Bull. Sci. math. 1998, 122, p. 571-584.

PETROV MODULES AND ZEROS OF ABELIAN INTEGRALS

BY

LUBOMIR GAVRILOV (*)

[Université Paul Sabatier, Toulouse]

ABSTRACT. — We prove that the Petrov module \mathcal{P}_f associated to an arbitrary semiweighted homogeneous polynomial $f \in \mathbf{C}[x,y]$ is free and finitely generated. We compute its generators and use this to obtain a lower bound for the maximal number of zeros of complete Abelian integrals. © Elsevier, Paris

1. Statement of the results

Let $f \in \mathbf{C}[x,y]$ be a polynomial and consider the quotient vector space \mathcal{P}_f of polynomial one-forms $\omega = Pdx + Qdy$, modulo one-forms dA + Bdf where A, B are polynomials. \mathcal{P}_f is a module over the ring of polynomials $\mathbf{C}[t]$, under the multiplication $R(t) \cdot \omega = R(f)\omega$.

Recall that a function $f: \mathbb{C}^2 \to \mathbb{C}$ is called weighted homogeneous (wh) of weighted degree d and type $\mathbf{w} = (w_x, w_y)$, $w_x = weight(x)$, $w_y = weight(y)$ if

(1)
$$f(z^{w_x}x, z^{w_y}y) = z^d f(x, y), \quad \forall z \in \mathbf{C}^*.$$

^(*) Manuscript presented by J.-P. FRANÇOISE, received in April 1997.

Lubomir GAVRILOV, Laboratoire Émile Picard, UMR 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France).

We shall also suppose that w_x , $w_y \le d/2$. By analogy to the case of an isolated singularity of a germ of an analytic function [2], we give the following

DEFINITION 1. – A polynomial $f \in \mathbf{C}[x,y]$ is called semiweighted homogeneous (swh) of weighted degree wdeg(f) = d and type \mathbf{w} if it can be written as $f = \sum_{i=0}^d f_i$, where f_i are wh-polynomial of weighted degree i and type \mathbf{w} , and the polynomial $f_d(x,y)$ has an isolated critical point at the origin.

Note that according to this definition a wh-polynomial with non-isolated critical point is not semiweighted homogeneous. We define the weighted degree of a one-form $\omega = Pdx + Qdy$ as $wdeg(\omega) = \max\{wdeg(P) + w_x, wdeg(Q) + w_y\}$.

Theorem 1.1. – Let $f \in \mathbb{C}[x,y]$ be a swh-polynomial. The $\mathbb{C}[t]$ module \mathcal{P}_f is free and finitely generated by μ one-forms $\omega_1, \omega_2, \ldots, \omega_{\mu}$, where $\mu = (d - w_x)(d - w_y)/w_x w_y$. Each one-form ω_i can be defined by the condition

$$d\omega_i = g_i dx \wedge dy$$

where $g_1, g_2, \ldots, g_{\mu}$ is a monomial basis of the quotient ring $\mathbb{C}[x,y]/\langle f_x, f_y \rangle$. For every polynomial one-form ω there exist polynomials $a_k(t)$ of degree at most $(wdeg(\omega) - wdeg(\omega_k))/wdeg(f)$ such that in \mathcal{P}_f holds $\omega = \sum_{k=1}^{\mu} a_k(t)\omega_k$.

The number $\mu=\dim \mathbf{C}[x,y]/\langle f_x,f_y\rangle$ is the global Milnor number of f, and it equals the sum of "local" Milnor numbers associated to the isolated critical points of f. The module \mathcal{P}_f appeared first in a paper by Petrov [9] where the above result was announced in the case $f(x,y)=y^2+P(x)$, where P(x) is a degree $d\geq 2$ polynomial. Indeed f is a swh polynomial of degree d and type $w_x=1, w_y=d/2$. The Milnor number of f is d-1 and a monomial basis of $\mathbf{C}[x,y]/\langle f_x,f_y\rangle$ is given by $\{1,X,\ldots,X^{d-2}\}$. As $x^kdx\wedge dy=-d(yx^kdx)$ then $\{ydx,xydx,\ldots x^{d-2}ydx\}$ is a "monomial" basis of \mathcal{P}_f . Of course here this can be also checked by direct combinatorial computations.

The proof of Theorem 1.1 is based on its hand on the following

THEOREM 1.2. – Let $f \in \mathbf{C}[x,y]$ be a polynomial with only isolated critical points, and suppose that for every $t \in \mathbf{C}$ the fibre $f^{-1}(t) \subset \mathbf{C}^2$

is connected. Every polynomial one-form ω on ${\bf C}^2$ satisfies the following condition

(*)
$$\forall t \in \mathbf{C}, \ \omega|_{f^{-1}(t)} = 0 \ in \ H^1(f^{-1}(t)) \Leftrightarrow \omega = 0 \ in \ \mathcal{P}_f.$$

Note that he above theorem holds under fairly week assumptions on f. For example any good polynomial [8] has isolated critical points and connected fibres. Recall that any tame [3] polynomial is good, any swh polynomial is tame, and any nice or Morse-plus polynomial ([6], [7], [14]) is swh. In the case when f is a degree d polynomial with $(d-1)^2$ distinct critical points Theorem 1.2 is proved by ILYASHENKO [6].

2. Proofs

Let $g(y) = y^d + \cdots$ be a degree d polynomial. Consider the global Milnor fibration

$$\mathbf{C} \stackrel{g}{\to} \{\mathbf{C} - \Sigma\}$$

where $\Sigma = \{t_1, t_2, \dots t_{d-1}\}$ is the set of the critical values of g, and each fibre $g^{-1}(t)$ consists of d distinct points $y_1(t), y_2(t), \dots y_d(t)$. The associate (co)homology Milnor bundle is a holomorphic vector bundle with fibre the vector space $\widetilde{H}^0(g^{-1}(t))(\widetilde{H}_0(g^{-1}(t)))$ of reduced (co)homologies. Let

$$\delta(t) = y_i(t) - y_i(t) \in \widetilde{H}_0(g^{-1}(t), \mathbf{Z})$$

be a locally constant (with respect to the Gauss-Manin connection) multivalued section of the homology Milnor bundle.

LEMMA 2.1. – Let s(t) be a holomorphic section of the cohomology Milnor bundle of the polynomial g(y) such that for any locally constant section $\delta(t) \in \widetilde{H}_0(g^{-1}(t))$ holds

- (i) in any sector on ${\bf C}$ with a vertex at ∞ the function $\langle s(t), \delta(t) \rangle$ grows at most as a polynomial
- (ii) in any sector on \mathbf{C} with a vertex at $t_i \in \Sigma$ the function $\langle s(t), \delta(t) \rangle$ is bounded. Then s(t) is induced by the function $\sum_{k=1}^{d-1} A_k(t) y^k$, $A_k(t) \in \mathbf{C}[t]$

$$\langle s(t), \delta(t) \rangle = \sum_{k=1}^{d-1} A_k(t) (y_j^k(t) - y_i^k(t)).$$

Proof. – Any functions h(y) defines a geometric section of the cohomology Milnor bundle by the formula $\langle h, \delta \rangle = h(y_j) - h(y_i)$. As the polynomials y, y^2, \ldots, y^{d-1} form a global basis of geometric sections of $\widetilde{H}^0(g^{-1}(t))$, then $s(t) = \sum_{k=1}^{d-1} A_k(t) y^k$ for some holomorphic functions $A_k(t)$. The conditions (i), (ii) imply that $A_k(t)$ are meromorphic on \mathbf{CP}^1 so they are rational functions. Suppose that some coefficient $A_k(t)$ has a pole at $t = t_r \in \Sigma$. Then there exists a non-zero section $\widetilde{s} = \sum_{k=1}^{d-1} c_k y^k$, $c_k = \mathrm{const}$, of the cohomoly Milnor bundle which vanishes of order at least one at t_r :

$$(2) |\langle \widetilde{s}(t), y_j(t) - y_i(t) \rangle| = \left| \sum_{k=1}^{d-1} c_k (y_j^k - y_i^k) \right| \le 0(|t - t_r|), t \to t_r, \forall i, j.$$

Clearly the degree d-1 polynomial $\sum_{k=1}^{d-1} c_k y^k$ takes the same values at the d (not necessarily distinct) roots $y_1(t_r), y_2(t_r), \dots y_d(t_r)$ of $g(y) - t_r$. It follows that there exists at least one critical point of g, say $y_r(t_r)$, of multiplicity $m \leq d$, and which is a zero of the polynomial

$$\sum_{k=1}^{d-1} c_k y^k - \sum_{k=1}^{d-1} c_k y_r^k(t_r)$$

of multiplicity m' < m. Finally, if y'(t), y''(t) are two distincts roots of g(y) - t which tend $y_r(t_r)$ as $t \to t_r$, then

$$|y'(t) - y_r(t_r)| = O(|t - t_r|^{1/m}), |y''(t) - y_r(t_r)| = O(|t - t_r|^{1/m}),$$

$$|y'(t) - y''(t_r)| = O(|t - t_r|^{1/m})$$

so

$$|\langle \widetilde{s}(t), y'(t) - y''(t) \rangle| = O(|t - t_r|^{m'/m}), t \to t_r$$

which contradicts to (2).

Proof of Theorem 1.2. – Fix a constant $x_0 \in \mathbb{C}$ and for every $t \in \mathbb{C}$ let $\{y_1(t), y_2(t), \dots y_d(t)\}$ be the unordered set of roots of the polynomial g(y) - t, where $g(y) = f(x_0, y)$. Let ω be a polynomial one-form on \mathbb{C}^2 satisfying the condition (*). For any $P = (x, y) \in \mathbb{C}^2$ define, following ILYASHENKO [6], the multivalued function

$$F_{\omega}(P) = \int_{P_i}^P \omega$$

where $P_i = P_i(t) = (x_0, y_i(t))$, $t = f(x_0, y_i(t))$, and the path of integration is taken along an arc contained in the connected affine algebraic curve $f^{-1}(t)$. The function $F_{\omega}(P)$ does not depend on the path of integration but it is determined only up to an addition of

$$\int_{P_i}^{P_j} \omega$$

where the path of integration is contained again in $f^{-1}(t)$. It is easy to check, following for example Yakovenko [14], that $F_{\omega}(P)$ grows at infinity no faster than some polynomial in x, y, P = (x, y), and that

$$\int_{P_i(t)}^{P_j(t)} \omega$$

grows at infinity no faster than some polynomial in t. Let s be a section of the cohomology Milnor bundle of the polynomial in one variable g(y) defined by the formula

$$\langle s(t), P_j(t) - P_i(t) \rangle = \int_{P_i(t)}^{P_j(t)} \omega.$$

As s is obviously holomorphic and satisfies the condition (i), (ii) of Lemma 2.1, then it is induced by the polynomial function $\sum\limits_{k=1}^{d-1}A_k(t)y^k$ and hence

$$\int_{P_i(t)}^{P_j(t)} \omega = \int_{P_i(t)}^{P_j(t)} d\left(\sum_{k=1}^{d-1} A_k(f) y^k\right)$$

Replacing eventually ω by $\omega-d\left(\sum_{k=1}^{d-1}A_k(f)y^k\right)$ we may suppose without loss of generality that the function $F_\omega(P)$ is single-valued. As it grows at infinity as a polynomial then it has a removable singularity along the infinite line of the projectivized complex plane \mathbf{C}^2 , so $A(x,y)=F_\omega(x,y)$ is a polynomial in (x,y). Let $\omega=Pdx+Qdy$, where $P,Q\in\mathbf{C}[x,y]$ and derive A along the vector field $f_y\frac{\partial}{\partial x}-f_x\frac{\partial}{\partial y}$ tangent to $f^{-1}(t)$. We obtain

$$A_x f_y - A_y f_x = P f_y - Q f_x \Leftrightarrow (P - A_x) f_y = (Q - A_y) f_x.$$

As f_x and f_y have no common factors then there exists a polynomial $B \in \mathbb{C}[x,y]$ such that $P - A_x = Bf_x$, $Q - A_y = Bf_y$, so $\omega = dA + Bdf$. \square

Choose a monomial basis $g_1, g_2, \ldots, g_{\mu}$ of representative classes of the quotient ring $\mathbf{C}[x,y]/\langle (f_d)_x, (f_d)_y \rangle$, where f_d is the highest order weight homogeneous part of the swh polynomial f. They form also a basis for $\mathbf{C}[x,y]/\langle f_x, f_y \rangle$. Suppose that the one-forms $\omega_1, \omega_2, \ldots, \omega_{\mu}$ defined by (1) are chosen to be monomial. Let $\gamma_1(t), \gamma_2(t), \ldots, \gamma_{\mu}(t)$ be be a continuous family of cycles which form a basis of $H_1(f^{-1}(t), \mathbf{Z})$ for any non-critical value $t \in \mathbf{C}$. Then the Wronskian function

$$W(t) = \det \left(\int_{\gamma_i(t)} \omega_j
ight)$$

is single-valued and hence a polynomial in t. It is known that the general fibres $f^{-1}(t)$ and $f_d^{-1}(t)$ are equivalent up to an isotopy [5]. Denote by $\{\gamma_i^d(t)\}_i$ the image of $\{\gamma_i(t)\}_i$ in $H_1(f_d^{-1}(t), \mathbf{Z})$ under this isotopy and define also the polynomial function

$$W_d(t) = \det \left(\int_{\gamma_i^d(t)} \omega_j \right).$$

Define at last the discriminant function of f by the formula

(3)
$$\Delta(t) = (t - t_1)^{\mu_1} (t - t_1)^{\mu_2} \cdots (t - t_1)^{\mu_s}$$

where μ_i is the sum of local Milnor numbers of the critical points of f associated to its critical value t_i . We have $\mu = \sum_i \mu_i$. To prove Theorem 1.1 we need the following

Lemme 2.2. – There exists a non-zero constant c such that $W_d(t)=ct^{\mu}$ and $W(t)=c\Delta(t)$.

Proof. – The covariant derivative $d\omega_j/dt$ of ω_j coincides with the Gel'fand-Leray form of $g_j dx \wedge dy$

$$\frac{d\omega_j}{dt} = g_j \frac{dx \wedge dy}{df}.$$

It is well known [2] that

$$\det\left(\int_{\gamma_i^d(t)} g_j \frac{dx \wedge dy}{df}\right) = c = \text{const} \neq 0$$

which combined with

$$\begin{split} \int_{\gamma_i^d(t)} \omega_j &= t^{\frac{\deg(\omega_j)}{d}} \int_{\gamma_i^d(t)} \omega_j, \\ \frac{d}{dt} \int_{\gamma_i^d(t)} \omega_j &= \int_{\gamma_i^d(t)} \frac{d\omega_j}{dt} = t^{\frac{\deg(\omega_j)}{d} - 1} \int_{\gamma_i^d(1)} \frac{d\omega_j}{dt} \end{split}$$

gives $W_d(t) = ct^{\mu}$.

To prove that $W(t)=c\Delta(t)$ we use that an isotopy which connects $f^{-1}(t)$ to $f_d^{-1}(t)$ can be chosen in the following way [5]. The change of variables

$$(4) x \to xt^{w_x/d}, \ y \to yt^{w_y/d}$$

transforms the fibre $f^{-1}(t)$ to $\{(x,y)\in \mathbf{C}^2: f(xt^{w_x/d},\,yt^{w_y/d})-t=0\}$ and the fibre $f_d^{-1}(t)$ to $f_d^{-1}(1)$. When $t\to\infty$, the fibre $\{(x,y)\in \mathbf{C}^2: f(xt^{w_x/d},\,yt^{w_y/d})-t=\}$ goes over $f_d^{-1}(1)$. Taking into consideration that the one-forms ω_k are monomial, we conclude that

$$W(t) = W_d(1)t^{\mu}(1 + 0(1/t)) = W_d(t)(1 + 0(1/t)).$$

This shows that W(t) is a degree μ polynomial with leading term ct^{μ} . On the other hand W(t) vanishes at the critical values t_i of f. If f has μ distinct critical points we are done. If not, we may use the following trick.

Consider a deformation $f_{a,b,t}(x,y) = f(x,y) + ax + by - t$ of f(x,y). The discriminant of $f_{a,b,t}$ is the algebraic set $\Sigma_{a,b,t}$ of (a,b,t) such that 0 is a critical value of $f_{a,b,t}$. $\Sigma_{a,b,t}$ is an irreducible surface in \mathbb{C}^3 as it may be parameterized

$$a = -f_x(x, y), b = -f_y(x, y), t = f(x, y) + ax + by.$$

Thus $\Sigma_{a,b,t} = \{(a,b,t) : \Delta(a,b,t) = 0\}$ for some irreducible polynomial $\Delta(a,b,t)$ which is called the discriminant polynomial of $f_{a,b,t}$. As the Milnor number of f(x,y) + ax + by equals the Milnor number of f(x,y), then Δ is of degree μ in t for any a,b so we may normalize, $\Delta(a,b,t) = t^{\mu} + \cdots$ This agrees with the definition (3) and we have $\Delta(0,0,t) = \Delta(t)$. Let $\gamma_1(t,a,b), \gamma_2(t,a,b), \ldots, \gamma_{\mu}(t,a,b)$ be a continuous family of cycles

which form a basis of $H_1(\{f_{a,b,t}(x,y)=0\}, \mathbf{Z})$ for any $(a,b,t) \notin \Sigma_{a,b,t}$ and consider the Wronskian

$$W(a,b,t) = \det\left(\int_{\gamma_i} \omega_j\right).$$

The function W(a,b,t) is a polynomial in a,b,t [2] which vanishes along $\Sigma_{a,b,t}$ and hence it factorizes $W(a,b,t)=c(a,b,t)\Delta(a,b,t)$ where c(a,b,t) is a polynomial. As before we check that the degree of W(a,b,t) in t is μ so c(a,b,t) does not depend on t. It remains to replace a=0, b=0.

Proof of Theorem 1.1. – Let $\omega_1', \omega_2', \ldots, \omega_{\mu}'$ be polynomial one forms. As in the proof of Lemma 2.2 we may show that

$$\det\left(\int_{\gamma_i(t)}\omega_j'\right)=c(t)\Delta(t)$$

where c(t) is a polynomial depending on ω_j' . Let ω be a fixed polynomial one form. The Kramer formulae together with Lemma 2.2 show that the linear system

$$\int_{\gamma_i(t)} \omega = \sum_{k=1}^{\mu} a_k(t) \int_{\gamma_i(t)} \omega_k, i = 1, 2, \dots, \mu$$

can be solved with respect to $a_k(t)$ and $a_k(t)$ are polynomials. Changing the variables x, y as in (4) and using [5] we conclude that $\deg(a_k(t)) \leq |wdeg(\omega) - wdeg(\omega_k))/wdeg(f)|$. We note at last that the polynomial one-form

$$\omega - \sum_{k=1}^{\mu} a_k(t)\omega_k$$

satisfies condition (*) and according to Theorem 1.2 is equal to zero in \mathcal{P}_f

3. Zeros of Abelian integrals

Let $f \in \mathbf{R}[x,y]$ be a real polynomial and $\delta(t) \subset f^{-1}(t) \subset \mathbf{R}^2$ be a continuous family of ovals defined for $t \in K$, where K is a compact

real segment. For every real one-form ω on ${\bf R}^2$ denote by $N_K(f,\omega)$ the number of the zeros of the complete Abelian integral

$$I(t) = \int_{\delta(t)} \omega$$

on the interval K. The problem of finding the number

$$N_K(f,n) = \sup_{\deg(\omega) \le n} N_K(f,\omega)$$

was stated first by Arnold (see for example [1], [7]) in relation with the second part of the 16th Hilbert problem. A solution of the problem is known only in the case $f(x,y)=y^2+P(x)$ where P(x) is a real polynomial of degree at most four with only real critical values (see Petrov [9], [10] for the case deg(P(x))=3, [11] for the case deg(P(x))=4 with a symmetry, and [12] for the generic case deg(P(x))=4. It was recently proved [7] that for generic fixed f the number $N_K(f,n)$ has at most an exponential growth as $n\to\infty$.

More generally, for any real vector space V of real one-forms on ${f R}^2$ denote

$$N_K(f, V) = \sup_{\omega \in V} N_K(f, \omega).$$

The image of V under the natural projection $V \to \mathcal{P}_f$ is again a real vector space which we denote by V_f .

Following [4] we say that the real vector space V satisfies the condition (\star) if and only if for every polynomial one-form $\omega \in V$

$$\int_{\delta(t)} \omega \equiv 0 \Leftrightarrow \omega = 0 \text{ in } \mathcal{P}_f.$$

We have the following obvious

Proposition 3.1. – If V satisfies condition (\star) then

$$N_K(f, V) \ge \dim_{\mathbf{R}} V_f - 1.$$

An important case when the condition (*) is satisfied is given by

Proposition 3.2. – Let $\delta(t) \subset f^{-1}(t) \subset \mathbf{R}^2$ be a continuous family of ovals surrounding a single elliptic critical point of f. If $f \in \mathbf{R}^2[x,y]$ is a

swh Morse polynomial with distinct critical values, then the space of all real polynomial one-forms satisfies (\star)

Proof. – Let $D \subset \mathbf{C}$ be a disc containing the critical values $t_1, t_2, \ldots, t_{\mu}$ of f, and let $t_0 \in \partial D$. Any system of mutually non-intersecting paths $s_1, s_2, \ldots, s_{\mu}$ starting from t_0 and ending at $t_1, t_2, \ldots, t_{\mu}$, respectively, and numbered in the order they start from t_0 defines a distinguished basis of vanishing cycles $\gamma_1(t_0), \gamma_2(t_0), \ldots, \gamma_{\mu}(t_0)$ of $H_1(f^{-1}(t_0), \mathbf{Z})$. Namely, if $\gamma_1(t), \gamma_2(t), \ldots, \gamma_{\mu}(t), t \in D \setminus \{\cup_i t_i\}$, are the corresponding continuous families of cycles, then each cycle $\gamma_i(t)$ vanishes along the path s_i as t tends to the critical value t_i (see [2] for a detailed definition). As in the "local" case we associate to the distinguished basis of vanishing cycles its Dynkin diagram. Recall this is a graph, and that each vertex of the graph corresponds to a vanishing cycle γ_i . Two distinct vertices corresponding to γ_i and γ_j are joined by k edges (k dotted edges) if the intersection number $(\gamma_i \cdot \gamma_j)$ is k (respectively -k). It is easy to see that the Dynkin diagram of f coincides with the Dynkin diagram of its highest weight-homogeneous part f_d [5] and hence the diagram is connected [2].

Suppose now that $\delta(t) \subset f^{-1}(t) \subset \mathbf{R}^2$ is a continuous family of ovals surrounding a single elliptic critical point of f. Then $\delta(t)$ vanishes along a suitable path and it can be included into a basis of vanishing cycles as above. If $\delta(t) = \delta_i(t)$ for some i, and $(\gamma_i \cdot \gamma_j) \neq 0$, then $\int_{\gamma_i(t)} \omega \equiv 0$. Indeed, consider a loop $l_p \in \pi_i(D \setminus \{\cup_i t_i; t_0\})$, generated by the path s_j and which makes one turn around t_j anticlokwise (fig. 1). The Picard-Lefschetz formula [2] implies that the analytic continuation of the complete Abelian integral $\int_{\gamma_i(t)} \omega$ defined for t in a neighborhood of t_0 , along the loop l_j is the integral

$$\int_{\gamma_i(t)} \omega - (\gamma_i \cdot \gamma_j) \int_{\gamma_i(t)} \omega.$$

It follows $\int_{\gamma_i(t)} \omega \equiv 0$. As the Dynkin diagram of f is connected then, proceeding by induction, we conclude that $\int_{\gamma_i(t)} \omega \equiv 0$, for $i = 1, 2, \dots, \mu$.

Remark. – The condition that $\delta(t)$ surrounds a critical point of f is necessary for the conclusion of Proposition 3.2 to hold true. Indeed, if $\delta(t)$ is a family of ovals homologous to zero on the compactified curve $f^{-1}(t)$, and ω is a differential of second kind, then $\int_{\delta(t)} \omega \equiv 0$. At the same time ω may be not equal to zero in $H^1_{DR}(f^{-1}(t), \mathbb{C})$. The

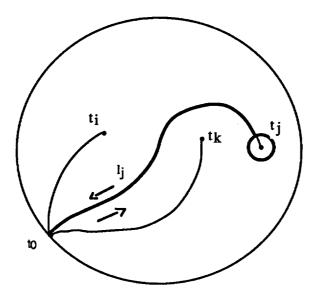


Fig. 1. – A system of μ paths defining a basis of vanishing cycles.

condition that the critical values of f are all distinct is necessary too, as it may be seen from [11].

The exact results obtained for $N_K(f, V)$ in [9], [10], [11], [12] suggest, at least for a reasonable choice of f and V, the following conjecture

If V satisfies
$$(\star)$$
, then $N_K(f,V) = \dim_{\mathbf{R}} V_f - 1$.

The above may be also reformulated by saying that the space of complete Abelian integrals $\int_{\delta(t)} \omega$ over forms $\omega \in V$ is Chebyshev space. To this end we give three examples of computation of $\dim_{\mathbf{R}} V_f$.

1. Let f be a Morse swh polynomial of weighted degree d with distinct critical values and let V be the real vector space of polynomial one forms of weighted degree at most n. By Theorem 1.1 the projection V_f is identified to all one-forms $\sum_{k=1}^{\mu} a_k(t)\omega_k$ where $a_k(t)$ are polynomials of degree at most $[(n-wdeg(\omega_k))/d]$. It follows that

$$\dim V_f = \mu + \sum_{k=1}^{\mu} \left[\frac{n - w deg(\omega_k)}{d} \right]$$

$$\geq \sum_{k=1}^{\mu} \frac{n - w deg(\omega_k)}{d} = \mu \left(\frac{n-1}{d} \right)$$

where μ is the global Milnor number of f (we used that $\sum_{k=1}^{\mu} w deg(\omega_k) = \mu$). In the case where n=d and f is of non-weighted degree n ($w_x=w_y=1$) we have an exact result

$$\dim V_f = \frac{n(n-1)}{2}.$$

2. Let us put for example $f(x,y) = y^2 + P_d(x)$, where $P_d(x)$ is a real degree d polynomial with d-1 distinct critical values. Then f is a degree d swh polynomial, $w_x = 1$, $w_y = d/2$, $\mu(f) = d-1$, which satisfies the condition (\star) . If V is the real vector space of polynomial one forms of weighted degree at most n then

$$N_K(f, V) \ge \dim V_f = d - 1 + \sum_{k=1}^{d-1} \left[\frac{n - w \deg(x^{k-1}y dx)}{d} \right]$$

$$= d - 1 + \sum_{k=1}^{d-1} \left[\frac{n - k - d/2}{d} \right]$$

$$\ge d - 1 + \sum_{k=1}^{d-1} \left(\frac{n - k - d/2}{d} - \frac{k}{d} \right) = \frac{d-1}{d} n - \frac{d-1}{2}.$$

3. Let $f(x,y) = y^2 + P_d(x)$ be as above a polynomial with distinct critical values and consider the vector space V of all real one-forms Pdx + Qdy where P, Q are polynomials of (non-weighted) degree n

(5)
$$V = \{ P(x, y)dx + Q(x, y)dy : \deg(P), \deg(Q) \le n \}.$$

The identity

$$y^{p}x^{q}dx = \frac{p}{2}P'_{d}(x)\frac{x^{q+1}}{q+1}y^{p+2}dx + d\left(y^{p}\frac{x^{q+1}}{q+1}\right) - \frac{p}{2}\frac{x^{q+1}}{q+1}y^{p-2}df$$

shows that the one form $y^{p-2}x^{q+d}dx$ is equivalent in \mathcal{P}_f to a one-form $y^pR_q(x)dx$ where $R_q(x)$ is a polynomial of degree q. Proceeding by induction we conclude that V_f is generated as a vector space by monomial one-forms

$$y^p x^q dx, q \le d - 2, p + q \le n.$$

These one-forms are moreover R-linearly independent in \mathcal{P}_f . Indeed, this holds true for

$$f^s y x^k dx, 0 \le k \le d - 2, s \ge 0.$$

(Theorem 1.1) and any such form is equivalent in \mathcal{P}_f to a R-linear combination of one forms

$$y^{2i+1}x^jdx, i \le s, j \le d-2.$$

It follows that $\dim_{\mathbf{R}} V_f$ equals to the number of entire values (k, s) contained in the polygon defined by

$$k \ge 0, s \ge 0, k \le d - 2, 2s + 1 + k \le n.$$

and (after some elementary computations)

$$\dim_{\mathbf{R}} V_f = \left[\frac{d-1}{2} n - \frac{(d-2)^2}{4} + \frac{1}{2} \right].$$

Acknowledgements

We acknowledge the interest of E. Horov and I. ILIEV to the paper, and thank to J.-P. Françoise for the critical remarks.

REFERENCES

- ARNOLD (V. I.). Geometrical methods in the theory of ordinary differential equations. -Berlin, Springer, 1988.
- [2] ARNOLD (V. I.), GUSEIN-ZADE (S. M.) and VARCHENKO (A. N.). Singularities of Differentiable Maps, vols. 1 and 2. - Birkhauser, 1985 and 1988 (Monographs in mathematics).
- [3] BROUGHTON (S. A.). Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., vol. 92, 1988, p. 217–241.
- [4] FRANÇOISE (J.-P.). Successive derivatives of a first return map, application to the study of a quadratic vector field, Erg. Th. and Dynam. Sys., 16, 1996, p. 87-96.
- [5] GAVRILOV (L.). Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity, 10, 1997, p. 433-448.
- [6] ILYASHENKO (Yu). Appearance of limit cycles in perturbation of the equation $\frac{dw}{dz} = -\frac{R_z}{R_{cv}}$ where R(r, w) is a polynomial, USSR Math. Sbornik, 78, 1969, p. 360–373.
- [7] IL YASHENKO (Yu). and YAKOVENKO (S.). Double exponential estimate for the number of zeros of complete Abelian integrals, *Invent. Math.*, 121, 1995, p. 613–650.
- [8] NEUMANN (W. D.). Complex algebraic plane curves via links at infinity, *Invent. math.*, vol. 98, 1989, p. 445-489.

- [9] Petrov (G. S.). Number of zeros of complete elliptic integrals, Funct. Anal. Appl., 18, 1984, p. 72-73.
- [10] Petrov (G. S.). Funct. Anal. Appl., 20, 1986, p. 37-40; 22, 1988, p. 37-40.
- [11] Petrov (G. S.). Funct. Anal. Appl., 21, 1987, p. 87-88; 23, 1989, p. 88-89.
- [12] Petrov (G. S.). Non-oscilation of elliptic integrals, Funct. Anal. Appl., 24, 1990, p. 45-50.
- [13] STEENBRINK (J.). Intersection form for quasihomogeneous singularities, Compositio Math., 34, 1977, p. 211-223.
- [14] YAKOVENSKO (S.). Complete Abelian integrals as rational envelopes, Nonlinearity, 7, 1994, p. 1237-1250.