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Abstract. Consider an ordinary differential equation which has a Lax pair
representationd (z) = [A(z), B(z)], whereA(z) is a matrix polynomial

with a fixed regular leading coefficient and the mathxz) depends only

on A(z). Such an equation can be considered as a completely integrable
complex Hamiltonian system. We show that the generic complex invariant
manifold

{A(z) : det(A(x) —yI) = P(z,y)}

of this Lax pair is an affine part of a non-compact commutative algebraic
group — the generalized Jacobian of the spectral clifvey) : P(x,y) =

0} with its points at “infinity” identified. Moreover, for suitablB(x), the
Hamiltonian vector field defined by the Lax pair on the generalized Jacobian
is translation-invariant.

1 Introduction

Let M be the affine vector space of all complex matrix polynomié(s)
in a variabler, of fixed degreel and dimension

A(x) = J.’Ed + Ad_l.xd_l + ...+ AO ) A’L € ng(C)

whereJ € gl,.(C) is afixed matrix. The matricial polynomial Lax equations

ka
(1) CZA(x):[;l_(a),A(x)],keN,aeC
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are well known to be Hamiltonian (with respect to several compatible Pois-
son structures oi/ /) and completely integrable. The corresponding Hamil-
tonian vector fields define a complete set of commuting vector fields on the
isospectral manifolds

M} = {A(x) € M7 : det(A(z) — yI,) = P(z,y)}.

The system (1) has an obvious symmetry gréug PGL, (C; J) which is
the subgroup of the projective grolé=L,.(C) formed by matrices which
commute withJ. The groupG acts onM* by conjugation, the action is
Poisson, and the reduced Hamiltonian system is completely integrable too.
As the symmetry grou@ acts freely and properly on the general isospectral
manifold 3, thenM { can be considered as the total space of a holomorphic
principal fibre bundle with baseM /G, structural grougs, and natural
projection map

M4 MbG.

The purpose of the present article is to describe the algebraic structure of
the above fibre bundle. Our main result, Theorem 2.1, implies that when the
spectral curveX defined by{(x,y) € C? : P(z,y) = 0} is smooth, then
M3 is smooth and bi-holomorphic to a Zariski open subset of the generalized
Jacobian variety (X'). The curveX” is singular and as a topological space
it is just X with its “infinite” points coq, 0oo, . .., 0o, identified to a single
point co. ThusJ(X') is a non-compact commutative algebraic group and
it can be described as an extension of the usual Jacokian by the
algebraic group = (C*)*~! x C"~%, wheres < r is the number of
distinct eigenvalues of the leading term

) 0= G = JX) 2 J(X) 0.
As analytic spaced(X’) and.J(X) are complex tori
J(XY=CPe /A, J(X)=CPs/A

where A’, A are lattices of rankp, + s — 1 and2p, respectivelyp, is

the genus ofX, andp, = p, + r — 1 is the arithmetic genus of’. The
generalized Jacobiafi(X’) can be also considered as the total space of
a holomorphic principal fibre bundle with bag¢ X'), projection¢, and
structural groug=. The group is then identified with the symmetry group
PGL,(C; J) of (1), and the manifold\/{ /G with a Zariski open sub-
set of the usual Jacobiah(X) = J(X')/G. The algebraic description
of the reduced invariant manifold/{, /G is a well known result proved
by A.Beauville [4] and M.R.Adams, J.Harnad, J.Hurtubise [1] (see also M.
Adler, P. van Moerbeke [2], and Sect. 8.2. of the survey [17] by A.G.Reyman
and M.A. Semenov-Tian-Shansky).
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The Hamiltonian structures of the differential equation (1) is briefly
recalled in Sect. 3 where we show that the Hamiltonian vector fields (1) for
k € N,a € C define translation invariant vector fields on the generalized
Jacobian/(X’), so the system is algebraically completely integrable.

In the case when the spectral cur¥eis singular, the variety\//
PGL,(C; J) was studied by M.R.Adams, J.Harnad, J.Hurtubise [1] (see
also Beauville [4, p.218], P. van Moerbeke and D. Mumford [13, p.112]).
Note that our approach is quite the opposite in the sense that, while in [1] the
singular spectral curv¥ is desingularized, in the present article the regular
spectral curveX is singularized to a curvg’’.

We conclude the paper with two applications of Theorem 2.1 (Sect. 4).
We prove that even in the simplest case whérs elliptic andG = C*, the
extension (2) is not trivial, and then describe the corresponding two degrees
of freedom algebraically completely integrable system. It turns out to be
the well known symmetric (Lagrange) top, a@id is just the complexified
group of rotations about the symmetry axis of the top. This result, proved
ad hocby Gavrilov and Zhivkov [9], motivated the present paper. Another
classical problem related to Theorem 2.1 is to solve a system of hyperelliptic
differential equations (Jacobi [10], 1846). We prove that the phase space of
such a system is the generalized Jacobiigki’) of a hyperelliptic curveX
with two points at “infinity” identified, each orbitis a straight line isomorphic
to C*, and the space of orbits is parameterized by the usual Jacébkan
This gives a new proof of Jacobi’s theorem.

2 Spectral curves and their Jacobians
A polynomial
P(x,y) =y +si(x)y" " +... 4 s:(x)

is called spectral, provided that the affine cuf¢e, y) € C* : P(x,y) = 0}
is the spectrum of some polynomiak r matrix A(z)

P(x,y) = det(A(z) — y.I,,) .
In this caseleg(s;(r)) < i.d, whered is the degree ofi(x)
(3)  Alx)=Agz? + Ag 2@+ + Ay, A;iegl(C).

Consider the weighted projective spaégd) = C3\{0}/C*, where the
C*-action onC? is defined by

t-(x,y,2) — (tz,t%,tz), teC*.



490 L. Gavrilov

P2(d) is a compact complex surface with one singular pgint 1,0]}
P2(d)sing. The affine curve{(z,y) € C? : det(A(z) — y.I,) = 0} is
naturally embedded iR?(d),

C?- P2(d) Nz, y) & [x,y, 1,

and the conditionleg(s;(x)) < i.d shows that its closur&l is contained
in the smooth surfac®?(d),., = P?(d)\{[0,1,0]}. Let = be an affine
coordinate orP!. The surfac&?(d),., is identified with the total space of
the holomorphic line bundI®p: (d) with baseP! and projection

T P2(d)peg — P 2,9, 2] = [z, 2].

The induced projection
4) m: X — P!

is a ramified covering of degree and over the affine plar@ it is simply
the first projection

7 {(z,y) € C*: P(x,y) =0} - C: (z,y) = z.

Definition 1 (spectral curve ofd(x)) We define the spectral curvé of the
matrix polynomialA(z) (3), to be the closure of the affine curve

{(z,y) € C?: det(A(z) — y.I,) = 0}
in the total space of the line bund@: (d).

From now on we fix the spectral polynomiBl(z, y) and suppose that
the spectral curv& is smoothand irreducible.
We are going now to singularize the cur¥e Let

S
m:ZniPiJDi eX,n; >0
=1

be an effective divisor oX. To the pair(X,m) we associate a singular
curve X’ = X,.4 U oo, where if S = U;_, P, is the support ofn, then
Xyeg = X — S, andoo is a single point. The structure she@f of X’ ~
(X, m) is defined in the following way. LaD x- be the direct image of the
structure shea® = Ox under the canonical projectiodi — X’. Then

O, = OP, P e Xreg

P C+ip, P=00
wherei, is the ideal of0, formed by the functiong having a zero ab;
of order at least;. Thus a regular functiorf on X’ is a regular functiory

on X, and such that for somee C and any: holdsvp, (f —¢) > n;, where
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vp(.) is the order function. Ip, is the genus ok then the arithmetic genus
pq Of the singular curveX' is p, = pgy + deg(m) — 1.

ExampleLetrn = P™+ P~ be adivisor on the Riemann surfake Then
in a neighborhood ofo the singularized curv&’ is analytically isomorphic
either to the germ of analytical curwgy = 0 (P # P~), ortoy? = 3
(Pt =P).

Definition 2 (singularized spectral curve ol(x)) If 7 is the projection
(4) andoo = [1,0] € P! the “infinite” divisor, then the effective divisor
m = 7*(o0) is called modulus of the spectral cur¥e We haveleg(m) = r
and we denote by’ the singular curve associated to the regular cuiXe
and to the modulus:.

Remarkin the Serre’s book [19] any affective divisor on a regular al-
gebraic curveX is called modulus. Indeed, the moduli space of singularized
curvesX’ ~ (X, m), py(X) = const., deg(m) = const., is of dimension
strictly bigger than the dimension of the moduli space of regular cukves

We shall recall now the construction of the generalized Jacobian variety
J(X') of a singular curveX’ ~ (X, m). For proofs we refer the reader to
Serre [19].

A holomorphic line bundld.’ on X’ is described by an open covering
{Ua} of X" and transition functiong,s € O™ (U, N Ug), such that

9ap * 9pa = 1, gaﬁ'gﬁ'y'g’yazl'

Two line bundlesL, L, on X’ are equivalent if and only if there exist
fa € O™(Ua) such thatgl; = (fa/f3) - 925 Thus the Picard group
Pic(X') of equivalence classes of holomorphic line bundles on the singular
curveX'is justH! (X', O™). If Dis a divisor onX,., with local equations
{fa}, thenthe functiong,s = fo/fs € O™ (U, NUg) define aline bundle
L', on X', and any holomorphic line bundle o' can be written in such a
way. Two line bundled., , L, on X" aequivalentif and only iD; = Ds.
This means that there exists a global meromorphic funcfiom X', such
that(f) = D1 — Dy andvp,(f — 1) > n;, 0 = 1,2...s. Let L(D) be the
sheaf of sections of the holomorphic line bundlg over the smooth curve
X and suppose as before that the supporbafk contained in the set of
regular pointsX,.4. Then the sheaf of sectiod$(D) of the line bundlel’,
over X' is defined as

, O, P =0
£D)r = {E(D)p, P+ oo

The sheaf’’ (D)is alocally free®’ module of rank one, thatis to say itis
invertible. More generally, there is an one-to-one correspondence between
isomorphism classes of invertible sheaves®@nand isomorphism classes



492 L. Gavrilov

of line bundles overX’. This set of isomorphism classes is a group under
the operation®, £'(D1) ® £L'(D3) = L£'(Dy + D), called Picard group
Pic(X’) of the curveX’. Let Pic’(X') be the subgroup dfic(X’) formed

by degree zero line bundles. It is callddcobianof X’ and we denote
J(X") = Pic%(X’). The Jacobian/(X') of the singular algebraic curve
X’ has a natural structure of commutative algebraic group. As an analytic
manifold we have

J(X') = H(X, 2Y(m))*/H1(Xyeg, Z) = CP /A |

where/’ is arankp,+s—1 lattice, and2! (m) is the sheaf of meromorphic
one-formsv, suchthafw) > —m. Similarly, for the usual Jacobiai( X') =
Pic’(X) c J(X'), we have

J(X) = H(X, Q') /H\(X,Z) = CP /A,

whereA C A’ is arank2p, lattice.J(X") is a non-trivialextensiorof J(X)
by the algebraic groug’ = (C*)~1 x Cdes(m)—s

(5) 0= G = JX) 2 J(X) =0

wherep(L'(D)) = L(D). This means that the sequence is exactin the usual
sense and moreover the algebraic structute @éspectively of/ (X)) is in-
duced (respectively quotient) of the algebraic structutgaf’). Both.J (X))
and.J(X') are commutative algebraic groups. Note however #{&') is
non-compact. Indeed, while the topological spacg @X) is (S1)?Ps, the

one of J(X') is (S1)%sts—1 x R2des(m)=s—1 Tg every extension (5) we
associate a holomorphic principal fibre bundle with total spEc€’), base
J(X), projectione, and structural grougy = (C*)*~1 x Cdes(m)=s Two
extensions are equivalent if and only if the associated principal bundles are
equivalent.

Let JP«(X) = PicP*(X) be the variety (isomorphic to the Jacobian
J(X)) formed by line bundles of degrge, = p, + » — 1 on X, and
denote by/P+(X’) = PicP+(X’) the variety (isomorphic to the generalized
Jacobian/(X")) formed by line bundles of degrge, = p, +r — 1 on
the singularized curveX’. Denote further by® the canonical Riemann
theta divisor of/?+(X') formed by special line bundldsy of degreep, =
pg+r—1,thatisto saylim H'(X, £(D)) # 0. By Riemann-Roch theorem

dim H(X, £(D)) = deg(D) — py + 1 + dim H*(X, £(D))
= +dim H (X, £(D))

s0@ is the set of line bundlek p with at least- + 1 holomorphic sections.
Similarly, let©® c JP=(X’) be the canonical divisor formed by degree
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pa special line bundleg/ (D), that is to saylim H'(X', £'(D)) # 0. By
Riemann-Roch theorem

dim H°(X’, £'(D)) = deg(D) — pa + 1+ dim H (X', £ (D))
=1+dim H (X', £'(D))
so such bundles have at least two holomorphic sections. It is easy to see that
60" = ¢~1(O), whereg is the map induced by (5).
Let Mp be the variety of x » polynomial matrices of degre (3),
which have a fixed spectral polynomi&lz, y)

Mp = {A(x) : det(A(z) — yI,) = P(x,y)}.

and letM{ = Mp N M’ be the isospectral manifold formed by matrices
of the form (3) with fixed leading term,; = J

(6) Alx) = Jat + Ag_127 + ...+ Ay, A; € gl (C).
The stabilizer
PGL,(C;J) = {R € PGL,.(C): RIR™' = J}

of PGL,(C) atJ € gl (C) is a commutative algebraic group isomorphic
to (C*)*~1 x Cdee(m)=s |t is a well known fact thad/3 is a smooth mani-
fold, PGL,(C; J) acts freely and properly oh/7 by conjugation, and the
quotient spaceé///PGL,(C; J) is a smooth manifold biholomorphic to
J(X) — © [1,4]. Consider the holomorphic principal fibre bundlevith
total space\/ 2, structural groufPGL, (C; J), baseM } /PGL,(C; J), and
natural projection map : My — M{/PGL,(C; J). Consider also the as-
sociate principal bundlgwith base spacé(X)—©, total space/ (X')—6©’,
projection mapp, and structural groufyr (see (5)).

The main result of the present paper is the following

Theorem 2.1 The holomorphic principal bundlesand» are isomorphic.
In particular the isospectral manifold/7 is smooth and bi-holomorphic to
the Zariski open subset(X’) — @’ of the generalized Jacobiaf(X’) of
the singularized spectral curvg’.

We may resume Theorem 2.1 in the following commutative diagram
M} 2 M} /PGL,(C;.J)

U l

(7) JXN-0 &  JX)-06
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in which the map$, I’ are biholomorphic,
Uo7 b) = ¢ tol(b)

is an isomorphism of algebraic groups for every M7 /PGL,(C; J), and
the exact sequence in (7) is an extension of the algebraic grakip by G.

Proof of Theorem 2.Recall that a matrix3 € gl.(C) is calledregular if
one of the following equivalent conditions is satisfied

- all eigenspaces dB are of dimension one
- the minimal and the characteristic polynomialsiéare equal
- the varietygl, (C; B) is of dimensionr

We shall use the following

Proposition 2.2 If the spectral curveX of the matrix polynomial(x) is
smooth, them(z) is regular for any fixed: € P! (for z = oo this means
that the leading termd; of A(x) is regular).

Indeed, if for somer, € C the matrix A(xzo) = (a;j(zo)):; is not
regular, then there existg such that(zg,yo) € X andrank(A(xzo) —
yol,) < r — 2. If we denote byA;;(z,y) the (i, j)th minor of the matrix
A(z) — yI,, then we have

Aij(x(]v yO) = 07
P(zo,y0) = Y _(—1)"Faf;(x) Aij(wo,50) =0,

i,J

Py(x0,40) = = »_ Auilwo,y0) =0

and hence the curv& is not smooth atzg, o). The regularity ofA,
is proved in the same way, we only change the local coordinates on the
weighted projective spad®’(d) as
x — 1, Yy — %.
x x

Let A(x) be a matrix with a spectral polynomiBlx, y). By Proposition
2.2 the leading ternd of A(x) is a regular matrix. The characteristic polyno-
mial of .J obviously coincides with the highest order weight-homogeneous
part of P(x,y). If m = > n;p; is the modulus of the spectral curve, then
without loss of generality we shall suppose thhat diag(J (A1), J(A2), . ..

.., J(Xs)), whereJ();) is a Jordan block of dimension with eigenvalue

Ai, and\; 75 )\j.

We recall first the definition of the eigenvector magConsider a line
bundle over a curveX’ which is a sub-bundle of the trivial vector bundle



Spectral curves and integrable systems 495

X x C". Itis defined by a meromorphic vectftp) = (f1, fo, ..., fr). We
shall always suppose thdtis normalized that is to say the meromorphic
functionsfy, fo, ..., f» have not a common zero.The map

X =P~ ip = [filp), f2(0), -, fr ()]

is holomorphic, so we obtain a holomorphic line bundle a¥eiVe denote
its dual byL. If D is the pole divisor off, that is to say the minimal effective
divisor such that f;) > —D for anyi, thenL = Lp.

Definition 3 (eigenvector line bundle on the spectral cui¥¢ Letf(x, y)

=t (f1,fo,..., f+), »p = (z,y) € X be a normalized eigenvector of the
matrix A(x) € Mp, A(z)f = yf. It defines a line bundle over the spectral
curve X which will be called eigenvector line bundle. Denote its dualby
and the corresponding sheaf of sectionsthy

Of course ifD is the pole divisor of the normalized eigenvecfahen
L = LpandL = L(D). The following properties of. are well known (see
[4,2,17])

Proposition 2.3 If 7 : X — P! is the projection defined above, then the
sheafr, L is a trivial Op1 module of rank:

W*,ﬁ:Opl@Opl@...@Opl

and the functionsfy, fa, ..., f, form a basis of global sections af.L.
Moreoverdeg(L) = deg(D) = p, = py +r — 1, wherep, = (r —1)(dr —
2)/2,dim H%(X, £) = rand fi, fa, ..., f- form a basis of1°( X, £(D)).

The above proposition shows that if the matricé:), A(z) define
isomorphic eigenvector bundles, then for saine gl,(C), A(z) = RA(z)
xR~!. Indeed, iff, f are the corresponding normalized eigenvectors with
equivalent pole divisor® ~ D, then there exists a meromorphic function
¢ on X such that(¢) = D — D. As ¢f; form a basis ofH(X, L(D)),
then there exists a matrik < gl,(C) such thatf = oRf, and hence
A(x) = RA(x)R™. Thus we obtain a holomorphic map

{ amatrixA(z) € Mp up to conjugation by a matrix iRGL, (C)}
11
{ anisomorphism class of a line bundlec PicP*(X) — 6}.
The following beautiful argument of Beauville [4] shows that a bijection
(see also Sect. 8.2. of the survey [17] by A.G.Reyman and M.A. Semenov-
Tian-Shansky). Take a degrgg = p, + r — 1 invertible sheaf on X. By
Riemann-Roch theorem
X(£) =deg(L) —pg+1=r,
X(mL) = deg(m L) + (1 — py(P)) rank (7w, L) = deg(m. L) + 1,
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by Grothendieck-Riemann-Roch

X(‘C) = X(W*ﬁ) )

and henceleg(m.L) = 0. If we suppose in addition that € PicP+(X) —
© we conclude thair. L is the rankr trivial vector bundle(Op:)". The
invertible sheafl on X can be equivalently described as a locally trivial
Op: moduler, £ equipped with an additional structure ofra® module,
that is to say a homomorphism of algebras 7.0 — End(w.L). To
describe the homomorphisimamounts to give a linear map (multiplication

by )
L — mL(d)

thatis to say a polynomialx r matrix of degreel. Denote the transposed to
this matrix by A(z). Clearly A(x) satisfiesP(z, A(x)) = 0 and asP(z, y)
is irreducible overC(z) then by the Cayley-Hamilton theorem the spectral
polynomial of A(z) is P(z,y). Note that the matrixA(x) is determined
only modulo an automorphism af.£. Thus the matrix4(x) is determined
only up to conjugatiom(z) — R~'A(x)R by a matrixR € PGL,(C).

The next step is to define the eigenvector line bundle on the singularized
spectral curveX’ and the corresponding mép

Definition 4 (eigenvector sheaf on the singularized spectral cuxVeLet
f(z,y) be an eigenvector ol (x) normalized by the condition

Zfi =1
i=1

and letD be the minimal divisor, such thaf;) > —D,i =1,2,...s. Then
D is an effective divisol) C X4, and we define the invertible eigenvector
sheaf on the singularized spectral cur¥é to be£’ = £/(D), where

! EP(D>7 p 7é o0
L,(D) = { Ops p = 00.

We denote by’ the line bundle oveK’ associated to the invertible sheaf
L'. To prove the correctness of the above definition it remains to check that
D C X,.4, WwhereD is the pole divisor of the normalized eigenvecdior

Let S = > ] p; be the support of the modulus = "] n;p; and we
may suppose that; € X corresponds to the Jordan blodK\;) of the
matrix J. An easy computation shows thip;) determines a line over;,
collinear with the eigenvectdn, 0, ..,0,1,0,...,0) of J corresponding to
the Jordan block ()\;). The eigenvectof has a pole agt; if and only if the
line determined by (p;) is contained in the plang + fo + ...+ f, =0,
S0op; IS not a pole.



Spectral curves and integrable systems 497

Let PicP«(X’) be the “shifted” Picard groupic’(X’) = J(X') of
degreey, line bundles onX’. Itis isomorphic to the Jacobian variefy X”)
and J(X') — @' is the subset of line bundles’ € PicP*(X’) with one
non-zero holomorphic sectidif £’ = dim H°(X’, L") = 1. Definition 4
establishes a holomorphic map

{ amatrixA(z) € M7}
L

{ an isomorphism class of a line bundlé € PicP*(X’) — ©'}.

Clearly the mag’ is such that the diagram (7) commutesi i’ = [ o . As
the mapl is a bijection, then to show thdtis a bijection too it suffices to
check that

i) the fibresp—!(b) and¢~! o I(b) have the same dimension.

i) I : o71(b) — ¢~ o I(b) is an injective homomorphism of algebraic
groups.

Step i) is obvious and the dimension of the fibres.i§o check thaf’
is injective we take a sheal’ € PicP*(X’) — @’ in the image of’. By
Riemann-Roch theorem [19]

X(L') = deg(L) —pa +1=1,
x(mL') = deg(m L") + (1 — py(P)) rank(m. L") = deg(m.L') + 7,

by Grothendieck-Riemann-Roch
X(L') = x(m.L').

We conclude thatr, £’ is a degreel — r and rankr locally trivial Op:
module, having one holomorphic sectidfiy, £’ = h°L' = 1, so

Tl = Op1 @ Op1(—=1) D ... 5 Opr(—1).

The invertible sheaf”’ on X’ can be equivalently described as a locally
trivial Op1 modulen, £’ equipped with an additional structure ofra®’
module, that is to say a homomorphism of algelrag .0’ — End(m.L').

It is easy to computer,O’: a basis over the affine plar@ is given by
{17 Y, y27 cee ’yr—l} and over® — {0} by {1? y/xd+lv y2/x2d+17 cee 7y7”—1
/x(r—l)d-i-l}, S0

10 = Opt ® Opi (—d = 1) & ... & O (—d(r — 1) = 1).

To describe the homomorphisiramounts to give a linear map (multiplica-
tion by y)
m L — m L' (d)

that is to say a polynomial x » matrix of degreel. Denote the transposed
to this matrix byA(z). If f1, fo,... f» is a normalized basis of,.L" over
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C, Y fi = 1,thent(fy, fa2,... f-) is an eigenvector ofi(x). Clearly A(x)
satisfiesP(z, A(z)) = 0and asP(z, y) is irreducible oveC(z) then by the
Cayley-Hamilton theorem the spectral polynomialAifr) is P(x,y). The
homomorphisnu is determined modulo an automorphismmqfZ’. In the
basefi, fa,..., f the vectorl = > fi € H°(P!, 7,.L) has coordinates
e=!(1,1,...,1), and hence the grouput(r.L’) is identified to

GL,(C;e) = {R € GL,(C) : e is an eigenvector oR}.

Aswe supposed that.£’ € I'(M3), thenin a suitable basis of £’ we have
A(x) € Mp.If A(x) € M} is another matrix which defines the same eigen-
vector sheaf’’, thenA(z) = RA(x)R~! for someR € PGL,(C;e). As

at the same tim& € PGL,(C; J), we conclude thak = 1 € PGL,(C).

Finally we note that the vector fieldg*, A(z)],» = 1,...,r — 1 are
tangent to the fibre—!(b), PGL,(C; J) invariant and linearly independent
(this follows from the regularity of/). The images of these vector fields
in PicP+(X') ~ J(X') are well known to be translation invariant [17] and
hencd’ : ¢=1(b) — ¢~1ol(b) isahomomorhism. This completes the proof
of step ii).

It remains to prove that/, is a smooth manifold, that is to say, to find at
any pointA(x) € M3 vector fields which span the tangent space, and such
that their images i/(X’) — @’ span the tangent space too. These vector
fields are given by

V(A = |

but this will be explained in the next sectionO

Ai(a)

)
Tr —a

A(a:)], aePl, ieN

3 Integrable systems

Let us fix a non-zero matriX € gl(r, C) and denote by//” the affine space
of all matrix polynomialsA(z) of the form

Alz) = Jzt + Ag_12T + ...+ Ay, A; € gl.(C).

The spacél/” is of dimensiordim M7 = 2p, + dr = dr? and it carries
several compatible Poisson structures of rapk = dr(r — 1). Let us fix
such astructuré., .}. Afunctionp on M is called invariant if it is constant
on each isospectral manifold

M{ = {A(x) € M7 : det(A(z) — yI,) = P(x,y)}.

The algebra of invariant functions dv’ is thus generated by the (r +
1)/2 non-trivial coefficients ofP(z, y) (which are in addition functionally
independent).
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It turns out that the invariant functions commute with respedt to}.
Moreover, the tangent spacelty, atany pointA(z) € M3 isthe span of all
Hamiltonian vector fieldsX, = {., ¢}, whereyp is an invariant function. It
follows that any such Hamiltonian vector fiel, is completely integrable
in the sense of Liouville, and hence its solutions can be explicitly computed
“by quadratures”.

The purpose of this section is to describe briefly the Hamiltonian struc-
ture of the completely integrable system (1) (thus justifying the title of the
article). The scheme is quite classical now and proofs together with historical
comments may be found in [17].

We describe first the compatible Poisson structures. Let

g= g[x, m_l]

be the loop algebra of the Lie algelgdormed by Laurent polynomials in
one variabler with coefficients ing, and commutator given by

[Z Aixi,ZBﬂj] =Y (>[4, B)])a* A, Bjeg.

k itj=k

Let

g* = g*[xvxil]
be the “restricted” dual space foconsisting of Laurent polynomials.The
spaceg™ carries a canonical Lie-Poisson structure, which is the extension
of the Lie algebra of linear functions @it to the entire space of smooth
functions ong* (a linear function org™* is identified to a point irg). Any
non-degenerate invariant bi-linear form., . > ong identifiesg* tog so the
latter space also carries a Poisson structure. To be explicig pugl,.(C)
and
dx
ot
Choose a basig' in g and letC2” be the structure constantsgffe?, ?] =
3. C%cc LetA(x) = 3, Aix® € g, whered; = >, A%°. Then

a b ab pc
{AiaAj} = _ZCC Ai+j'

< A(z), B(xz) >= Resgz—o Trace(A(x)B(x))

The simplectic leaves of this Poisson structure are the co-adjoint orbits of
the Lie group underlyingg. The corresponding ring of adjoint invariants
(Casimir functions) is generated by

©mn(A(z)) = Resg—o(z™ "p(a™A(x)))dz, m,neN

wherey is any invariant function og. It is clear that in such a way any Lie
algebra structure og defines a Poisson structure $nThe most important
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class of Poisson brackets are the so calketirackets. Namely, lek €
End(g) be a linear operator, and suppose that the commutator

1 .
satisfies the Jacobi identity (this happens for examplegétisfies the clas-
sical Yang-Baxter identity). This induces, according to the scheme described
above, a Poisson brackgt .} r on g. The importance of thé&-bracket is
related to the following result (due to Semenov-Tian-Shanski [18,17] and
closely related to the so called Adler-Kostant-Symes theorem).

Theorem 3.1 (i) The Casimir functionsy,,,, on g are in involution with
respect to theR-bracket.
(i) The Hamiltonian system associated to

k1 (2)\ dx
H(A(z)) = Resg= Trace ( F 1 > —

{.,.}r, is given by
@ AW = [A@), M) Ax) € & M = SR(A(2)).

The decomposition

where

gt = 08", & = 0; 2,8’

defines aR matrix ong. Namely, if A(x) = A(z)" + A(x)~ € g where
A(x)* € g*, then define

R(A(z)) = A(x)" — A(z)~.
The commutator (8) is given by
[A(2), B(x)]r = [A(z)", B(z)"] - [A(2)~, B(z)]
and it satisfies the Jacobi identity. The induced Poisson brdckéy; ong
is explicitly given (in the notations above) by
{Af, A%} = —ei; Y CePAS,

wheree;; = 1fori,j > 0,¢; = —1fori,j < 0, ande;; = 0 for
i>0,j<0.
Let

1
gle)= Y g

i=—d+1



Spectral curves and integrable systems 501

be a fixed polynomial. Then the embedding
(10) M7 < g: A(x) — q(z)A(x)

is a Poisson mappingvith respect to thekR-bracket. This means that the
embedding induces a Poisson structuré\éh. We obtain thus a family of
compatiblePoisson structures al” which depend linearly on the coeffi-
cientsg; of the polynomialy(x).

Corollary 3.2 The Hamiltonian system o’ associated to

dx
x

ket (g
H(A(z)) = Resg—o Trace <Ak +(1 ))

and to the Poisson structure induced by the embedding (10) is given by

%A(gj) — [A(z), My], A(z)€g,

(11) My = *(q(x)AMx))x € g
If we choose for example(z) = 1/, then (11) takes the form

d

12) A0 = |

Akgfo) 7 A(x)] .

The construction of the loop algebgavas related to the choice of Laurent
polynomials with a pole at = 0. It is obvious that all that holds true if we
consider Laurent polynomials with a poleaat= a € C. In this case (12)
takes the Beauville form

d Ak (q
13) i) = [ 21 4] = v e,
Recall now that when the spectral curve is smooth, then the invariant level
set (the isospectral manifold df(z:)) of (13) is smooth and bi-holomorphic
to the Zariski open subset(X’) — ©’ of the generalized Jacobiai X")
(Theorem 2.1). It is shown in [17] that the vector fieldd” (A(z)) induce
translation invariant vector fields of( X’) (although the results are formu-
lated only onJ(X)). The direction ofy () (A(z)) is moreover explicitly
computed (formula (8.5) on p.177, but see also [4, Corollary 2.7]). These
formulae imply that the vector field)s(a(k”)(A(m)) span, for generia the
tangent space to the generalized Jacobigk’).

We conclude that the Hamiltonian system (11) is completely integrable.
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Definition 5 A Hamiltonian system is called algebraically completely inte-
grable, provided thatitis completely integrable, and in addition each generic
complex invariant level set is a Zariski open subset of a commutative alge-
braic group, on which the Hamiltonian vector fields generated by the first
integrals are translation invariant.

Of course in order that the above definition makes a sense we must suppose
that the Poisson manifold, the Hamiltonian functions and vector fields are
algebraic(compare to [14, p.3.53]). Taking into account the results of Sect. 2
we obtain

Corollary 3.3 The system (11) (and hence (1)) iva = dr(r — 1)/2
degrees of freedom algebraically completely integrable Hamiltonian system.

4 Examples
4.1 Lagrange top

Let X be a smooth elliptic curven = P, + P, P, # P», an effective
divisor onX, and letX’ be the singularized cun relative to the modulus
m. The generalized Jacobial{ X’) is an extension of the usual Jacobian
J(X) by C*

0-C" - JX)—=JX)—0

and it is easy to check that the above extensiameigertrivial. Indeed, if
the generalized Jacobial{ X’) is isomorphic ta/(X) x C* thenJ(X') =

C?/A where
B 27 0 T1
A_Z< ’ ) +z<%) +Z(D)
with 75 = 0. The generalized Riemann theta function [5, 8]

HN(zl, 29|11, T2) = 622/29(21 + 70/2|11) + 6_22/29(Z1 —12/2|11),
(2’1,2’2) S C2//1

decomposes into the produetf?/? — e2/2)0(z;|r,) wheref(z;|m) is the
usual elliptic Riemann theta functiore( € C/{27iZ + Zr}). It follows
that the generalized Riemann theta divigdris reducible which contradicts
to the fact that it is isomorphic to the affine cur¥e— {P; U P} [8].

Consider now the affine spadé” of matrix polynomialsA(z) of the
form

A(z) = Jo* + A1z + Ao, Ag, A1 € gly(C)
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where J is a fixed matrix with distinct eigenvalues. As we explained in
Sect. 3 the Lax pair

%A(x) = [A(w), ;4(_62] = [A(z), Jz + aJ + A4]
(14) = [A(=), ((g(x)A(z))+]

whereq(z) = (z + a)/2?, defines a completely integrable Hamiltonian
system on the simplectic leaves of several compatible Poisson structures on
M. Moreover, when the spectral curyé with affine equation{(z,y) €

C? : P(z,y) = 0} is smooth, the corresponding isospectral manifold

Mj = {A(x) € M7 det(A(z) — ylo) = P(z,y)}

is smooth and is described as in Theorem 2.1. In addition the above vector
fieldis translation invariant on the generalized Jacolias’), so our system
is algebraically completely integrable. As the modulus of the spectral curve
X ism = oot 4+ 0o, wherecot are the two “infinite” points onX, then
the generalized Jacobiaf{ X’) is described as above.

Our purpose is to show that, for appropriate choice of the mdtaxd
the parametet, equation (14) is the classical equation of heavy symmetric
top. The symmetry grouf™ is then the complexified circle action (rotations
about the symmetry axe of the top). In the sequel we put

J = @ (?(1)) ,e=expV—1n/4
€

Consider the isospectral manifold
M{ = {A(z) € M7 : det(A(x) — yI») = * — f(z)}
wheref(x) is a fixed monic polynomial
flx) = zt + a2 + asx® + asz + ay

without double roots. We may considM]{ as a subvariety of the affine
vector space of traceless matrices

V = {A(z) € M” : Trace(A(z)) = 0}.

By making use of the isomorphism of Lie algebs&sC) andsos(C) given
by

€z — €Yy —€x

0 —2 vy _
1
z 0 —x —>< e ez—i—ey)’ e=expVv-—1n/4
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we may identifyV to the affine space

{L(z): L(z) = xz* + Mz — T,
0-10
M, T e€so3(C), x=1[1100]}.
000
The Hamiltonian system (14) takes the form

d
(15) g(xzx—i-xM—I‘):[azzx+xM—I‘,xx+M+aJ].

If we put at lasta = —m 23 and
M = (21,822, (1 +m)2%),T = (I1,1%,13),Q = (£21, 25, (23)

then we obtain

d d
—M=M,Q]-[I —I' =[I',Q].
ZM=[M,Q] - [[., T = [T
which are the equations describing the Lagrange top. Indeed, after identi-
fying the isomorphic Lie algebra@®?, A) and (so(3),[.,.]), and making
obvious rescalings we obtain the system

d

d
16 M=MxQ I'' —T=TxQ
(16) o xQ+xxT, — X

where

M = (1121, 15825, 13623) , 2 = (§21, 822, 823),
I‘:(F1>F2,F3)> X:(XlaXQ’X3)

andin addition; = I, x1 = x2 = 0. HereM, 2 andI” denote respectively

the angular momentum, the angular velocity and the coordinates of the unit
vector in the direction of gravity, all expressed in body-coordinates. The
constant vectoy is the center of mass in body-coordinates multiplied by
the mass and the acceleratidn, -, I3 are the principal moments of inertia

of the body.

To resume, we proved that the Lagrange top is an algebraically com-
pletely integrable system. It linearizes on a two-dimensional complex alge-
braic group — the generalized JacobianX’) of an elliptic curveX with
two pointsco® identified. This result is proved directly in [9]. If we reduce
further the system (16) with respect to the circle actiinwe obtain, as
it is well known, a one degree of freedom algebraically completely inte-
grable system linearized on the elliptic curt¥eX’)/C* = X [12,2,16, 20,

3]. Other mechanical systems linearized on non-compact algebraic groups
were recently studied by Fedorov [8].
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4.2 The general integral of a system of hyperelliptic differential equations

Let f(z) be a fixed polynomial of degre or 2n — 1 without double roots
and consider the followingyperelliptic system of differential equations

dx n dzo L+ N dz, _ 0
Vi) V@) T ()

17 nidny | oadwy o Tedw
) Vi) (@) f(@n)
:c’ll_Qdarl x§_2dac2 " 2dxy,

Vi@ Viw) V@

Suppose that the polynomi#(z) is written in the form
f(a) = —A%(x) + B*(x) + C*(x)
where

(18) A(x) = Zn:aka:k, B(z) = Zn: bra®, C(z) = Zn: cpa® .
k=0 k=0 k=0

Jacobi [10] proved in 1846 the following

Theorem 4.1 Letx1(p), z2(p), . .., zn(p) be the roots of the polynomial
equation

A(z) = B(z) cos(p) + C(z) sin(p) .
Thenx(p) = (z1(p), z2(v), ..., zx(p)) is an integral curve of (17).

Let us note that the phase space of the system (17) istthgymmetric
productS™I" of the smooth affine curve

I'={(z,y):y° = f(x)}.

The variablesty, zo, . .., 2, provide a system of local coordinates in a
neighborhood of any generic point on the smooth maniftd’. We shall
give an independent proof of Jacobi’'s theorem in the light of the present
paper. For a further discussion on the Jacobi’s paper see Mumford [14, p.
3.17].

Assume first thatleg(f) = 2n and consider, instead of system (17), the
following generalized Jacobi inversion problem [6,11,19]

dzry . dzo . L dx, "
e = 1
\/f($1) \/f(fﬂz) f(zn)
T1dx TodLy TndTy,
(19) + + ...+ = dzo
V@)  /f(ze) f(wn)
x?‘ldxl xg_ldazg o 2" ldx, .

Vi@ @) T



506 L. Gavrilov

It involves the differential of second kind
" ldx
f(x)
on the completed and normalized gemus 1 hyperelliptic curveX = T,
wherel” = {(z,y) : y*> = f(z)}. Putm = cot + oo™, whereco™ are the
two poles of the differential (20) and |1&t’ be the singularized curvg rela-
tive to the effective divisom. The general symmetric functionin, \/ f ()

can be expressed as a meromorphic functidten zs, . .., 2,) € J(X') =
C™/ A, whereA is theZ lattice

dr xdx " dw
A: t , goeey Y ’
{ (7\/]'(96)7’{\/]((95) 7{ f(x)>}'y

v € Hi(X — {00,007}, Z}.

(20)

The generalized Jacobiai X’) is a C* extension of the usual Jacobian
J(X)

(21) 0% = J(X) S J(X) =0
)

whereg is the projections(z1, 29, . . ., 2,) =t (21, 22, .. ., 2n—1) (S€€ Sect. 2).
It follows thatan integral curve of the system (17) is just the fibre

(22) 12, 28, 20 )

overthe point(z?, 29, ...,2%_|) € J(X).Inparticular eachintegral curve
is isomorphic to the algebraic group*, and the set of all integral curves
is parameterized by the Jacobian varietyX).

Theorem 2.1 provides an explicit parameterization of the fibre (22).

Namely, let
[ —iA(x) C(z) —iB(z) .
L(z) = (c 2) +iB(x) iA(x)) =Vl

whereA(zx), B(z), C(x) are the Jacobi polynomials (18). The spectral poly-
nomial of L(z) is P(z,y) = y* — f(x). Put

= (33w - (3

and consider the eigenvectdi, f»(z, y; )) corresponding to the eigen-
valuey of the matrix R(«) L(z) R~*(c). This defines a divisoD(a) =
(f2) @and hence a one-parameter family of line bundﬂ’g§a) € Pic"(X'),
a € P! onthe singular curv&(’. As the line bundl€.p (. € Pic"(X) does



Spectral curves and integrable systems 507

not depend o thenL’D(a), a € P! parameterizes the fibre (22), that is to
say an integral curve of (17). A simple computation shows that
—iA(z) + a(C(z) +iB(z)) —y

2ia(—A(z) — Sl(a — L)C(z) + La+ 1)B(x)

fa(z,y;a) =

If D(o) = > ), pr Wherep, = (yi, zi) € X, thenzy, is the root of the
denominator

o— a) C(z) + % <a+ ;) B(z)
= —A(z) + B(x) cos(¢) + C(z) sin(p)

wherea = eV~1%. This completes the proof of Jacobi’s theorem in the case
deg(f) = 2n.

Note that there are exactly two values of o such that the pole divisor of
fis not contained in the affine part of the cut¥eand hence the line bundle
L’D(a) is not defined. Thus topologically the integral curve of (17Pis

{at, a”} ~ C* as we explained before. At lastdég(f) = 2n—1 Jacobi's
theorem holds too (although Jacobi did not study this case explicitly). The
differential (20) is of third kindm = 200, wherecc is its double pole, and
J(X') is a non-trivial extension of (X) by C

0—>(C—>J(X/)E>J(X)—>O.

Indeed, in this casi + c2 —a = 0, soa™ = o~ and the fiber is isomorphic
toP — {a*} ~ C.
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