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PETROV MODULES AND ZEROS OF ABELIAN INTEGRALS

BY
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ABSTRACT. — We prove that the Petrov module Py associated to an arbitrary semiweighted
homogeneous polynomial f € Clz, 3] is free and finitely generated. We compute its generators
and use this to obtain a lower bound for the maximal number of zeros of complete Abelian
integrals. © Elsevier, Paris

1. Statement of the results

Let f € C[z,y] be a polynomial and consider the quotient vector space
P; of polynomial one-forms w = Pdx+Qdy, modulo one-forms dA+ Bdf
where A, B are polynomials. Py is a module over the ring of polynomials
Clt], under the multiplication R(t) -w = R(f)w.

Recall that a function f : C?— C is called weighted homogeneous
(wh) of weighted degree d and type w = (ws,wy), w, = weight(z),
wy = weight(y) if

(1) f(2 e, 2%y) = 2 f(w,y), VzeC".

(*) Manuscript presented by J.-P. FRANCOISE, received in April 1997.
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572 L. GAVRILOV

We shall also suppose that w,, wy < d/2. By analogy to the case of
an isolated singularity of a germ of an analytic function [2], we give
the following

DerINITION 1. — A polynomial f € Clz,y| is called semiweighted
homogeneous (swh) of weighted degree wdeg(f) = d and type w if it
can be written as f = Z?:o fi» where f; are wh-polynomial of weighted
degree i and type w, and the polynomial fi(x,y) has an isolated critical
point at the origin.

Note that according to this definition a wh-polynomial with non-
isolated critical point is not semiweighted homogeneous. We define
the weighted degree of a one-form w = Pdzr + Qdy as wdeg(w) =
max{wdeg(P) + w,, wdeg(Q) + wy}.

THEOREM 1.1. — Let f € Clz,y| be a swh-polynomial. The C[t] module
Py is free and finitely generated by p one-forms wi, ws,...,w,, where
p = (d — wz)(d — wy)/wewy. Each one-form w; can be defined by the
condition

dw; = gidz N dy

where g1, 92,-..,9x is a monomial basis of the quotient ring
Clz,y]/{fr, fy). For every polynomial one-form w there exist polynomials
ax(t) of degree at most (wdeg(w) — wdeg(wy))/wdeg(f) such that in Py
holds w = 3 h_, ar(t)wg.

The number p = dim Clz, y]/{fx, fy)} is the global Milnor number of f,
and it equals the sum of “local” Milnor numbers associated to the isolated
critical points of f. The module Py appeared first in a paper by PETROV [9]
where the above result was announced in the case f(z,y) = y* + P(z),
where P(xz) is a degree d > 2 polynomial. Indeed f is a swh polynomial of
degree d and type w, = 1, wy = d/2. The Milnor number of f is d—1 and
a monomial basis of Clz,y]/(f., fy) is given by {1,X,..., X2}, As
z¥dz Ady = —d(yz*dz) then {ydz, xydz, ... % %ydz} is a “monomial”
basis of P¢. Of course here this can be also checked by direct combinatorial
computations.

The proof of Theorem 1.1 is based on its hand on the following

THeOREM 1.2. — Let f € Clz,y] be a polynomial with only isolated
critical points, and suppose that for every t € C the fibre f~1(t) Cc C?
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PETROV MODULES AND ZEROS OF ABELIAN INTEGRALS 573

is connected. Every polynomial one-form w on C? satisfies the following
condition

*) VteC, wlf-l(t)=OinH1(f"1(t))¢>w=Oz'n7>f.

Note that he above theorem holds under fairly week assumptions on f. For
example any good polynomial [8] has isolated critical points and connected
fibres. Recall that any tame [3] polynomial is good, any swh polynomial
is tame, and any nice or Morse-plus polynomial ([6], {7], [14]) is swh. In
the case when f is a degree d polynomial with (d — 1)? distinct critical
points Theorem 1.2 is proved by IL'YASHENKO [6].

2. Proofs

Let g(y) = v + --- be a degree d polynomial. Consider the global
Milnor fibration

cLic-xn}
where ¥ = {t1,%2,...tq—1} is the set of the critical values of g, and
each fibre g~1(¢) consists of d distinct points y1(t),y2(t),...va(t). The
associate (co)homology Milnor bundle is a holomorphic vector bundle with

fibre the vector space H%(g~1(¢))(Ho(g~1(¢))) of reduced (co)homologies.
Let

8(t) = y;(t) — vi(t) € Ho(g7' (1), 2)
be a locally constant (with respect to the Gauss-Manin connection)
multivalued section of the homology Milnor bundle.

Lemma 2.1. — Let s(t) be a holomorphic section of the cohomology
Milnor bundle of the polynomial g(y) such that for any locally constant
section §(t) € Hy(g~'(t)) holds

(i) in any sector on C with a vertex at oo the function {(s(t), 6(t)) grows

at most as a polynomial

(ii) in any sector on C with a vertex at t; € ¥ the function (s(t),6(t))

is bounded. Then s(t) is induced by the function Zz;} Ar(t)y®,
Ar(t) € CJt

d—1
(s(8),6(0) = Y Ax(t)(y (1) — ui(t)).
k=1
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574 L. GAVRILOV

Proof. — Any functions h(y) defines a geometric section of the
cohomology Milnor bundle by the formula (h,8) = h(y;) — h(yi). As the
polynomials y,2,...,y*"! form a global basis of geometric sections of
H"(g=1(¢)), then s(t) = f;i Ar(t)y* for some holomorphic functions
A (t). The conditions (i), (ii) imply that A () are meromorphic on CcP!
so they are rational functions. Suppose that some coefficient A (t) has a
pole at t = ¢, € 2. Then there exists a non-zero section § = Zﬁ; R Tal
¢ = const, of the cohomoly Milnor bundle which vanishes of order at
least one at t;:

d-1

> eyl —ub)

k=1

(2) 1(5(8) i (6) =% ()] = SOt —t,]),t — tr, Vi, .

Clearly the degree d — 1 polynomial Zi;i cry® takes the same values at
the d (not necessarily distinct) roots y1 (¢, ), y2(¢), . . . ya(tr) of g(y) — t,.
It follows that there exists at least one critical point of g, say y,(t,), of
multiplicity m < d, and which is a zero of the polynomial

d—1 d—1
S et = S aut)
k=1 k=1

of multiplicity m' < m. Finally, if 4/(t),y"(t) are two distincts roots of
g(y) — t which tend y,(t,) as ¢ — t,, then

’y/(t) - yy(tr)‘ = O('t — tril/m), |y”(t) _ yr(tr)l — O('t _ trll/m),
1/(8) = o'(t)] = O(1t — t,[1/™)

SO

1(3(8), ' (&) = 4" ()] = O(lt — t, ™ /™), t = 1,
which contradicts to (2).

Proof of Theorem 1.2. — Fix a constant 29 € C and for every t € C
let {y1(¢),y2(t),...ya(t)} be the unordered set of roots of the polynomial
g(y) — t, where g(y) = f(zo,y). Let w be a polynomial one-form on C?
satisfying the condition (). For any P = (z,y) € C? define, following
IL'YAsHENKO [6], the multivalued function

Fw(P):/Pw

P;
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where P; = Pi(t) = (xo,%i(t)), t = f(xo,vi(t)), and the path of
integration is taken along an arc contained in the connected affine algebraic
curve f~1(t). The function F,(P) does not depend on the path of
integration but it is determined only up to an addition of

P;
[
P;
where the path of integration is contained again in f~!(¢). It is easy

to check, following for example Yakovenko [14], that F,(P) grows at
infinity no faster than some polynomial in z, y, P = (z,¥), and that

P(t)
/ w
Pi(t)
grows at infinity no faster than some polynomial in {. Let s be a section
of the cohomology Milnor bundle of the polynomial in one variable g(y)
defined by the formula

P;i(t)

(s(t), P;(t) - Pi(t)) = /P e

As s is obviously holomorphic and satisfies the condition (i), (ii) of

d—1
Lemma 2.1, then it is induced by the polynomial function 3 A (¢)y*
k=1

P;(t) Pi(t) (d-1 .
w= d Ar(fy
/Pz‘(t) \/Pi(t) Z Il( )

k=1

and hence

Replacing eventually w by w—d (Zf;i A ) we may suppose without
loss of generality that the function F,(P) is single-valued. As it grows
at infinity as a polynomial then it has a removable singularity along the
infinite line of the projectivized complex plane C?, so A(z,y) = F,(z,y)
is a polynomial in (z,y). Let w = Pdz + Qdy, where P, Q € C[z,y] and
derive A along the vector field fyaa; — f.,a% tangent to f~1(¢). We obtain

Arfy - Ayf:t = Pfy ~-Qf: & (P - Ar)fy = (Q - Ay)fl-

As f, and f, have no common factors then there exists a polynomial
BeClx,y] such that P— A, =Bf,, Q—Ay=Bf,, sow=dA+Bdf. O
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576 L. GAVRILOV

Choose a monomial basis g1, g2, ..., g, of representative classes of the
quotient ring C[z, y]/((f4)«, (fa)y), where f; is the highest order weight
homogeneous part of the swh polynomial f. They form also a basis for
Clz,yl/(fz, fy)- Suppose that the one-forms wi,ws,...,w, defined by (1)
are chosen to be monomial. Let v1(t),y2(t),...,7.(t) be be a continuous
family of cycles which form a basis of Hq(f~1(t), Z) for any non-critical
value £ € C. Then the Wronskian function

W(t) = det (l'(t) wj>

is single-valued and hence a polynomial in {. It is known that the general
fibres f~1(¢) and fq 1(¢t) are equivalent up to an isotopy [5]. Denote by
{v4(t)}; the image of {v(¢)}: in Hl(fd_l(t), Z) under this isotopy and
define also the polynomial function

Wy(t) = det (/ wj>.
7i(1)

Define at last the discriminant function of f by the formula

(3) At) = (=t (E =) - (8 - 1)

where p; is the sum of local Milnor numbers of the critical points
of f associated to its critical value ¢;. We have p = Y, p;. To prove
Theorem 1.1 we need the following

LEMME 2.2. — There exists a non-zero constant ¢ such that Wq(t) = ctt
and W(t) = cA(t).
Proof. — The covariant derivative dw;/dl of w; coincides with the
Gel’fand-Leray form of g;dz A dy
dw; dz A dy
— —y; )
dt df

It is well known [2] that

dz Ad
det / gju =c==const #0
yi(t) df
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-
()

deg (wj)
d wj,
: 74 (t)

t
e L,
dt Sy o) THONC () 4

gives Wy(t) = ctt.

To prove that W(t) = cA(t) we use that an isotopy which connects
Yt to fd_l(t) can be chosen in the following way [5]. The change
of variables

(4) T — xtwr/d, y — ytwy/d

which combined with

transforms the fibre f~1(t) to {(z,y) € C?: f(at™=/9, yt*s/1) —t = 0}
and the fibre fd_l(t) to f71(1). When ¢ — oo, the fibre {(z,y) € C%:
fatw=ld yped/dy ¢ =} goes over f; (1). Taking into consideration
that the one-forms w;, are monomial, we conclude that

W(t) = Wa(1)#* (1 +0(1/t)) = Wa(t)(1 + 0(1/1)).

This shows that W(t) is a degree p polynomial with leading term ct. On
the other hand W(t) vanishes at the critical values ¢; of f. If f has p
distinct critical points we are done. If not, we may use the following trick.

Consider a deformation f,3¢(x,y) = f(z,y) + ax + by — t of f(=z,y).
The discriminant of f, ;; is the algebraic set £, 5+ of (a,b,t) such that 0
is a critical value of f,3:. X,p; is an irreducible surface in C3 as it
may be parameterized

a=~fr(z,y),b=—fy(z,y),t = f(z,y) + az + by.

Thus %3¢+ = {(a,b,t) : A(a,b,t) = 0} for some irreducible polynomial
A(a,b,t) which is called the discriminant polynomial of fapt- As the
Milnor number of f(z,y) + ax + by equals the Milnor number of f(z,%),
then A is of degree p in ¢ for any a,b so we may normalize, A(a,b,t) =
t# + - - - This agrees with the definition (3) and we have A(0,0,t) = A(t).
Let mi(t,a,b),v2(t,a,b),...,7,(t,a,b) be a continuous family of cycles
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which form a basis of Hy({ fap(z,y) =0},Z) for any (a,b,t) & Zaps
and consider the Wronskian

W(a,b,t) = det (L .»j).

The function W(a,b,t) is a polynomial in a,b,t [2] which vanishes
along X, 5+ and hence it factorizes W(a,b,t) = c(a,b,t)A(a,b,t) where
c(a,b,t) is a polynomial. As before we check that the degree of W (a, b, t)
in ¢t is u so c¢(a,b,t) does not depend on ¢. It remains to replace a = 0,
b = 0.

Proof of Theorem 1.1. — Let wy,wy,...,w) be polynomial one forms.
As in the proof of Lemma 2.2 we may show that

det </7,(t) w]) = c(t)A(t)

where c(t) is a polynomial depending on w}. Let w be a fixed polynomial
one form. The Kramer formulae together with Lemma 2.2 show that the
linear system

I
w= ak(t)/ wr,t=1,2,...,1
/7i(t) /; i(t)

can be solved with respect to ax(t) and a;(t) are polynomials. Changing
the variables x, y as in (4) and using [5] we conclude that deg(ax(t)) <
|lwdeg(w) — wdeg(wy))/wdeg(f)|. We note at last that the polynomial
one-form

"
w— Z ax(t)wy,
k=1
satisfies condition (x) and according to Theorem 1.2 is equal to zero
in Pf O
3. Zeros of Abelian integrals

Let f € Rz,y] be a real polynomial and 6(t) C f~!(t) C R% be a
continuous family of ovals defined for ¢ € K, where K is a compact
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real segment. For every real one-form w on R? denote by Ny (f,w) the
number of the zeros of the complete Abelian integral

I(t) = /6 K

on the interval K. The problem of finding the number

Ng(f,n)= sup Ng(f,w)
deg{w)<n

was stated first by ARNoOLD (see for example [1], [7]) in relation
with the second part of the 16th Hilbert problem. A solution of the
problem is known only in the case f(z,y) = y? 4+ P(z) where P(z)
is a real polynomial of degree at most four with only real critical
values (see PETrROV [9], [10] for the case deg (P(z)) = 3, [11] for the
case deg (P(z)) = 4 with a symmetry, and [12] for the generic case
deg (P(z)) = 4). It was recently proved [7] that for generic fixed f the
number Ny (f,n) has at most an exponential growth as n — oc.

More generally, for any real vector space V of real one-forms on R?
denote

Ng(f,V) = sup Ng(f,w).
weV

The image of V' under the natural projection V' — Py is again a real
vector space which we denote by Vy.

Following [4] we say that the real vector space V satisfies the
condition (%) if and only if for every polynomial one-form w € V

(*) / w=06w=0inPy.
8(¢)
We have the following obvious
ProrosiTioN 3.1. — If V satisfies condition (%) then
Ng(f,V) > dimg V§ - 1.

An important case when the condition (x) is satisfied is given by

ProposiTIoN 3.2. — Let 6(t) C f~1(t) C R? be a continuous family of
ovals surrounding a single elliptic critical point of f. If f € R?[z,y] is a
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swh Morse polynomial with distinct critical values, then the space of all
real polynomial one-forms satisfies (x)

Proof. —Let D C C be a disc containing the critical values #1,%2, ..., ¢,
of f, and let ty € 8D. Any system of mutually non-intersecting paths
51,82,...,5, starting from ¢y and ending at f1,t2,...,t,, respectively,

and numbered in the order they start from #; defines a distinguished
basis of vanishing cycles v1(tp),v2(t0), - - -, ¥u(to) of Hi(f1(t0),Z).
Namely, if v1(t),v2(t),...,7.(t), t € D\{Uit;}, are the corresponding
continuous families of cycles, then each cycle ;(t) vanishes along the
path s, as t tends to the critical value ¢; (see [2] for a detailed definition).
As in the “local” case we associate to the distinguished basis of vanishing
cycles its Dynkin diagram. Recall this is a graph, and that each vertex
of the graph corresponds to a vanishing cycle ;. Two distinct vertices
corresponding to ~y; and +; are joined by & edges (k dotted edges) if the
intersection number (vy; - ;) is k (respectively —k). It is easy to see that
the Dynkin diagram of f coincides with the Dynkin diagram of its highest
weight-homogeneous part f; [S] and hence the diagram is connected [2].

Suppose now that 6(¢) C f~1(t) C R? is a continuous family of ovals
surrounding a single elliptic critical point of f. Then 6(t) vanishes along
a suitable path and it can be included into a basis of vanishing cycles as
above. If 6(t) = &;() for some 4, and (vi - 7y;) # 0, then [, w = 0.
Indeed, consider a loop ), € m;(D\{U;t;; o), generated by the path s; and
which makes one turn around ¢; anticlokwise (fig. 1). The Picard-Lefschetz
formula [2] implies that the analytic continuation of the complete Abelian

integral f%(t) w defined for ¢ in a neighborhood of ¢, along the loop {;

is the integral
/ w—(%-w)/ w.
7i(t) (1)

It follows f%_(,) w = 0. As the Dynkin diagram of f is connected then,
proceeding by induction, we conclude that ﬁ, (HW = 0,fore=1,2,..., 4.

Remark. — The condition that é(t) surrounds a critical point of f is
necessary for the conclusion of Proposition 3.2 to hold true. Indeed,

if 6(¢) is a family of ovals homologous to zero on the compactified
curve f‘l(t), and w is a differential of second kind, then fa(t)“’ = 0.

At the same time w may be not equal to zero in H}DR(f_l(t), C). The
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Fig. 1. — A system of yu paths defining a basis of vanishing cycles.

condition that the critical values of f are all distinct is necessary too, as
it may be seen from [11].

The exact results obtained for Ny (f, V') in [9], [10], [11], [12] suggest,
at least for a reasonable choice of f and V, the following conjecture

If V satisfies (%), then Nk (f,V) = dimg V§ — 1.

The above may be also reformulated by saying that the space of complete
Abelian integrals fé(t) w over forms w € V is Chebyshev space. To this
end we give three examples of computation of dimg V}.

1. Let f be a Morse swh polynomial of weighted degree d with distinct
critical values and let V be the real vector space of polynomial one forms
of weighted degree at most n. By Theorem 1.1 the projection Vs is
identified to all one-forms Y % _; ax(t)wy where ar(t) are polynomials of
degree at most [(n — wdeg (wi))/d]. It follows that

£\ [n — wdeg (wy)
sy = 35 [P e )
k=1

> Z n —wdeg(wk) u(nT_l)
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where 1 is the global Milnor number of f (we used that 3}, wdeg (w) =
). In the case where n = d and f is of non-weighted degree n
(we = wy = 1) we have an exact result

n(n—l)‘

dim Vf = 5

2. Let us put for example f(z,y) = y? + Py(z), where Py(x) is a
real degree d polynomial with d — 1 distinct critical values. Then f is
a degree d swh polynomial, w, = 1, wy = d/2, u(f) = d — 1, which
satisfies the condition (x). If V is the real vector space of polynomial one
forms of weighted degree at most n then

d—1 o k1
Ni(f,V)2dimVy=d-1+Y [" wdeg (z ydz)}

d
k=1
d-1
—k—-d/2
:d—1+2[ud_/J
k=1
d-1
n—k-d/2 &\ d-1 d—1
I (S IS ]
2 d d d 2

3. Let f(z,y) = y* + Pj(x) be as above a polynomial with distinct
critical values and consider the vector space V of all real one-forms
Pdzx + Qdy where P, (} are polynomials of (non-weighted) degree n

(5) V = {P(z,y)dz + Q(z, y)dy : deg(P),deg(Q) < n}.

The identity

P 2t g\ p et
Prldz = ZPy(x P2y + d| yf ——
y 5T )q+1y e

shows that the one form y?~229%%dz is equivalent in P; to a one-form
Yy’ Ry(x)dz where R,(x) is a polynomial of degree q. Proceeding by
induction we conclude that V is generated as a vector space by monomial
one-forms

ypl.qu’q S d— 27p+q S n.
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These one-forms are moreover R-linearly independent in Py. Indeed, this
holds true for

fyrfdr,0< k<d—2,5>0.
(Theorem 1.1) and any such form is equivalent in P; to a R-linear
combination of one forms
y2i+1xjdx,i <s,57<d-2.
It follows that dimg V; equals to the number of entire values (k,s)
contained in the polygon defined by
k>0,s>0,k<d-2,2s5+14+k<n.
and (after some elementary computations)
d—1 (d-2)?% 1

dimg Vy = 5 n — 1 +§
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