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Abstract

We study zeros of elliptic integrals I(h) =
∫∫

H6h
R(x, y) dx dy, where H(x, y) is a real cubic polynomial

with a symmetry of order three, and R(x, y) is a real polynomial of degree at most n. It turns out that
the vector space An formed by such integrals is a Chebishev system: the number of zeros of each elliptic
integral I(h) ∈ An is less than the dimension of the vector space An.

1. Statement of the result

Let H(x, y) be a real polynomial of degree d with an elliptic Morse critical point
at the origin, H = (x2 + y2)/2 + . . ., and let γ(h) ⊂ {H = h} be a continuous family
of compact ovals defined for h ∈ ∆ = ]0, a[. If we denote by {H 6 h} the interior of
γ(h), then the Hilbert–Arnold problem (see [1, p. 313] and [2]) asks for the maximal
number of the zeros of the Abelian integral

I(h) =

∫ ∫
H6h

R(x, y) dx dy (1.1)

on the interval ∆, where R(x, y) is a real polynomial of degree n.
This problem is far from being solved. In a series of papers [10], Petrov found

the maximal number of zeros of I(h) in the case H = y2 + P (x), where P (x) is a
fixed polynomial of degree at most four and having only real critical values. If H
is a generic cubic polynomial with one elliptic and three hyperbolic critical points,
and degR 6 1, then the maximal number of zeros of I(h) was found in [6, 8]. It
turns out that in most of the studied cases, the vector space An of Abelian integrals
I(h) with degR 6 n forms a Chebishev system (the number of zeros of functions in
An is less than the dimension of An).

In the present paper we prove the above nonoscillation property in the case when
H(x, y) is a cubic polynomial invariant under a rotation of R2 through an angle
2π/3. This implies that for some constant c 6= 0, and some linear non-homogeneous
functions li = li(x, y), i = 1, 2, 3, H = l1l2l3 + c holds. After a linear change of
variables, H(x, y) can always be put into the normal form

H = 1
2
(x2 + y2)− 1

3
x3 + xy2 = 1

2
|z|2 − 1

6
(z3 + z̄3), (1.2)

where z = x +
√
−1y. The polynomial H has one elliptic critical point at the

origin, three hyperbolic Morse critical points at (−1/2,±
√

3/2) and (1, 0), and the
corresponding critical values of H are h = 0 and h = 1/6 (see Fig. 1). The maximal
open interval on which the compact oval γ(h) exists is ∆ = (0, 1/6).
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Fig. 1. Level sets {H = h} for h ∈ R

Theorem 1.1. Let An be the vector space formed by Abelian integrals I(h) as in
(1.1), where degR(x, y) 6 n and H(x, y) is defined by (1.2). Every function I(h) ∈ An

which is not identically zero has at most dimAn − 1 zeros on the interval ∆. The
dimension of An is equal to [ 2

3
n] + 1.

2. Proof

We shall need first three propositions, which will be proved later in this section.
To any polynomial H ∈ R[x, y] we associate, following [5], the R[h] module PH of
real polynomial one-forms with equivalence relation

ω1 ∼ ω2 ⇔ ∃A,B ∈ R[x, y] such that ω1 − ω2 = dA+ B dH

and multiplication

R(h) · ω = R(H)ω, for all R(h) ∈ R[h].

Proposition 2.1. The module PH is free and generated by the one-forms

ω1 = y dx, ω2 = y3dx, ω3 = y2dx, ω4 = xy dx.

This means that if ω = Pn+1dx+Qn+1dy is a real polynomial one-form of degree n+1,
then there exist unique polynomials pi(h) such that in PH,

ω ∼
4∑
i=1

pi(h)ωi

holds, and moreover

3 deg(p1) 6 n, 3 deg(p2) + 2 6 n, 3 deg(p3) + 1 6 n, 3 deg(p4) + 1 6 n.
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Fig. 2. The vanishing cycles γ(h), δi(h) on Γh

The Abelian integral

I(h) =

∫ ∫
H6h

Rn(x, y) dx dy =

∫
γ(h)

Pn+1(x, y) dx+ Qn+1(x, y) dy

is an analytic function in h for |h| sufficiently small and, as we shall see, its analytic
continuation in the complex domain D = C \ [1/6,∞[ is a holomorphic function.
We shall prove the nonoscillation property of I(h) in this larger domain.

Let

Γh = {(x, y) ∈ C2 : H(x, y) = h}

be the complexification of the compact oval γ(h). The oval γ(h) ⊂ Γh represents an
integer homology class in H1(Γh,Z) for h ∈ ∆ with an orientation fixed by∫ ∫

H6h
dx dy > 0.

As Γh is a genus one Riemann surface with three points removed, we have

dimH1(Γh,Z) = 4,

and we may define continuous families of cycles δi(h) ⊂ H1(Γh,Z), h ∈ ∆, such
that γ(h), δ1(h), δ2(h), δ3(h) form a basis of H1(Γh,Z). The family γ(h) is uniquely
defined by the condition that it vanishes at the origin as h → 0, h ∈ ∆. Similarly,
the continuous families of cycles δi(h) are uniquely defined by the condition that
they vanish at the critical points (−1/2,±

√
3/2) and (1, 0) as h → 1/6, h ∈ ∆, and

(γ(h) ◦ δi(h)) = 1 (see Fig. 2). The families γ(h), δi(h) are, in fact, well defined for
h ∈ C \ {0, 1/6} as locally constant sections of the homology bundle of the affine
curve Γh. These sections, however, are not globally constant, and their monodromy
is given by the Picard–Lefschetz formula. Namely, let l ∈ π1(C \ {0, 1/6}, h0), h0 ∈ ∆,
be a loop which makes one turn around the critical value h = 0 anticlockwise,
and is contained in the half plane Re(h) 6 h0. The corresponding monodromy
transformation of H1(Γh0

,Z) is given by

α(h0)→ α(h0)− (α(h0) ◦ γ(h0))γ(h0), for all α(h0) ∈ H1(Γh0
,Z). (2.1)
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Similarly, let l ∈ π1(C \ {0, 1/6}, h0) be a loop which makes one turn around the
critical value h = 1/6 anticlockwise, and is contained in the half plane Re(h) > h0.
The corresponding monodromy transformation of H1(Γh0

,Z) is given by

α(h0)→ α(h0)−
3∑
i=1

(α ◦ δi(h0))δi(h0), for all α(h0) ∈ H1(Γh0
,Z). (2.2)

It follows that the Abelian integral (1.1) is a holomorphic function in the complex
domain D.

Proposition 2.2. ∫
γ(h)

xy dx =

∫
γ(h)

y2dx ≡ 0.

Proposition 2.3. The function
∫
γ(h)

y dx has one simple zero in D, at h = 0. If
Pp(h), Qq(h) are degree p and q real polynomials, then the function

F(h) = Pp(h) + Qq(h)

∫
γ(h)

y3dx∫
γ(h)

y dx
, h ∈ D,

is holomorphic and has at most q + max{p, q}+ 1 zeros in D.

Proof of Theorem 1.1, assuming the above propositions. By Propositions 2.1 and
2.2, we deduce that the Abelian integral I(h) belongs to the vector space

An =

{
I(h) =

∫
γ(h)

Pn+1(x, y) dx+ Qn+1(x, y) dy : deg(Pn+1), deg(Qn+1) 6 n+ 1

}
if and only if it can be written in the form

I(h) = P (h)

∫
γ(h)

y dx+ Q(h)

∫
γ(h)

y3dx, (2.3)

where P and Q are suitable real polynomials satisfying

deg(P ) 6
n

3
, deg(Q) 6

n− 2

3
. (2.4)

Moreover, I(h) ≡ 0 if and only if P (h) ≡ 0 and Q(h) ≡ 0. It follows that the
dimension of An equals [ n

3
] + 1 + [ n−2

3
] + 1. Clearly, any function I(h) ∈ An has a

zero at t = 0, and the function
∫
γ(h)

y dx has a zero at h = 0 of order one, hence

F(h) = I(h)/
∫
γ(h)

y dx is holomorphic and has at most [ n
3
] + [ n+1

3
] = [ 2

3
n] zeros in

D (Proposition 2.3). As ∆ ⊂ D and
∫
γ(h)

y dx 6= 0 in ∆, this completes the proof of
Theorem 1.1.

We now prove Propositions 2.1–2.3. Proposition 2.1 is a particular case of a
general result proved in [5]. Here we sketch a direct proof. Consider the function

W (h) = det

(∫
δi

ωj

)
, (2.5)

where δ4 = γ. Standard arguments (the Picard–Lefschetz formula and growth at
infinity) show that W (h) is a polynomial [3]. This polynomial vanishes at h = 0, has
at least a triple zero at h = 1/6, and grows at infinity not faster than ch4, where c is
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a constant [4]. It follows that W (h) = ch(h− 1/6)3, so the one-forms ωi are always
independent in H1

DR(Γh,C), h 6= 0, 1/6. As dimH1
DR(Γh,C) = dimH1(Γh,R) = 4, it

follows that the ωi, i = 1, . . . , 4, generate a basis of H1
DR(Γh) for every h 6= 0, 1/6.

Thus on each level set Γh, every one-form ω is, up to addition of an exact form, a
linear combination of the ωi, i = 1, . . . , 4, and hence∫

δi(h)

ω =

4∑
j=1

pj(h)

∫
δi(h)

ωj, i = 1, 2, 3, 4.

Using the Kramer formulae and with the same arguments as for W (h), we deduce
that the pi(h) are polynomials. Their degrees can be obtained from the asymptotic
behaviour of the Abelian integrals

∫
δi(h)

ωj at ‘infinity’. Finally, as the restriction of
the one-form

ω0 = ω −
4∑
i=1

pi(h)ωi

on Γh represents the zero cohomology class in H1
DR(Γh;C) for every fixed h, we may

use [9, Theorem 1] to conclude that ω0 is also zero in PH .

Proof of Proposition 2.2. As H is invariant under rotations z → ze2πi/3,∫ ∫
H6h

z dz ∧ z̄ = e2πi/3

∫ ∫
H6h

z dz ∧ z̄ = 0,

which implies ∫
γ(h)

xy dx =

∫
γ(h)

y2dx ≡ 0.

Proof of Proposition 2.3. To compute the number of zeros of S(h) =
∫
γ(h) y dx

in D, we shall evaluate the increment of the argument of S(h) along the boundary of
D described in a positive direction (anticlockwise). For h ∈ ]1/6,∞[ , we define S+(h)
and S−(h) to be the analytic continuations of S(h) along paths on which Im(h) > 0
and Im(h) < 0, respectively. Let R be a large enough constant, and let r be a small
enough constant. Denote by D′ the set obtained from D ∩ {|h| < R} by removing
the circle of radius r centred at h = 1/6 (see Fig. 3).

Consider the increase of the argument of S(h) along the boundary of D′. For

h ∈ D, we have |x|, |y| ∞∼ |h|1/3, so the argument of S(h) increases by no more
than 4π/3 along the circle |h| = R. Similarly, for h ∈ D in a neighbourhood of

1/6, we have S(h)
1/6∼ S(1/6) 6= 0. It follows that along the circle |h − 1/6| = r, the

increment of the argument of S(h) is close to zero. Along the interval [r, R], we use
the Picard–Lefschetz formula (2.2) to obtain

S+(h)− S−(h) = ±2
√
−1 Im S±(h) = ±

3∑
i=1

∫
δi(h)

y dx.

The real function J(h) =
√
−1
∑

i

∫
δi(h)

y dx has no zeros on ]1/6,∞[. Indeed, as δi(h)

vanishes as h→ 1/6, we have J(1/6) = 0. On the other hand,

J ′(h) =
d

dh

√
−1

3∑
i=1

∫
δi(h)

y dx =
√
−1

3∑
i=1

∫
δi(h)

dx

Hy

= 3
√
−1

∫
δ1(h)

dx

Hy

.
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Fig. 3. The region D′

The last identity holds because the cycles δi(h) are homologous on the compactified
curve Γ̄h (see Fig. 2), and dx/Hy is a holomorphic differential on Γ̄h. We have
(γ(h) ◦ δ1(h)) = 1, and a well-known theorem of Jacobi [7] says that the compact
elliptic curve Γ̄h is isomorphic to C/Λ, where Λ is the lattice

Λ =

{
Z

∫
δ1(h)

dx

Hy

+ Z

∫
γ(h)

dx

Hy

}
.

In particular, rank(Λ) = 2 and hence
∫
δ1(h)

dx/Hy 6= 0. We conclude that J ′(h) 6= 0

on ]1/6,∞[ , and hence J(h) = 2
√
−1 Im S±(h) 6= 0 on ]1/6,∞[. Putting the above

data together yields that the increment of the argument of S(h) along the boundary
of D′ is less than 2π + 4π/3. Using the argument principle, we obtain that S(h)
has at most one zero in D′ (and hence in D). In fact, S(h) has exactly one zero, as
S(0) = 0.

To compute the zeros of F(h) in D, we proceed in the same way. As S(h) has a
zero of order one at h = 0, F(h) = I(h)/S(h) is holomorphic in D. For h ∈ ]1/6,∞[ ,
we define F+(h) and F−(h) as above. Consider the increase of the argument of F(h)
along the boundary of D′. Along the circle |h| = R, we have

|F(h)| ∼ |h|max{p, q+2/3},

so the argument of F(h) increases by no more than 2πmax{p, q + 2/3}. Using the
Picard–Lefschetz formula (2.2), we obtain the asymptotic estimate (for h ∈ D)

|F(h)| 1/6∼ chk

or

|F(h)| 1/6∼ chk log(h),

where c is a non-zero constant and k is a non-negative integer. In both cases the
increase of the argument of F(h) along the circle |h − 1/6| = r in a clockwise
direction is either close to zero or negative. Finally, along the interval [r, R] we use
the Picard–Lefschetz formula (2.2) to obtain

F+(h)− F−(h) = ±2
√
−1 ImF±(h) = Qq(h)

W̃ (h)

|
∫
γ(h)

y dx|2
,
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where

W̃ (h) = det

(∫
γ(h)

y dx
∫
δ(h)

y dx∫
γ(h)

y3dx
∫
δ(h)

y3dx

)
, δ(h) = δ1(h) + δ2(h) + δ3(h).

The Picard–Lefschetz formulae (2.2) and (2.1) show that the function W̃ (h) is single-
valued and hence holomorphic on C. As |

∫
δi(h)

y3dx| and |
∫
δi(h)

y dx| grow at infinity

no faster than |h|4/3 and |h|2/3, |W̃ (h)| grows no faster than |h|2. It follows that W̃ (h)
is a polynomial, and as W̃ (0) = W̃ (1/6) = 0, we conclude that W̃ (h) = ch(h− 1/6)
for some constant c. In fact, the constant c is not equal to zero as the determinant
W (h) in (2.5) is not identically zero. It follows that the imaginary part of F(h) has
at most q zeros on the interval ]1/6,∞[. Putting the above data together yields
that the increment of the argument of F(h) along the boundary of D′ is less than
2π(max{p, q + 2/3} + q + 1). This implies that F(h) has at most q + max{p, q} + 1
zeros in D, which completes the proof of Proposition 2.3.

Note added in proof. In the recent preprint by E. Horozov and I. Iliev, ‘Linear estimate for the
number of zeros of Abelian integrals with cubic Hamiltonians’ (Sofia University, July 1997), the authors
study zeros of Abelian integrals related to arbitrary cubic polynomials. They find an upper bound
Z(n) 6 5n+ 20 for the number of the zeros of an Abelian integral I(h) ∈ An of degree n on a maximal
open interval on which the compact oval exists. They also show that for generic cubic polynomials H ,
the Chebishev property does not hold true.
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