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Abstract. Consider an ordinary differential equation which has a Lax pair
representationȦ(x) = [A(x), B(x)], whereA(x) is a matrix polynomial
with a fixed regular leading coefficient and the matrixB(x) depends only
on A(x). Such an equation can be considered as a completely integrable
complex Hamiltonian system. We show that the generic complex invariant
manifold

{A(x) : det(A(x) − yI) = P (x, y)}
of this Lax pair is an affine part of a non-compact commutative algebraic
group – the generalized Jacobian of the spectral curve{(x, y) : P (x, y) =
0} with its points at “infinity” identified. Moreover, for suitableB(x), the
Hamiltonian vector field defined by the Lax pair on the generalized Jacobian
is translation-invariant.

1 Introduction

Let MJ be the affine vector space of all complex matrix polynomialsA(x)
in a variablex, of fixed degreed and dimensionr

A(x) = Jxd + Ad−1x
d−1 + . . . + A0 , Ai ∈ glr(C)

whereJ ∈ glr(C) is a fixed matrix. The matricial polynomial Lax equations

d

dt
A(x) =

[
Ak(a)
x − a

, A(x)
]

, k ∈ N, a ∈ C(1)
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are well known to be Hamiltonian (with respect to several compatible Pois-
son structures onMJ ) and completely integrable. The corresponding Hamil-
tonian vector fields define a complete set of commuting vector fields on the
isospectral manifolds

MJ
P = {A(x) ∈ MJ : det(A(x) − yIr) = P (x, y)} .

The system (1) has an obvious symmetry groupG = PGLr(C;J) which is
the subgroup of the projective groupPGLr(C) formed by matrices which
commute withJ . The groupG acts onMJ by conjugation, the action is
Poisson, and the reduced Hamiltonian system is completely integrable too.
As the symmetry groupG acts freely and properly on the general isospectral
manifoldMJ

P , thenMJ
P can be considered as the total space of a holomorphic

principal fibre bundleξ with baseMJ
P /G, structural groupG, and natural

projection map

MJ
P

φ→ MJ
P /G .

The purpose of the present article is to describe the algebraic structure of
the above fibre bundle. Our main result, Theorem 2.1, implies that when the
spectral curveX defined by{(x, y) ∈ C

2 : P (x, y) = 0} is smooth, then
MJ

P is smooth and bi-holomorphic to a Zariski open subset of the generalized
Jacobian varietyJ(X ′). The curveX ′ is singular and as a topological space
it is justX with its “infinite” points∞1,∞2, . . . ,∞r identified to a single
point ∞. ThusJ(X ′) is a non-compact commutative algebraic group and
it can be described as an extension of the usual JacobianJ(X) by the
algebraic groupG = (C∗)s−1 × C

r−s, wheres ≤ r is the number of
distinct eigenvalues of the leading termJ

0 → G → J(X ′) φ→ J(X) → 0 .(2)

As analytic spacesJ(X ′) andJ(X) are complex tori

J(X ′) = C
pa/Λ′ , J(X) = C

pg/Λ

whereΛ′, Λ are lattices of rank2pg + s − 1 and2pg respectively,pg is
the genus ofX, andpa = pg + r − 1 is the arithmetic genus ofX ′. The
generalized JacobianJ(X ′) can be also considered as the total space of
a holomorphic principal fibre bundle with baseJ(X), projectionφ, and
structural groupG. The groupG is then identified with the symmetry group
PGLr(C; J) of (1), and the manifoldMJ

P /G with a Zariski open sub-
set of the usual JacobianJ(X) = J(X ′)/G. The algebraic description
of the reduced invariant manifoldMJ

P /G is a well known result proved
by A.Beauville [4] and M.R.Adams, J.Harnad, J.Hurtubise [1] (see also M.
Adler, P. van Moerbeke [2], and Sect. 8.2. of the survey [17] by A.G.Reyman
and M.A. Semenov-Tian-Shansky).
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The Hamiltonian structures of the differential equation (1) is briefly
recalled in Sect. 3 where we show that the Hamiltonian vector fields (1) for
k ∈ N, a ∈ C define translation invariant vector fields on the generalized
JacobianJ(X ′), so the system is algebraically completely integrable.

In the case when the spectral curveX is singular, the varietyMJ
P /

PGLr(C; J) was studied by M.R.Adams, J.Harnad, J.Hurtubise [1] (see
also Beauville [4, p.218], P. van Moerbeke and D. Mumford [13, p.112]).
Note that our approach is quite the opposite in the sense that, while in [1] the
singular spectral curveX is desingularized, in the present article the regular
spectral curveX is singularized to a curveX ′.

We conclude the paper with two applications of Theorem 2.1 (Sect. 4).
We prove that even in the simplest case whenX is elliptic andG = C

∗, the
extension (2) is not trivial, and then describe the corresponding two degrees
of freedom algebraically completely integrable system. It turns out to be
the well known symmetric (Lagrange) top, andC

∗ is just the complexified
group of rotations about the symmetry axis of the top. This result, proved
ad hocby Gavrilov and Zhivkov [9], motivated the present paper. Another
classical problem related to Theorem 2.1 is to solve a system of hyperelliptic
differential equations (Jacobi [10], 1846). We prove that the phase space of
such a system is the generalized JacobianJ(X ′) of a hyperelliptic curveX
with two points at “infinity” identified, each orbit is a straight line isomorphic
to C

∗, and the space of orbits is parameterized by the usual JacobianJ(X).
This gives a new proof of Jacobi’s theorem.

2 Spectral curves and their Jacobians

A polynomial

P (x, y) = yr + s1(x)yr−1 + . . . + sr(x)

is called spectral, provided that the affine curve{(x, y) ∈ C
2 : P (x, y) = 0}

is the spectrum of some polynomialr × r matrixA(x)

P (x, y) = det(A(x) − y.Ir) .

In this casedeg(si(x)) ≤ i.d, whered is the degree ofA(x)

A(x) = Adx
d + Ad−1x

d−1 + . . . + A0 , Ai ∈ glr(C) .(3)

Consider the weighted projective spaceP
2(d) = C

3\{0}/C
∗, where the

C
∗-action onC

3 is defined by

t · (x, y, z) → (tx, tdy, tz) , t ∈ C
∗ .
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P
2(d) is a compact complex surface with one singular point{[0, 1, 0]} =

P
2(d)sing. The affine curve{(x, y) ∈ C

2 : det(A(x) − y.Ir) = 0} is
naturally embedded inP2(d),

C
2 → P

2(d) : (x, y) 7→ [x, y, 1],

and the conditiondeg(si(x)) ≤ i.d shows that its closureX is contained
in the smooth surfaceP2(d)reg = P

2(d)\{[0, 1, 0]}. Let x be an affine
coordinate onP1. The surfaceP2(d)reg is identified with the total space of
the holomorphic line bundleOP1(d) with baseP1 and projection

π : P
2(d)reg → P

1 : [x, y, z] → [x, z].

The induced projection
π : X → P

1(4)

is a ramified covering of degreer, and over the affine planeC it is simply
the first projection

π : {(x, y) ∈ C
2 : P (x, y) = 0} → C : (x, y) → x .

Definition 1 (spectral curve ofA(x)) We define the spectral curveX of the
matrix polynomialA(x) (3), to be the closure of the affine curve

{(x, y) ∈ C
2 : det(A(x) − y.Ir) = 0}

in the total space of the line bundleOP1(d).

From now on we fix the spectral polynomialP (x, y) and suppose that
the spectral curveX is smoothand irreducible.

We are going now to singularize the curveX. Let

m =
s∑

i=1

niPi, Pi ∈ X, ni > 0

be an effective divisor onX. To the pair(X, m) we associate a singular
curveX ′ = Xreg ∪ ∞, where if S = ∪s

i=1Pi is the support ofm, then
Xreg = X − S, and∞ is a single point. The structure sheafO′ of X ′ ∼
(X, m) is defined in the following way. LetOX′ be the direct image of the
structure sheafO = OX under the canonical projectionX → X ′. Then

O′
P =

{OP , P ∈ Xreg

C + i∞, P = ∞
wherei∞ is the ideal ofO∞ formed by the functionsf having a zero atPi

of order at leastni. Thus a regular functionf onX ′ is a regular functionf
onX, and such that for somec ∈ C and anyi holdsvPi(f − c) ≥ ni, where
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vP (.) is the order function. Ifpg is the genus ofX then the arithmetic genus
pa of the singular curveX ′ is pa = pg + deg(m) − 1.

ExampleLetm = P++P− be a divisor on the Riemann surfaceX. Then
in a neighborhood of∞ the singularized curveX ′ is analytically isomorphic
either to the germ of analytical curvexy = 0 (P+ 6= P−), or to y2 = x3

(P+ = P−).

Definition 2 (singularized spectral curve ofA(x)) If π is the projection
(4) and∞ = [1, 0] ∈ P

1 the “infinite” divisor, then the effective divisor
m = π∗(∞) is called modulus of the spectral curveX. We havedeg(m) = r
and we denote byX ′ the singular curve associated to the regular curveX
and to the modulusm.

RemarkIn the Serre’s book [19] any affective divisorm on a regular al-
gebraic curveX is called modulus. Indeed, the moduli space of singularized
curvesX ′ ∼ (X, m), pg(X) = const., deg(m) = const., is of dimension
strictly bigger than the dimension of the moduli space of regular curvesX.

We shall recall now the construction of the generalized Jacobian variety
J(X ′) of a singular curveX ′ ∼ (X, m). For proofs we refer the reader to
Serre [19].

A holomorphic line bundleL′ on X ′ is described by an open covering
{Uα}α of X ′ and transition functionsgαβ ∈ O′∗(Uα ∩ Uβ), such that

gαβ · gβα = 1, gαβ · gβγ · gγα = 1 .

Two line bundlesL′
1, L

′
2 on X ′ are equivalent if and only if there exist

fα ∈ O′∗(Uα) such thatg1
αβ = (fα/fβ) · g2

αβ . Thus the Picard group
Pic(X ′) of equivalence classes of holomorphic line bundles on the singular
curveX ′ is justH1(X ′,O′∗). If D is a divisor onXreg with local equations
{fα}, then the functionsgαβ = fα/fβ ∈ O′∗(Uα ∩Uβ) define a line bundle
L′

D onX ′, and any holomorphic line bundle onX ′ can be written in such a
way. Two line bundlesL′

D1
, L′

D2
onX ′ a equivalent if and only ifD1

m∼ D2.
This means that there exists a global meromorphic functionf on X, such
that(f) = D1 − D2 andvPi(f − 1) ≥ ni, i = 1, 2 . . . s. Let L(D) be the
sheaf of sections of the holomorphic line bundleLD over the smooth curve
X and suppose as before that the support ofD is contained in the set of
regular pointsXreg. Then the sheaf of sectionsL′(D) of the line bundleL′

D
overX ′ is defined as

L′(D)P =
{O′∞, P = ∞

L(D)P , P 6= ∞.

The sheafL′(D)is a locally freeO′ module of rank one, that is to say it is
invertible. More generally, there is an one-to-one correspondence between
isomorphism classes of invertible sheaves onX ′, and isomorphism classes
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of line bundles overX ′. This set of isomorphism classes is a group under
the operation⊗, L′(D1) ⊗ L′(D2) = L′(D1 + D2), called Picard group
Pic(X ′) of the curveX ′. Let Pic0(X ′) be the subgroup ofPic(X ′) formed
by degree zero line bundles. It is calledJacobianof X ′ and we denote
J(X ′) = Pic0(X ′). The JacobianJ(X ′) of the singular algebraic curve
X ′ has a natural structure of commutative algebraic group. As an analytic
manifold we have

J(X ′) = H0(X, Ω1(m))∗/H1(Xreg, Z) = C
pa/Λ′ ,

whereΛ′ is a rank2pg+s−1 lattice, andΩ1(m) is the sheaf of meromorphic
one-formsω, such that(ω) ≥ −m. Similarly, for the usual JacobianJ(X) =
Pic0(X) ⊂ J(X ′), we have

J(X) = H0(X, Ω1)∗/H1(X, Z) = C
pg/Λ ,

whereΛ ⊂ Λ′ is a rank2pg lattice.J(X ′) is a non-trivialextensionof J(X)
by the algebraic groupG = (C∗)s−1 × C

deg(m)−s

0 → G → J(X ′) φ→ J(X) → 0(5)

whereφ(L′(D)) = L(D). This means that the sequence is exact in the usual
sense and moreover the algebraic structure ofG (respectively ofJ(X)) is in-
duced (respectively quotient) of the algebraic structure ofJ(X ′). BothJ(X)
andJ(X ′) are commutative algebraic groups. Note however thatJ(X ′) is
non-compact. Indeed, while the topological space ofJ(X) is (S1)2pg , the
one ofJ(X ′) is (S1)2pg+s−1 × R

2 deg(m)−s−1. To every extension (5) we
associate a holomorphic principal fibre bundle with total spaceJ(X ′), base
J(X), projectionφ, and structural groupG = (C∗)s−1 × C

deg(m)−s. Two
extensions are equivalent if and only if the associated principal bundles are
equivalent.

Let Jpa(X) = Picpa(X) be the variety (isomorphic to the Jacobian
J(X)) formed by line bundles of degreepa = pg + r − 1 on X, and
denote byJpa(X ′) = Picpa(X ′) the variety (isomorphic to the generalized
JacobianJ(X ′)) formed by line bundles of degreepa = pg + r − 1 on
the singularized curveX ′. Denote further byΘ the canonical Riemann
theta divisor ofJpa(X) formed by special line bundlesLD of degreepa =
pg +r−1, that is to saydimH1(X, L(D)) 6= 0. By Riemann-Roch theorem

dimH0(X, L(D)) = deg(D) − pg + 1 + dim H1(X, L(D))
= r + dimH1(X, L(D))

soΘ is the set of line bundlesLD with at leastr + 1 holomorphic sections.
Similarly, let Θ′ ⊂ Jpa(X ′) be the canonical divisor formed by degree
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pa special line bundlesL′(D), that is to saydimH1(X ′,L′(D)) 6= 0. By
Riemann-Roch theorem

dimH0(X ′,L′(D)) = deg(D) − pa + 1 + dim H1(X ′,L′(D))
= 1 + dimH1(X ′,L′(D))

so such bundles have at least two holomorphic sections. It is easy to see that
Θ′ = φ−1(Θ), whereφ is the map induced by (5).

Let MP be the variety ofr × r polynomial matrices of degreed (3),
which have a fixed spectral polynomialP (x, y)

MP = {A(x) : det(A(x) − yIr) = P (x, y)}.

and letMJ
P = MP ∩ MJ be the isospectral manifold formed by matrices

of the form (3) with fixed leading termAd = J

A(x) = Jxd + Ad−1x
d−1 + . . . + A0, Ai ∈ glr(C) .(6)

The stabilizer

PGLr(C;J) = {R ∈ PGLr(C) : RJR−1 = J}
of PGLr(C) at J ∈ glr(C) is a commutative algebraic group isomorphic
to (C∗)s−1 × C

deg(m)−s. It is a well known fact thatMJ
P is a smooth mani-

fold, PGLr(C;J) acts freely and properly onMJ
P by conjugation, and the

quotient spaceMJ
P /PGLr(C;J) is a smooth manifold biholomorphic to

J(X) − Θ [1,4]. Consider the holomorphic principal fibre bundleξ with
total spaceMJ

P , structural groupPGLr(C;J), baseMJ
P /PGLr(C;J), and

natural projection mapϕ : MJ
P → MJ

P /PGLr(C;J). Consider also the as-
sociate principal bundleη with base spaceJ(X)−Θ, total spaceJ(X ′)−Θ′,
projection mapφ, and structural groupG (see (5)).

The main result of the present paper is the following

Theorem 2.1 The holomorphic principal bundlesξ andη are isomorphic.
In particular the isospectral manifoldMJ

P is smooth and bi-holomorphic to
the Zariski open subsetJ(X ′) − Θ′ of the generalized JacobianJ(X ′) of
the singularized spectral curveX ′.

We may resume Theorem 2.1 in the following commutative diagram

MJ
P

ϕ−→ MJ
P /PGLr(C;J)y l′

y l

J(X ′) − Θ′ φ−→ J(X) − Θy
y

0 −→ G −→ J(X ′) −→ J(X) −→ 0

(7)
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in which the mapsl, l′ are biholomorphic,

l′ : ϕ−1(b) → φ−1 ◦ l(b)

is an isomorphism of algebraic groups for everyb ∈ MJ
P /PGLr(C;J), and

the exact sequence in (7) is an extension of the algebraic groupJ(X) by G.

Proof of Theorem 2.1Recall that a matrixB ∈ glr(C) is calledregular if
one of the following equivalent conditions is satisfied

- all eigenspaces ofB are of dimension one
- the minimal and the characteristic polynomials ofB are equal
- the varietyglr(C;B) is of dimensionr

We shall use the following

Proposition 2.2 If the spectral curveX of the matrix polynomialA(x) is
smooth, thenA(x) is regular for any fixedx ∈ P

1 (for x = ∞ this means
that the leading termAd of A(x) is regular).

Indeed, if for somex0 ∈ C the matrixA(x0) = (aij(x0))i,j is not
regular, then there existsy0 such that(x0, y0) ∈ X and rank(A(x0) −
y0Ir) ≤ r − 2. If we denote by∆ij(x, y) the (i, j)th minor of the matrix
A(x) − yIr, then we have

∆ij(x0, y0) = 0 ,

P ′
x(x0, y0) =

∑
i,j

(−1)i+ja′
ij(x)∆ij(x0, y0) = 0 ,

P ′
y(x0, y0) = −

∑
i

∆ii(x0, y0) = 0

and hence the curveX is not smooth at(x0, y0). The regularity ofAd

is proved in the same way, we only change the local coordinates on the
weighted projective spaceP2(d) as

x → 1
x

, y → y

xd
.

LetA(x) be a matrix with a spectral polynomialP (x, y). By Proposition
2.2 the leading termJ of A(x) is a regular matrix. The characteristic polyno-
mial of J obviously coincides with the highest order weight-homogeneous
part ofP (x, y). If m =

∑
nipi is the modulus of the spectral curve, then

without loss of generality we shall suppose thatJ = diag(J(λ1), J(λ2), . . .
. . . , J(λs)), whereJ(λi) is a Jordan block of dimensionni with eigenvalue
λi, andλi 6= λj .

We recall first the definition of the eigenvector mapl. Consider a line
bundle over a curveX which is a sub-bundle of the trivial vector bundle
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X × C
r. It is defined by a meromorphic vectorf(p) = (f1, f2, . . . , fr). We

shall always suppose thatf is normalized, that is to say the meromorphic
functionsf1, f2, . . . , fr have not a common zero.The map

X → P
r−1 : p → [f1(p), f2(p), . . . , fr(p)]

is holomorphic, so we obtain a holomorphic line bundle overX. We denote
its dual byL. If D is the pole divisor off , that is to say the minimal effective
divisor such that(fi) ≥ −D for anyi, thenL = LD.

Definition 3 (eigenvector line bundle on the spectral curveX) Let f(x, y)
=t (f1, f2, . . . , fr), p = (x, y) ∈ X be a normalized eigenvector of the
matrix A(x) ∈ MP , A(x)f = yf . It defines a line bundle over the spectral
curveX which will be called eigenvector line bundle. Denote its dual byL
and the corresponding sheaf of sections byL.

Of course ifD is the pole divisor of the normalized eigenvectorf then
L = LD andL = L(D). The following properties ofL are well known (see
[4,2,17])

Proposition 2.3 If π : X → P
1 is the projection defined above, then the

sheafπ∗L is a trivial OP1 module of rankr

π∗L = OP1 ⊕ OP1 ⊕ . . . ⊕ OP1

and the functionsf1, f2, . . . , fr form a basis of global sections ofπ∗L.
Moreoverdeg(L) = deg(D) = pa = pg + r − 1, wherepg = (r − 1)(dr −
2)/2, dimH0(X, L) = r andf1, f2, . . . , fr form a basis ofH0(X, L(D)).

The above proposition shows that if the matricesA(x), Ã(x) define
isomorphic eigenvector bundles, then for someR ∈ glr(C),A(x) = RÃ(x)
×R−1. Indeed, iff , f̃ are the corresponding normalized eigenvectors with
equivalent pole divisorsD ∼ D̃, then there exists a meromorphic function
ϕ on X such that(ϕ) = D̃ − D. As ϕf̃i form a basis ofH0(X, L(D)),
then there exists a matrixR ∈ glr(C) such thatf = ϕRf̃ , and hence
A(x) = RÃ(x)R−1. Thus we obtain a holomorphic map

{ a matrixA(x) ∈ MP up to conjugation by a matrix inPGLr(C)}
↓ l

{ an isomorphism class of a line bundleL ∈ Picpa(X) − Θ}.

The following beautiful argument of Beauville [4] shows thatl is a bijection
(see also Sect. 8.2. of the survey [17] by A.G.Reyman and M.A. Semenov-
Tian-Shansky). Take a degreepa = pg + r − 1 invertible sheafL onX. By
Riemann-Roch theorem

χ(L) = deg(L) − pg + 1 = r ,

χ(π∗L) = deg(π∗L) + (1 − pg(P)) rank(π∗L) = deg(π∗L) + r ,
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by Grothendieck-Riemann-Roch

χ(L) = χ(π∗L) ,

and hencedeg(π∗L) = 0. If we suppose in addition thatL ∈ Picpa(X) −
Θ we conclude thatπ∗L is the rankr trivial vector bundle(OP1)r. The
invertible sheafL on X can be equivalently described as a locally trivial
OP1 moduleπ∗L equipped with an additional structure of aπ∗O module,
that is to say a homomorphism of algebrasa : π∗O → End(π∗L). To
describe the homomorphisma amounts to give a linear map (multiplication
by y)

π∗L → π∗L(d)

that is to say a polynomialr×r matrix of degreed. Denote the transposed to
this matrix byA(x). ClearlyA(x) satisfiesP (x, A(x)) = 0 and asP (x, y)
is irreducible overC(x) then by the Cayley-Hamilton theorem the spectral
polynomial ofA(x) is P (x, y). Note that the matrixA(x) is determined
only modulo an automorphism ofπ∗L. Thus the matrixA(x) is determined
only up to conjugationA(x) → R−1A(x)R by a matrixR ∈ PGLr(C).

The next step is to define the eigenvector line bundle on the singularized
spectral curveX ′ and the corresponding mapl′.

Definition 4 (eigenvector sheaf on the singularized spectral curveX ′) Let
f(x, y) be an eigenvector ofA(x) normalized by the condition

r∑
i=1

fi ≡ 1

and letD be the minimal divisor, such that(fi) ≥ −D, i = 1, 2, . . . s. Then
D is an effective divisor,D ⊂ Xreg, and we define the invertible eigenvector
sheaf on the singularized spectral curveX ′ to beL′ = L′(D), where

L′
p(D) =

{Lp(D), p 6= ∞
O′

p, p = ∞.

We denote byL′ the line bundle overX ′ associated to the invertible sheaf
L′. To prove the correctness of the above definition it remains to check that
D ⊂ Xreg, whereD is the pole divisor of the normalized eigenvectorf .

Let S =
∑s

1 pi be the support of the modulusm =
∑s

1 nipi and we
may suppose thatpi ∈ X corresponds to the Jordan blockJ(λi) of the
matrix J . An easy computation shows thatf(pi) determines a line overpi,
collinear with the eigenvector(0, 0, .., 0, 1, 0, . . . , 0) of J corresponding to
the Jordan blockJ(λi). The eigenvectorf has a pole atpi if and only if the
line determined byf(pi) is contained in the planef1 + f2 + . . . + fr = 0,
sopi is not a pole.
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Let Picpa(X ′) be the “shifted” Picard groupPic0(X ′) = J(X ′) of
degreepa line bundles onX ′. It is isomorphic to the Jacobian varietyJ(X ′)
andJ(X ′) − Θ′ is the subset of line bundlesL′ ∈ Picpa(X ′) with one
non-zero holomorphic sectionh0L′ = dimH0(X ′, L′) = 1. Definition 4
establishes a holomorphic map

{ a matrixA(x) ∈ MJ
P }

↓ l′

{ an isomorphism class of a line bundleL′ ∈ Picpa(X ′) − Θ′}.

Clearly the mapl′ is such that the diagram (7) commutes:φ ◦ l′ = l ◦ ϕ. As
the mapl is a bijection, then to show thatl′ is a bijection too it suffices to
check that

i) the fibresϕ−1(b) andφ−1 ◦ l(b) have the same dimension.
ii) l′ : ϕ−1(b) → φ−1 ◦ l(b) is an injective homomorphism of algebraic

groups.
Step i) is obvious and the dimension of the fibres isr. To check thatl′

is injective we take a sheafL′ ∈ Picpa(X ′) − Θ′ in the image ofl′. By
Riemann-Roch theorem [19]

χ(L′) = deg(L′) − pa + 1 = 1 ,

χ(π∗L′) = deg(π∗L′) + (1 − pg(P)) rank(π∗L′) = deg(π∗L′) + r ,

by Grothendieck-Riemann-Roch

χ(L′) = χ(π∗L′).

We conclude thatπ∗L′ is a degree1 − r and rankr locally trivial OP1

module, having one holomorphic section,h0π∗L′ = h0L′ = 1, so

π∗L′ = OP1 ⊕ OP1(−1) ⊕ . . . ⊕ OP1(−1) .

The invertible sheafL′ on X ′ can be equivalently described as a locally
trivial OP1 moduleπ∗L′ equipped with an additional structure of aπ∗O′
module, that is to say a homomorphism of algebrasa : π∗O′ → End(π∗L′).
It is easy to computeπ∗O′: a basis over the affine planeC is given by
{1, y, y2, . . . , yr−1} and overP − {0} by {1, y/xd+1, y2/x2d+1, . . . , yr−1

/x(r−1)d+1}, so

π∗O′ = OP1 ⊕ OP1(−d − 1) ⊕ . . . ⊕ OP1(−d(r − 1) − 1) .

To describe the homomorphisma amounts to give a linear map (multiplica-
tion byy)

π∗L′ → π∗L′(d)

that is to say a polynomialr × r matrix of degreed. Denote the transposed
to this matrix byA(x). If f1, f2, . . . fr is a normalized basis ofπ∗L′ over
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C,
∑

fi ≡ 1, thent(f1, f2, . . . fr) is an eigenvector ofA(x). ClearlyA(x)
satisfiesP (x, A(x)) = 0 and asP (x, y) is irreducible overC(x) then by the
Cayley-Hamilton theorem the spectral polynomial ofA(x) is P (x, y). The
homomorphisma is determined modulo an automorphism ofπ∗L′. In the
basef1, f2, . . . , fr the vector1 ≡ ∑

fi ∈ H0(P1, π∗L′) has coordinates
e =t (1, 1, . . . , 1), and hence the groupAut(π∗L′) is identified to

GLr(C; e) = {R ∈ GLr(C) : e is an eigenvector ofR}.

As we supposed thatπ∗L′ ∈ l′(MJ
P ), then in a suitable basis ofπ∗L′ we have

A(x) ∈ MJ
P . If Ã(x) ∈ MJ

P is another matrix which defines the same eigen-
vector sheafL′, thenÃ(x) = RA(x)R−1 for someR ∈ PGLr(C; e). As
at the same timeR ∈ PGLr(C;J), we conclude thatR = 1 ∈ PGLr(C).

Finally we note that the vector fields[Jk, A(x)], r = 1, . . . , r − 1 are
tangent to the fibreϕ−1(b), PGLr(C;J) invariant and linearly independent
(this follows from the regularity ofJ). The images of these vector fields
in Picpa(X ′) ∼ J(X ′) are well known to be translation invariant [17] and
hencel′ : ϕ−1(b) → φ−1◦l(b) is a homomorhism. This completes the proof
of step ii).

It remains to prove thatMJ
P is a smooth manifold, that is to say, to find at

any pointA(x) ∈ MJ
P vector fields which span the tangent space, and such

that their images inJ(X ′) − Θ′ span the tangent space too. These vector
fields are given by

Y (i)
a (A(x)) =

[
Ai(a)
x − a

, A(x)
]

, a ∈ P
1 , i ∈ N

but this will be explained in the next section.ut

3 Integrable systems

Let us fix a non-zero matrixJ ∈ gl(r, C) and denote byMJ the affine space
of all matrix polynomialsA(x) of the form

A(x) = Jxd + Ad−1x
d−1 + . . . + A0, Ai ∈ glr(C) .

The spaceMJ is of dimensiondimMJ = 2pa + dr = dr2 and it carries
several compatible Poisson structures of rank2pa = dr(r − 1). Let us fix
such a structure{., .}. A functionϕ onMJ is called invariant if it is constant
on each isospectral manifold

MJ
P = {A(x) ∈ MJ : det(A(x) − yIr) = P (x, y)}.

The algebra of invariant functions onMJ is thus generated by thedr(r +
1)/2 non-trivial coefficients ofP (x, y) (which are in addition functionally
independent).
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It turns out that the invariant functions commute with respect to{., .}.
Moreover, the tangent space toMJ

P at any pointA(x) ∈ MJ
P is the span of all

Hamiltonian vector fieldsXϕ = {., ϕ}, whereϕ is an invariant function. It
follows that any such Hamiltonian vector fieldXϕ is completely integrable
in the sense of Liouville, and hence its solutions can be explicitly computed
“by quadratures”.

The purpose of this section is to describe briefly the Hamiltonian struc-
ture of the completely integrable system (1) (thus justifying the title of the
article). The scheme is quite classical now and proofs together with historical
comments may be found in [17].

We describe first the compatible Poisson structures. Let

g̃ = g[x, x−1]

be the loop algebra of the Lie algebrag formed by Laurent polynomials in
one variablex with coefficients ing, and commutator given by

[
∑

i

Aix
i,
∑

j

Bjx
j ] =

∑
k

(
∑

i+j=k

[Ai, Bj ])xk, Ai, Bj ∈ g .

Let
g̃∗ = g∗[x, x−1]

be the “restricted” dual space tõg consisting of Laurent polynomials.The
spacẽg∗ carries a canonical Lie-Poisson structure, which is the extension
of the Lie algebra of linear functions oñg∗ to the entire space of smooth
functions ong̃∗ (a linear function oñg∗ is identified to a point iñg). Any
non-degenerate invariant bi-linear form< ., . > ong̃ identifiesg̃∗ to g̃ so the
latter space also carries a Poisson structure. To be explicit, putg = g̃lr(C)
and

< A(x), B(x) >= Resx=0 Trace(A(x)B(x))
dx

x
.

Choose a basisea in g and letCab
c be the structure constants ofg, [ea, eb] =∑

c Cab
c ec. Let A(x) =

∑
i Aix

i ∈ g̃, whereAi =
∑

a Aa
i e

a. Then

{Aa
i , A

b
j} = −

∑
c

Cab
c Ac

i+j .

The simplectic leaves of this Poisson structure are the co-adjoint orbits of
the Lie group underlying̃g. The corresponding ring of adjoint invariants
(Casimir functions) is generated by

ϕmn(A(x)) = Resx=0(x−nϕ(xmA(x)))dx , m, n ∈ N

whereϕ is any invariant function ong. It is clear that in such a way any Lie
algebra structure oñg defines a Poisson structure ong̃. The most important
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class of Poisson brackets are the so calledR-brackets. Namely, letR ∈
End(g̃) be a linear operator, and suppose that the commutator

[X, Y ]R =
1
2
([RX, Y ] + [X, RY ]) , X, Y ∈ g̃(8)

satisfies the Jacobi identity (this happens for example ifR satisfies the clas-
sical Yang-Baxter identity). This induces, according to the scheme described
above, a Poisson bracket{., .}R on g̃. The importance of theR-bracket is
related to the following result (due to Semenov-Tian-Shanski [18,17] and
closely related to the so called Adler-Kostant-Symes theorem).

Theorem 3.1 (i) The Casimir functionsϕmn on g̃ are in involution with
respect to theR-bracket.
(ii) The Hamiltonian system associated to

H(A(x)) = Resx=0 Trace
(

Ak+1(x)
k + 1

)
dx

x
,

{., .}R, is given by

d

dt
A(x) = [A(x), M ], A(x) ∈ g̃, M =

1
2
R(Ak(x)) .(9)

The decomposition
g̃ = g̃+ ⊕ g̃−

where
g̃+ = ⊕∞

i=0g̃xi, g̃− = ⊕−∞
i=−1g̃xi

defines aR matrix ong. Namely, ifA(x) = A(x)+ + A(x)− ∈ g̃ where
A(x)± ∈ g̃±, then define

R(A(x)) = A(x)+ − A(x)− .

The commutator (8) is given by

[A(x), B(x)]R = [A(x)+, B(x)+] − [A(x)−, B(x)−]

and it satisfies the Jacobi identity. The induced Poisson bracket{., .}R on g̃
is explicitly given (in the notations above) by

{Aa
i , A

b
j} = −εij

∑
c

Cab
c Ac

i+j

where εij = 1 for i, j ≥ 0, εij = −1 for i, j < 0, and εij = 0 for
i ≥ 0, j < 0.

Let

q(x) =
1∑

i=−d+1

qix
i
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be a fixed polynomial. Then the embedding

MJ ↪→ g̃ : A(x) 7→ q(x)A(x)(10)

is a Poisson mappingwith respect to theR-bracket. This means that the
embedding induces a Poisson structure onMJ . We obtain thus a family of
compatiblePoisson structures onMJ which depend linearly on the coeffi-
cientsqi of the polynomialq(x).

Corollary 3.2 The Hamiltonian system onMJ associated to

H(A(x)) = Resx=0 Trace
(

Ak+1(x)
k + 1

)
dx

x

and to the Poisson structure induced by the embedding (10) is given by

d

dt
A(x) = [A(x), M±] , A(x) ∈ g̃ ,

M± = ±(q(x)Ak(x))± ∈ g̃± .(11)

If we choose for exampleq(x) = 1/x, then (11) takes the form

d

dt
A(x) =

[
Ak(0)

x
, A(x)

]
.(12)

The construction of the loop algebrag̃ was related to the choice of Laurent
polynomials with a pole atx = 0. It is obvious that all that holds true if we
consider Laurent polynomials with a pole atx = a ∈ C. In this case (12)
takes the Beauville form

d

dt
A(x) =

[
Ak(a)
x − a

, A(x)
]

= Y (k)
a (A(x)) .(13)

Recall now that when the spectral curve is smooth, then the invariant level
set (the isospectral manifold ofA(x)) of (13) is smooth and bi-holomorphic
to the Zariski open subsetJ(X ′) − Θ′ of the generalized JacobianJ(X ′)
(Theorem 2.1). It is shown in [17] that the vector fieldsY

(k)
a (A(x)) induce

translation invariant vector fields onJ(X ′) (although the results are formu-

lated only onJ(X)). The direction ofY (k)
a (A(x)) is moreover explicitly

computed (formula (8.5) on p.177, but see also [4, Corollary 2.7]). These
formulae imply that the vector fieldsY (k)

a (A(x)) span, for generica the
tangent space to the generalized JacobianJ(X ′).

We conclude that the Hamiltonian system (11) is completely integrable.
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Definition 5 A Hamiltonian system is called algebraically completely inte-
grable, provided that it is completely integrable, and in addition each generic
complex invariant level set is a Zariski open subset of a commutative alge-
braic group, on which the Hamiltonian vector fields generated by the first
integrals are translation invariant.

Of course in order that the above definition makes a sense we must suppose
that the Poisson manifold, the Hamiltonian functions and vector fields are
algebraic(compare to [14, p.3.53]). Taking into account the results of Sect. 2
we obtain

Corollary 3.3 The system (11) (and hence (1)) is apa = dr(r − 1)/2
degrees of freedom algebraically completely integrable Hamiltonian system.

4 Examples

4.1 Lagrange top

Let X be a smooth elliptic curve,m = P1 + P2, P1 6= P2, an effective
divisor onX, and letX ′ be the singularized curveX relative to the modulus
m. The generalized JacobianJ(X ′) is an extension of the usual Jacobian
J(X) by C

∗

0 → C
∗ → J(X ′) → J(X) → 0

and it is easy to check that the above extension isnevertrivial. Indeed, if
the generalized JacobianJ(X ′) is isomorphic toJ(X) × C

∗ thenJ(X ′) =
C

2/Λ where

Λ = Z

(
2π
0

)
+ Z

(
0
2π

)
+ Z

(
τ1
τ2

)

with τ2 = 0. The generalized Riemann theta function [5,8]

θ̃(z1, z2|τ1, τ2) = ez2/2θ(z1 + τ2/2|τ1) + e−z2/2θ(z1 − τ2/2|τ1) ,

(z1, z2) ∈ C
2/Λ

decomposes into the product(ez2/2 − ez2/2)θ(z1|τ1) whereθ(z1|τ1) is the
usual elliptic Riemann theta function (z1 ∈ C/{2πiZ + Zτ1}). It follows
that the generalized Riemann theta divisor(θ̃) is reducible which contradicts
to the fact that it is isomorphic to the affine curveX − {P1 ∪ P2} [8].

Consider now the affine spaceMJ of matrix polynomialsA(x) of the
form

A(x) = Jx2 + A1x + A0, A0, A1 ∈ gl2(C)
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whereJ is a fixed matrix with distinct eigenvalues. As we explained in
Sect. 3 the Lax pair

d

dt
A(x) =

[
A(x),

A(a)
x − a

]
= [A(x), Jx + aJ + A1]

= [A(x), ((q(x)A(x))+](14)

whereq(x) = (x + a)/x2, defines a completely integrable Hamiltonian
system on the simplectic leaves of several compatible Poisson structures on
MJ . Moreover, when the spectral curveX with affine equation{(x, y) ∈
C

2 : P (x, y) = 0} is smooth, the corresponding isospectral manifold

MJ
P = {A(x) ∈ MJ : det(A(x) − yI2) = P (x, y)}

is smooth and is described as in Theorem 2.1. In addition the above vector
field is translation invariant on the generalized JacobianJ(X ′), so our system
is algebraically completely integrable. As the modulus of the spectral curve
X is m = ∞+ + ∞−, where∞± are the two “infinite” points onX, then
the generalized JacobianJ(X ′) is described as above.

Our purpose is to show that, for appropriate choice of the matrixJ and
the parametera, equation (14) is the classical equation of heavy symmetric
top. The symmetry groupC∗ is then the complexified circle action (rotations
about the symmetry axe of the top). In the sequel we put

J =
√

2
ε

(
0 1
1 0

)
, ε = exp

√−1π/4

Consider the isospectral manifold

MJ
f = {A(x) ∈ MJ : det(A(x) − yI2) = y2 − f(x)}

wheref(x) is a fixed monic polynomial

f(x) = x4 + a1x
3 + a2x

2 + a3x + a4

without double roots. We may considerMJ
f as a subvariety of the affine

vector space of traceless matrices

V = {A(x) ∈ MJ : Trace(A(x)) = 0} .

By making use of the isomorphism of Lie algebrassl2(C) andso3(C) given
by 
 0 −z y

z 0 −x
−y x 0


→ 1√

2

(
εx εz + εy

εz − εy −εx

)
, ε = exp

√−1π/4
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we may identifyV to the affine space

{L(x) : L(x) = χx2 + Mx − Γ ,

M,Γ ∈ so3(C) , χ =


0 −1 0

1 0 0
0 0 0


} .

The Hamiltonian system (14) takes the form

d

dt
(x2χ + xM − Γ) = [x2χ + xM − Γ, xχ + M + aJ ] .(15)

If we put at lasta = −mΩ3 and

M = (Ω1, Ω2, (1 + m)Ω3),Γ = (Γ1, Γ2, Γ3),Ω = (Ω1, Ω2, Ω3)

then we obtain

d

dt
M = [M,Ω] − [Γ, χ],

d

dt
Γ = [Γ,Ω].

which are the equations describing the Lagrange top. Indeed, after identi-
fying the isomorphic Lie algebras(R3,∧) and (so(3), [., .]), and making
obvious rescalings we obtain the system

d

dt
M = M × Ω + χ × Γ,

d

dt
Γ = Γ × Ω(16)

where

M = (I1Ω1, I2Ω2, I3Ω3) , Ω = (Ω1, Ω2, Ω3) ,

Γ = (Γ1, Γ2, Γ3) , χ = (χ1, χ2, χ3)

and in additionI1 = I2,χ1 = χ2 = 0. HereM,Ω andΓ denote respectively
the angular momentum, the angular velocity and the coordinates of the unit
vector in the direction of gravity, all expressed in body-coordinates. The
constant vectorχ is the center of mass in body-coordinates multiplied by
the mass and the acceleration,I1, I2, I3 are the principal moments of inertia
of the body.

To resume, we proved that the Lagrange top is an algebraically com-
pletely integrable system. It linearizes on a two-dimensional complex alge-
braic group – the generalized JacobianJ(X ′) of an elliptic curveX with
two points∞± identified. This result is proved directly in [9]. If we reduce
further the system (16) with respect to the circle actionC

∗ we obtain, as
it is well known, a one degree of freedom algebraically completely inte-
grable system linearized on the elliptic curveJ(X ′)/C

∗ = X [12,2,16,20,
3]. Other mechanical systems linearized on non-compact algebraic groups
were recently studied by Fedorov [8].
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4.2 The general integral of a system of hyperelliptic differential equations

Let f(x) be a fixed polynomial of degree2n or 2n−1 without double roots
and consider the followinghyperelliptic system of differential equations

dx1√
f(x1)

+
dx2√
f(x2)

+ . . . +
dxn√
f(xn)

= 0

x1dx1√
f(x1)

+
x2dx2√
f(x2)

+ . . . +
xndxn√
f(xn)

= 0(17)

. . . . . .

xn−2
1 dx1√
f(x1)

+
xn−2

2 dx2√
f(x2)

+ . . . +
xn−2

n dxn√
f(xn)

= 0

Suppose that the polynomialf(x) is written in the form

f(x) = −A2(x) + B2(x) + C2(x)

where

A(x) =
n∑

k=0

akx
k, B(x) =

n∑
k=0

bkx
k, C(x) =

n∑
k=0

ckx
k .(18)

Jacobi [10] proved in 1846 the following

Theorem 4.1 Let x1(ϕ), x2(ϕ), . . . , xn(ϕ) be the roots of the polynomial
equation

A(x) = B(x) cos(ϕ) + C(x) sin(ϕ) .

Thenx(ϕ) = (x1(ϕ), x2(ϕ), . . . , xn(ϕ)) is an integral curve of (17).

Let us note that the phase space of the system (17) is thenth symmetric
productSnΓ of the smooth affine curve

Γ = {(x, y) : y2 = f(x)}.

The variablesx1, x2, . . . , xn provide a system of local coordinates in a
neighborhood of any generic point on the smooth manifoldSnΓ . We shall
give an independent proof of Jacobi’s theorem in the light of the present
paper. For a further discussion on the Jacobi’s paper see Mumford [14, p.
3.17].

Assume first thatdeg(f) = 2n and consider, instead of system (17), the
following generalized Jacobi inversion problem [6,11,19]

dx1√
f(x1)

+
dx2√
f(x2)

+ . . . +
dxn√
f(xn)

= dz1

x1dx1√
f(x1)

+
x2dx2√
f(x2)

+ . . . +
xndxn√
f(xn)

= dz2(19)

. . . . . .

xn−1
1 dx1√
f(x1)

+
xn−1

2 dx2√
f(x2)

+ . . . +
xn−1

n dxn√
f(xn)

= dzn
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It involves the differential of second kind

xn−1dx√
f(x)

(20)

on the completed and normalized genusn − 1 hyperelliptic curveX = Γ̄ ,
whereΓ = {(x, y) : y2 = f(x)}. Putm = ∞+ + ∞−, where∞± are the
two poles of the differential (20) and letX ′ be the singularized curveX rela-
tive to the effective divisorm. The general symmetric function inxi,

√
f(xj)

can be expressed as a meromorphic function int(z1, z2, . . . , zn) ∈ J(X ′) =
C

n/Λ, whereΛ is theZ lattice

Λ =

{
t

(∮
γ

dx√
f(x)

,

∮
γ

xdx√
f(x)

, . . . ,

∮
γ

xn−1dx√
f(x)

)}
γ

,

γ ∈ H1(X − {∞+,∞−}, Z} .

The generalized JacobianJ(X ′) is a C
∗ extension of the usual Jacobian

J(X)

0
exp→ C

∗ → J(X ′) φ→ J(X) → 0(21)

whereφ is the projectionφ(z1, z2, . . . , zn) =t (z1, z2, . . . , zn−1) (see Sect. 2).
It follows thatan integral curve of the system (17) is just the fibre

φ−1(z0
1 , z

0
2 , . . . , z

0
n−1)(22)

over the pointt(z0
1 , z

0
2 , . . . , z

0
n−1) ∈ J(X). In particular each integral curve

is isomorphic to the algebraic groupC∗, and the set of all integral curves
is parameterized by the Jacobian varietyJ(X).

Theorem 2.1 provides an explicit parameterization of the fibre (22).
Namely, let

L(x) =
(−iA(x) C(x) − iB(x)

C(x) + iB(x) iA(x)

)
, i =

√−1

whereA(x), B(x), C(x) are the Jacobi polynomials (18). The spectral poly-
nomial ofL(x) is P (x, y) = y2 − f(x). Put

R(α) =
(

1 α
0 1

)
, R(∞) =

(
0 1
0 0

)

and consider the eigenvectort(1, f2(x, y;α)) corresponding to the eigen-
valuey of the matrixR(α)L(x)R−1(α). This defines a divisorD(α) =
(f2)∞ and hence a one-parameter family of line bundlesL′

D(α) ∈ Picn(X ′),
α ∈ P

1 on the singular curveX ′. As the line bundleLD(α) ∈ Picn(X) does
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not depend onα thenL′
D(α), α ∈ P

1 parameterizes the fibre (22), that is to
say an integral curve of (17). A simple computation shows that

f2(x, y;α) =
−iA(x) + α(C(x) + iB(x)) − y

2iα(−A(x) −
√−1

2 (α − 1
α)C(x) + 1

2(α + 1
α)B(x))

.

If D(α) =
∑n

k=1 pk wherepk = (yk, xk) ∈ X, thenxk is the root of the
denominator

−A(x) −
√−1

2

(
α − 1

α

)
C(x) +

1
2

(
α +

1
α

)
B(x)

= −A(x) + B(x) cos(ϕ) + C(x) sin(ϕ)

whereα = e
√−1ϕ. This completes the proof of Jacobi’s theorem in the case

deg(f) = 2n.
Note that there are exactly two valuesα± of α such that the pole divisor of

f is not contained in the affine part of the curveX and hence the line bundle
L′

D(α) is not defined. Thus topologically the integral curve of (17) isP −
{α+, α−} ∼ C

∗ as we explained before. At last ifdeg(f) = 2n−1 Jacobi’s
theorem holds too (although Jacobi did not study this case explicitly). The
differential (20) is of third kind,m = 2∞, where∞ is its double pole, and
J(X ′) is a non-trivial extension ofJ(X) by C

0 → C → J(X ′) φ→ J(X) → 0 .

Indeed, in this caseb2
0+c2

0−a2
0 = 0, soα+ = α− and the fiber is isomorphic

to P − {α±} ∼ C.
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