h) ∈ Aδ always vanishes at h = 0 then
on any real interval containing h = 0 the number of the zeros of I(h) is less
or equal to the number of the zeros of I ′(h) on the same interval. The next
proposition follows from Proposition 8 (and is in fact equivalent to it).

PROPOSITION 11. — For every Abelian integral I(h) ∈ An, a 6= 0,
holds

I ′(h) = p(h)X ′(h) + q(h)Z ′(h) + r(h)M ′(h)

where p,q,r are suitable unique real polynomials of degree at most [ 1
3

(n−2)],
[ 1

3
(n− 3)] and [ 1

3
(n− 1)] respectively.

Proof. — We use Proposition 8 to express I(h) as a polynomial linear
combination in X(h), Z(h), M(h) and then derive with respect to h. It
remains to express X(h), Z(h), M(h) as a linear combination in their
derivatives. This is a general fact, but in our particular case we can be
completely explicit. It follows from [12], Remark 3.4, that

−X ′ + (a+ 1)L′ − 6ahM ′ + 4aM = 0,

(−12a2h+ a+ 1)X ′ + (2a2 − a− 1)L′ + 12a2X + a(1− a)M = 0,

(6h− 1)X ′ + (12ah− 2a)L′ + (3a− 7)X − 16aL+ (a+ 1)M = 0.

���

���

���

���

�
	

���

��


Figure 4. The vanishing cycles on the elliptic curve Γh, − 1
2
< a < 0.
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Let δi, i = 1, 2, 3, 4 be a basis of vanishing cycles of H1(H−1(h),Z) as
on Fig. 4. We have

i(δc1) = −δc1, i(δs2) = −δs2, i(δs3) = −δs4, i(δs4) = −δs3.

Consider the vector space An of Abelian integrals∫
δc1

P (x, y) dx+Q(x, y) dy, P,Q ∈ R[x, y], deg(P ),deg(Q) ≤ n

and the vector space A′n = {I ′(h):I(h) ∈ An}. The following observation
is crucial in the proof of the non-oscillation property

PROPOSITION 12. — Every Abelian integral I(h) ∈ An is analytically

continued to a holomorphic function in the complex domain D = C\[hs2 ,∞[.

Indeed, according to the Dynkin diagram of H, the intersection index
of the cycles δc1 and δ3, δ4 is zero. The Picard-Lefschetz formula implies
that I(h) is a holomorphic function in the complex domain D = C\[hs2,∞[.

THEOREM 4. — The space A′n is Chebishev in the complex domain D.

Remark 5. — In the particular case a = − 1
3

the polynomial (24) can
be put, after a suitable translation, rotation of the axes, and rescaling, in
the form

H(x, y) = xy + x3 + y3.

In this case Theorem 4 is usually attributed to Petrov (see [3], p. 111, [17])
who announced it without proof [23], Thm 5. Apparently Petrov believed
that the module of Abelian integrals along the ovals of H has only two
generators, while in fact it has three. This was noted by Rousseau and
Żo ladek [27], p. 41, and Żo ladek [29], p. 169, who claimed (also without
proof) that the Petrov’s result “turns to be not true”. A rigorous proof of
Petrov’s theorem, based on [8], is first given in [9].

The dimension of A′n is equal to dimAn = n. To find a bound
for the number of the zeros of I ′(h) ∈ A′n in D we shall evaluate the
increment of the argument of F (h) = I ′(h)/M ′(h) along the boundary
of D. We recall that ω′M is a holomorphic form and hence M ′(h) does not
vanish [11]. Denote by F+(h) (resp. F−(h)) the analytic continuation of
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F (h) on [hs2,∞[, along a path contained in the half-plane Im(h) > 0 (resp.
Im(h) < 0). The Picard-Lefschetz formula implies

(25) ImF±(h) = ±

∫
δc1(h)

ω′
∫
δs2(h)

ω′M −
∫
δc1(h)

ω′M
∫
δs2(h)

ω′

|M ′(h)|2
·

Denote the numerator of the above expression by Wδ1,δ2(ω′, ω′M ). By
Proposition 11 we have

Wδ1,δ2(ω′, ω′M ) = p(h)Wδ1,δ2(ω′X , ω
′
M ) + q(h)Wδ1,δ2(ω′Z , ω

′
M ).

As ω′Z , ω
′
M have no residues (Proposition 10) then the function

Wδ1,δ2(ω′Z , ω
′
M ) is single valued in h on the complex plain C and has

no poles. Moreover for |h| ≈ ∞ the asymptotic estimates

|M ′(h)| ≈ |h|−1/3, |Z ′(h)|/ |h|+1/3

imply that Wδ1,δ2(ω′Z , ω
′
M ) is bounded in h. It follows that it is a (non-zero)

constant. Further the reciprocity law for meromorphic differentials of first
and third kind ω′M and ω′X [11] imply

Wδ1,δ2(ω′X , ω
′
M ) =

∫
δ1

ω′X

∫
δ2

ω′M −
∫
δ1

ω′M

∫
δ2

ω′X(26)

= 2π
√
−1ResP+ω

′
X

∫ P+

P−

ω′M

where the path of integration from P− to P+ in the integral above is
contained in Γh cut along the loops δ1(h) and δ2(h) as it is shown on
Fig. 4. Note that ResP+ω

′
X is an imaginary constant in h, and

∫ P+

P−
ω′M is

imaginary too. We obtain finally that on the interval [hs2,∞[ holds

(27) Wδ1,δ2(ω′, ω′M ) = p̃(h)2π
√
−1
∫ P+

P−

ω′M + q̃(h)

where p̃(h), q̃(h) are real polynomials of degree at most [ 1
3

(n − 2)] and
[ 1

3
(n− 3)] respectively. Denote by by Bn the vector space of functions (27),

continued analytically to holomorphic functions in the larger domain
C\]−∞, h3,4[. Obviously

dimBn =
[ 1

3
(n− 2)

]
+
[ 1

3
(n− 3)

]
+ 2.
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LEMMA 3. — The space of functions Bn is Chebishev in the complex

domain C\]−∞,h3,4[.

Proof. — For |h| ≈ ∞ we have that |p̃(h)
∫ P+

P−
ω′M + q̃(h)| grows no

faster than |h|[(n−3)/3] and its imaginary part on ]−∞, h3,4[ equals to

±q̃(h)
∫
δ(h)

ω′M , δ(h) ∈ H1

(
H−1(h),Z

)
.

As the one-form ω′M is holomorphic on the elliptic curve Γh (Prop. 10) then
the integral

∫
δ(h)

ω′M can not vanish. The argument principle implies that

P (h)
∫ P+

P−
ω′M + Q(h) has at most deg(p̃) + deg(q̃) + 1 = dimBn − 1 zeros

in the domain C\]−∞, h3,4[.

Proof of Theorem 4. — Let R be a big enough constant and r a small
enough constant. Denote by D′ the set obtained by removing the small disc
{|h − hs2| < r} from D ∩ {|h| < R}. To estimate the number of the zeros
of the Abelian integral I ′(h) in D′ (and hence in D) we shall evaluate the
increment of the argument of the function F (h) along the boundary of D′.

Along the circle {|h| = R} we have

|F (h)|/ |h|(n−1)/3

and on the interval ]hs2,∞[ the imaginary part of F (h) has at most dimBn−1
zeros (Lemma 3). At last if h ≈ hs2 then using the Picard-Lefschetz formula
we have either

(28) |F (h)| ≈ Cte 6= 0

(which is the generic case), or

(29) |F (h)| ≈ |h|k

or

(30) |F (h)| ≈ |h|k

| log(h)|
·

In the first case the change of the argument of F (h), when h makes one
turn along the circle {|h − hs2| = r} is close to zero. This yields that the
increment of the argument of F (h) along the boundary of D′ is less than

2π
(
1 + 1

3
(n− 1) + dimBn − 1

)
≤ 2π(n− 1)

and hence F (h) can have at most n− 1 zeros in D′. Finally we note that in
the case (29) the argument of F (h) decreases by at least 2πk. This yields
an even sharper estimate for the number of the zeros of F (h). The third
case (30) is similar: we note that the argument of 1/| log(h)| decreases along
the circle {|h− hs2| = r}, and this decrease is close to zero.
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The above reasonings indicate that it is possible to control the zeros
which “accumulate” at the point hs2 on the boundary of D. This will be
used when studying limit cycles in a neighborhood of the separatrix loop of
the unperturbed Hamiltonian system (16).

Recall that in a neighborhood of hs2 holds

I ′(h) = (holomorphic function) log(h− hs2) + holomorphic function.

Thus we have either

(31)
∣∣I ′(h)

∣∣ ≈ ∣∣(h− hs2)k/2 log(h− hs2)
∣∣, where k is even

or

(32)
∣∣I ′(h)

∣∣ ≈ ∣∣h− hs2∣∣(k−1)/2
, where k is odd.

It may be shown (Roussarie [26]) then, that any function of the form

Ĩ ′(h) = (holomorphic function) log(h− hs2) + holomorphic function,

sufficiently close to I ′(h), can have at most k zeros in {|h − hs2| < r} ∩ D.
This justifies the following

DEFINITION 7. — We shall say that I ′(h) ∈ An, h ∈ D has a zero of

multiplicity k at hs2 ∈ ∂D, provided that either the estimate (31), or the

estimate (32) holds.

THEOREM 5. — If the Abelian integral I ′(h) ∈ An has a zero of

multiplicity k at h = hs2, then it has at most n − k − 1 zeros in D. This

bound is exact.

Proof. — Consider first the case k even, and the estimate (31) holds.
Then ∣∣∣ ∫

δs2(h)

ω′
∣∣∣ ≈ |h− hs2|k/2

and hence ∣∣Wδc1,δ
s
2
(ω′, ω′M )

∣∣/ |h− hs2|k/2.
Thus Wδ1,δ2(ω′, ω′M ) has a zero of order at least 1

2
k at hs2, and by Lemma 3

the number of the zeros of the imaginary part of F (h) on the interval ]hs2,∞[
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is less or equal to dimBn − 1 − 1
2
k. On the other hand for h ≈ hs2 holds

|F (h)| ≈ |h|k/2. As in the proof of Theorem 4 we compute now the increment
of the argument of F (h) when h makes one turn along the boundary of D′
in a positive direction. Taking into account that when h makes one turn
along the small circle {|h− hs2| = r}, the decrease of the argument of F (h)
is close to πk we conclude that F (h) has at most n− k − 1 zeros in D.

The case k odd and the estimate (32) holds is studied in a similar
way. We have ∣∣∣ ∫

δs2(h)

ω′
∣∣∣ ≈ |h− hs2|(k+1)/2

and hence ∣∣Wδc1,δ
s
2
(ω′, ω′M )

∣∣/ |h− hs2|(k−1)/2.

It follows that Wδ1,δ2(ω′, ω′M ) has a zero of order at least 1
2

(k − 1) at hs2,
and by Lemma 3 the number of the zeros of the imaginary part of F (h)
on the interval ]hs2,∞[ is less or equal to dimBn − 1− 1

2
(k − 1). Along the

circle {|h− hs2| = r} holds

|F (h)| ≈ |h|
(k−1)/2

| log(h)|
·

The factor h(k−1)/2 corresponds to a decrease of the argument of F (h) close
to π(k− 1). The factor 1/ log(h) corresponds to a decrease of the argument
of F (h) close to zero. The point is that when h makes one turn along the
circle {|h−hs2| = r}, then the imaginary part of the function F (h)/h(k−1)/2

has exactly one zero (at h = hs2 − r). Using the argument principle we
conclude that F (h) has at most n− k − 1 zeros in D.

Proof of Theorem 3. — If ε is sufficiently small the compact domain K
contains only two critical points of the vector field Xε. When ε→ 0 a limit
cycle of Xε tends either to a periodic solution of XH , to the origin (0, 0), or
to the homoclinic loop {H = 1

6
}.

According to the Poincaré-Pontryagin criterion the number of limit
cycles of Xε which tend to a periodic solution of XH is less or equal to the
number of the zeros of the Abelian integral IY (h) on the open interval ]0, 1

6
[,

which on its hand equals the number of the zeros of I ′Y (h) (as IY (0) = 0).
The number of limit cycles which tend to the origin is less or equal to the
order of IY (h) at h = 0 minus one, and hence equals to the order of I ′Y (h)
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at h = 0. Finally, to evaluate the number of the limit cycles which tend
to the homoclinic loop {H = 1

6
} we shall use Roussarie’s theorem [26].

In our case it can be stated in the following form (see [19]): “Suppose that
k limit cycles tend to a homoclinic loop with a non-degenerate saddle point,
as ε→ 0. Then the Abelian integral I ′Y (h) has a zero of multiplicity at least k
at h = h2.” Theorem 5 implies Theorem 3.
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