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Abstract. We study isochronous centres of plane polynomial Hamiltonian systems, and more
generally, isochronous Morse critical points of complex polynomial Hamiltonian functions. Our
first result is that if the Hamiltonian functioH is a non-degenerate semi-weighted homogeneous
polynomial, then it cannot have an isochronous Morse critical point, unless the associate
Hamiltonian system is linear, that is to s&y is of degree two. Our second result gives a
topological obstruction for isochronicity. Namely, letz) be a continuous family of one-
cycles contained in the complex level sEt"1(h), and vanishing at an isochronous Morse
critical point of H, ash — 0. We prove that ifH is a good polynomial with only simple
isolated critical points and the level s&~1(0) contains a single critical point, thep(h)
represents a zero homology cycle on the Riemann surface of the algebraicHutye). We

give several examples of ‘non-trivial’ complex Hamiltonians with isochronous Morse critical
points and explain how their study is related to the famous Jacobian conjecture.

AMS classification scheme numbers: 58F22, 34C25

1. Introduction

Let H € R[x, y] be a real polynomial of the form

H = (x* + y?)/2 + ‘higher order terms’
The plane Hamiltonian system

X =0H/dy

y=—0H/ox

has an equilibrium point (a centre) at the origin surrounded by a family of periodic solutions
parameterized by the enerdy. Each periodic orbity (k) is contained in an unique level
set

@)

{(x,y) e R®: H(x,y) = h})
for h > 0 sufficiently small and its period equal to

T(h):fdt:/ dr
y(h) 8H/8y

The centre is calledsochronousif the period T'(h) of these solutions does not depend
on h. Another interpretation of the period functidh(kz) is the following. LetS(h) =
fngh dx A dy be the area of the set bounded by the periodic arbit) on the planeR?.
Then the derivative of the area functisih) is the period functior?” ().
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The study of isochronous systems goes back at least to Galileo who discovered in 1632
the isochronicity of small oscillations of simple pendulum and the formula for its period
was given by Huygens in 1673 [23, p 72]. Huygens also described the first nonlinear
isochronous pendulum: a particle constrained to move on a cycloid under the action of
gravity [13] (see [23, p 111, example 1] for exact formulation). Isochronous systems were
later studied by Euler, Bernoulli and Lagrange (see for example [15]). The plane quadratic
isochronous systems are completely classified by Loud [16]. For more recent results on
isochronicity of plane systems of differential equations we refer the reader to [7] (for a
local study) and to [18].

As the period functiorf' (k) is given by an Abelian integral, it is more natural to study it
in a complex domain, and even for complex Hamiltonian functiéinsT his will be the point
of view adopted in the present paper. Namely, to any complex polynofialCl[x, y]
having a Morse critical point at the origiry;(0, 0) = 0, we associate a one-cyclgr) in
the fibre f~1(¢) vanishing at the origin irC? as¢ tends to 0, and a period function

T(t):/ w
y (@)

dx A dy dx
df af/dy
is the Gel'fand—Leray form of the ‘volume formxda dy. If f = H = (x4 y?)/2+---
is a real polynomial, and the orientation pft) is appropriately chosen, then this period
function coincides with the period function associated to the centre of (1). We shall say
that a Morse critical point of the complex polynomial functignis isochronousprovided
that the associated period functi@its) is constant iry.

Further, we shall not use the real structure of the system. Thus, we shall make no
difference between (non-degenerate) saddle-points and centres. Both will be for us simply
Morse critical points. Our main results are theorems 4.1 and 3.1 where we find necessary
conditions for isochronicity of a large class of complex plane polynomial Hamiltonian
systems. In particular theorem 4.1 suggests that the monodromy of thejoyglés an
obstruction for a Morse critical point to be isochronous. This also leads to the following
guestion

Is it true that if a Morse critical point is isochronous, then the associated vanishing cycle
y (t) represents a zero homology cycle on the Riemann surface of theffib(e)?

As we show in section 6, a positive answer to the above question would imply the
famous Jacobian conjecture.

The paper is organized as follows. In section 2 we summarize some basic facts on the
topology of the polynomial fibratiorf ~%(1) — ¢, f € C[x, y], which are used through the
paper. For the convenience of the reader we also sketch the proofs. In section 3 we prove
that a non-degenerate semi-weighted homogeneous polynomial cannot have an isochronous
Morse critical point, unless its degree is two (theorem 3.1 provides a natural complex
generalization of results obtained earlier in [7, 18]). We show that such a polynomial defines
a Milnor fibration ‘at infinity’ so the asymptotic behaviour of the period function can be
easily studied. From that we deduce that the period function is not a constant. We note that
in the same way one may compute the asymptotic behaviour of any Abelian integral along
a cycle contained in the level sets of the polynomial under consideration.

Suppose thaif € C[x, y] has only simple (in the sense of singularity theory) isolated
critical points, and that it definies a Milnor fibration ‘at infinity’. We prove in section 4
that if the critical level setf~%(0) contains a single critical point which is Morse and

where

w
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isochronous, then the associated vanishing cyc¢le represents a zero homology cycle on

the Riemann surface of the fibrg=1(r) (theorem 4.1). We use a monodromy argument
which in fact can be applied to a larger class of polynomials. Thus, the proof seems to be
more important than the result itself. We believe that a further progress can be achieved by
a more careful study of the monodromy of polynomials.

In section 5 we give examples of polynomials with isochronous Morse critical points. It
is seen in particular that the genus of the Riemann surface of the generig fibis not an
obstruction for isochronicity. Finally, in section 6, we explain how the sudy of isochronous
Morse critical points is related to the well known Jacobian conjecture.

After this paper was submitted for publication we learned that the relation between
isochronous systems and the Jacobian conjecture was also noted by M Sabatini (Connection
between isochronous Hamiltonian centres and the Jacobian conjecture, preprint, Wniversit
degli Studi di Trento, 1995).

2. The topology of the fibration C? g c

In this section we summarize some basic facts on the topology of the polynomial fibration
() = t, f € C[x, y], which will be used through the paper. Lgtbe a polynomial in
two complex variables with only isolated critical points and which is written in the form

Fe ) =y +ar(x)y ™t + -+ ag(x) (2

whereaq; (x) are polynomials inc of degree at most.
To each isolated critical point € C? of f we associate its Milnor number

/'Lp(f) = dlm(C O,,(X, y)/(f’m fy)

whereO, (x, y) is the local ring ofC? at p (it may be any of the rings of rational functions
defined atp, formal or convergent power series in a neighbourhoog)oénd (£, fy) is
the Jacobian ideal i©,(x, y) generated by the gradient gf. We define also the global
Milnor numberu(f) of f

w(f) =Y wp(f) =dimC?x, yI/{fe. f3).
P

The polynomialf has only isolated critical points if and only (1) is finite.

Note thatu(f) is a topological invariant off. It means that iff is topologically
conjugate to the polynomial thenu(f) = u(g). We shall now define another topological
invariant of f.

Denote byA(z, x) the discriminant of f(x, y) — ¢t with respect toy. Let d(z) be
the degree ofA(z, x) in x and letd be the degree oAA(z, x) for generict. Obviously
d —d(t) > 0 and there is only a finite number of values fosuch thatd — d(¢) > 0.

Definition 1. We denote
M(fy=d—d@) M=) M.

teC
The fact thath(f) is a topological invariant will follow from theorem 2.2. The number
Ale(f) counts the number of ramification points of the cufye= { f (x, y) = ¢} which tend
to infinity ast tends tory and then the numbex(f) is the total number of ramification
points which tend to infinity as varies.
Following [5, p 236], we shall give another (equivalent) interpretation of the number
A (f). LetT, be the projective closure iBP? of the affine curva’, = {f(x,y) =t} c C2
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Foranyp e T, — I, let w(T;, p) be the Milnor number of the germ of the analytic curve
T, at p. As u(Ty, p) is upper semicontinuous in[5], then for¢ sufficiently close torg,
but 7 # 1y the number

A (f) = u(Ty, p) — Ty, p)
is well defined.
Definition 2. We denote

M=) ) A=Y M.

pel,—T, teC

Proposition 2.1. For any the numbers.’( /) from definitions 1 and 2 coincide.
The proof is given for example in [9].
Theorem 2.2.1f f is a polynomial with isolated critical points then the Euler characteristic
of the fibre f~1(z) is given by

(D) = 1= uw(f) = M) + 1/ (f) + A (). (3)

In the case wherg ~(¢) is a generic fibre ' (f) = A'(f) = 0) the above theorem is

yet contained in [22] (see also [5], theorem 5.2). To prove the formula in general we use
that for any: (see for example lemma 8 in [12])

xT)=2—(d-Dd—-2)+ Y u, p).
peT;
Let A; C C be the smallest set such that: C*> — f~1(A;) — C — Ay is a locally

trivial fibration. Then by definitiond; is the set ofnon-generic valuesf ¢ and it is often
called a set oftypical values Let A, be the set of critical values of,

Ac={teC:pu(f)>0
and put
A ={t € C: A (f) > 0}.

It is well known thatA is a finite set (see [12, 8] for a discussion). The following theorem
is due to Ha Huy Vui and Nguyen Le Anh who described completely the set of atypical
values

Theorem 2.3 ([10, 11]).Af = A, U Aw.

Definition 3 ([5]). A polynomial f : C" — C is called a ‘tame’ polynomial if there is a
compact neighbourhood of the critical points off such that|grad(f)| is bounded away
from the origin on the set” — U.

It is known that if f is a tame polynomial then it defines a ‘Milnor fibration at infinity’
and in particulari(f) = 0 [5]. On the other hand, the class of polynomials defining a
fibration at infinity is larger than the class of tame polynomials.

Definition 4 ([20]). A fibre f=1(¢) is regular at infinity if there exists a neighbourhofd
of + and a compact subsét of C? such that
Fa o) I EA )
is a locally trivial fibration. If all fibres off are regular at infinity then we say thdtis
good.
Here is an equivalent definition of a good polynomial
Definition 5. f is good if and only ifA(f) = 0.
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fo

Figure 1.

Examples. All quadratic polynomials are tame. Up to linear changes of the independent
and the dependent variables, the only non-good (and hence non-tame) cubic polynomial
is f(x,y) = y(xy +1) (see [5,6]). Asf is not in the form (2) then we consider
f(x,y) = f(x +y,y). The discriminant off (x, y) — ¢ with respect toy is

Ax, 1) = 4x3 + x% — 18x — 27° — 4

and hence.(f) = A%(f) =1, x(f1(0)) =1, andy (f () =0forz #0. Asu(f) =0
then fort # 0 the fibre f~1(¢) has the homotopy type of a circle and hengel(¢) is a
Riemann sphere with two removed points.

Let f =c(y?>+x)*+y,¢c#0, k> 1. Asi(f), u(f) are topological invariants and
the bi-polynomial change of variablas— x + y2, y — y puts f into the formex* + y,
thenu(f) = A(f) = 0. Thusf is a good polynomial but nevertheless it is not tame.

2.1. Vanishing cycles

According to theorem 2.2 the generic fibye(r) of a polynomial with isolated critical
points has the homotopy type of a bouquetuff) + A(f) = dim Hy(f~1(¢), Z) circles.
By analogy to the local case we may definéf) + A(f) ‘vanishing cycles’ which form a
base of Hi(f~(t), Z). Namely, following [6], letD; c C be small closed disks centred
at the atypical points; € Ay of f, w; be continuous paths, nonintersecting exceppat
connecting some fixed typical valug ¢ A, to ¢ (figure 1). DenoteX; = f~1(D; U o),
X; = f~t), X = VY;X,. DefineVi c Hi(X,,, Z) to be the kernel of the homomorphism

Hi(Xy, Z) > Hi(X;, Z)

induced by the inclusioX,, — X;.

Theorem 2.4.
Hi(Xyy, Z) = &; V'

whererangV’ = u'i (f) + A (f). If Mi(f) =0, thenV' has a basis of
Wi = Y )

pefta)

1-cycles in the fibref ~1(7p) that vanish as tends tor; along the pathw;.
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Proof. As X is a deformation retract df2 then

Hl(X[[)7 Z) = HZ(X’ Xlo) (4)
and by the direct sum theorem we have the decomposition
Ha(X, Xy) = @i Ha(Xi, Xio)- (5)

Consider the long exact sequence associated with the(¥aitX,,)

o
> HZ(X[, Xl‘o) - Hl(Xt[)v Z) - Hl(Xi7 Z) — .

By (4) and (5) the map* is an injection and hencéli(X,,, Z) = @®;V'. Further, if
Ai(f) = 0 then the singular fibrg=1(#;) is a deformation retract ok; (the proof is the
same as in the ‘local’ case, see [1]). It follows that there are exactly

Wi = Y ()
peftm)
one-cycles in the fibrg~1(r) that vanish as — ;. Finally, if A% (f) # 0, then the formula
for the rank of V' is a by-product from the proof of theorem 3.1 in [21].

Remark. Note that ifA (f) # 0 then the singular fibr¢ ~1(z;) may not be a deformation
retract ofX;. Nevertheless the notion ‘vanishing cycle’ still has a sense but the fibte)
should be replaced by its projective closyfel(r) ¢ CP? (see [21] for details).

2.2. (A, ) constant deformations
Let f € Cy[x, y] be a polynomial of degreé with isolated critical points, and consider a
polynomial deformationfy € Cy[x, y] of f depending continuously on the parameter

Definition 6. We shall say thaf is a (i, u) constant deformation provided that= A(fp),
u = u(fy) do not depend oA.

Theorem 2.5.Consider a(i, 1) constant polynomial deformatioyy, 0 < 6 < 1, of the
polynomial f (x, y) = fo(x, y), and suppose in addition th&e C is a typical value off,
for all 6. Then the fibration

[0,1] x C* - [0,1]: (8, £, 2(0)) > 6
is trivial.
The above theorem claims that if two polynomigls f1 are connected by &, u)
constant deformation, then their generic fibres are equivalent up to an isotopy. Note,
however, thatfy and f1; may have different atypical points and values with different fibre

numbers\’ andu’ and only the global numbers o are the same. Thus (in contrast to the
local case [17])fo and f1 may not be topologically conjugate.

Proof of theorem 2.5. As 0 e C is a typical value off; then the fibre numbers®( fy),
ul(fy) are equal to zero and hence fosufficiently small and alb < [0, 1] holds

M(fo) = W' (fo) = 0.
Without loss of generality we may suppose that the polynornijak written in the form

d
foGe,y) =Y aaip(x)y'
i=0

wherea,_; (x) are polynomials inc of degree at most —i which depend continuously on
the paramete. After an appropriate linear change of the variables we may suppose
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that the leading coefficienty o = apo(x) iS @ non-zero constant. To simplify the notations
we shall also suppose thagy = ap(x) # O for all 6 € [0, 1]. This is not a restriction as,
to prove theorem 2.5, it is enough to establish the triviality of the fibratiom feufficiently
small. For such clearly holdsag ¢ # O.

Let

N
Ap(t,x) =Y 8;p(D)x'
i=0

be the discriminant of the polynomig (x, y) — ¢ with respect toy. We havedy 4(0) # 0
(definition 1) and hence there exists > 0, ¢ > 0, such that ifo € [0, 1], |7] < €, then
Ag(t,x) # 0 on the sefx € C: |x| > ¢o}. Then an elementary calculation shows that for
t,0, c such that) € [0, 1], |¢t| < €, ¢ > ¢o the cylinder

C.={(x,y) eC?: x| =c)

is transverse to the smooth affine cure, y) € C? : fy(x,y) = t}. Thus fg‘l(t) ncC,,

¢ = co, is smooth and asgy # O then fe‘l(t) N C. is a finite unramified covering over
the circle{x : |x] = ¢}. We conclude that for any < [0, 1], || < €, ¢ > cq, the set
f(;l(t) N C. is a finite disjoint union of circles and hence we obtain the following two
proper submersions

LN {x,y) € C? 1 x| < co} — (¢,0) t| <€, 6 €[0,1] (6)
and
i NC— (t,0) It <€, 6 €[0,1], ¢ > co. (7)

The Ehresmann fibration theorem implies that (6) and (7) are locally trivial fibrations. Tying
them up together we obtain a locally trivial fibration

©, ;7)) — 0,1 It <€, 6 €[0,1].
which implies the local triviality (and hence triviality) of the fibration
[0,1] x C*> — [0,1] : (0, £, 2(0)) ~ .

3. Semiweighted homogeneous systems

A function f : C* — C is called weighted homogeneous (wh) of weighted degresd

type w = (wy, wo, ..., w,), w; = weight(x;) if

F@Wixg, 120, ... 1Y x,) = 14 f (X1, X0, ..., Xn) vVt € C*.
We shall also suppose that > 2w; > 0, i = 1,2,...,n. A polynomial f €
Clx1, x2, ..., x,] is called semiweighted homogeneous (swh) of weighted dedread

type w if it can be written asf = Zj’;o fi,» where f; are wh polynomials of weighted
degreei and typew.

Definition 7. A swh polynomial f = Zﬁ’:of,- € C[xq, x2, ..., x,] of degreed and typew
is called non-degenerated if its highest weighted homogeneoug pira polynomial with
isolated critical points.

Theorem 3.1.A Morse critical point of a non-degenerate swh polynomial in two complex
variables cannot be isochronous unless the polynomial is of degree two.

The above theorem is a generalization of theorem 7.2 [18].
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Example ([7, p 466]). Let f = y24+V(x), V(x) =x°+asx®+ -+ a,x", a, #0. f is
a non-degenerate swh polynomial and hence the Hamiltonian system

d? d
@x = _av(x)

is not isochronous.
To prove theorem 3.1 we need the following

Proposition 3.2. Let f = Zflzofi € C[x1, x2, ..., x,] be a non-degenerate swh polynomial
of degread and typew. Theny is tame and its global Milnor number is given by the formula

= /d
= — —=1).
u(f) ]1 (w[ )
Proof. Consider the family of topological spheres
Si = {1, X2, - %) € C" 2 a7 g2 4 o i [V = 1),

As f, is a wh polynomial with isolated critical points then the sphefeare transversal to
its fibresfd‘l(t) for ¢+ > 0. In particular there exists > 0 such that on the compact s&t
holds

max >c
1

8f
Bx,-d

and hence on the sphefe we have
0
maX|de| > crdvo wo = MaX{ws, wa, ..., Wy} (8)
i Xi
Consider now the polynomial deformation

fo=fa+0f f'=)fi 0<6<L

C = max|af’/ox;|

i,xeS1
then onsS; holds
ad
;i
Comparing (8) with (9) we conclude that there exigts- 0 such that for any e [0, 1]
andr > rg the function f, has no critical points or§,. This shows thatf, (and hencef)
is tame. On the other hand, the global Milnor numpé€y;) is the degree of the map [19]

Ve

IV foll
for ¢ sufficiently large and hence

w(f) = u(fo) = u(fa).

Finally the global Milnor numbe(f) of a wh polynomial with isolated critical points
is easily computed by the Poinéaseries of the corresponding gradient maf; (see for
instance [4, p 104]). |

'l < crdtw, 9)

(xla -x27 M) -xl‘l) -

Vo= (0fs/0x1,...,0f/0x,) xes
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Remark. The above result can be considered as a special case of Kushnirenko’s theorem
[14]. Suffice it to note that a non-degenerate swh polynomial is also non-degenerate with
respect to its Newton boundary (at infinity). Moreover, fads tame, then without loss

of generality it may be also supposed convenient (in the sense of [14]). Thus, the global
Milnor number of a non-degenerate swh polynomial coincides with its Newton number.

Proof of theorem 3.1. Let f € C[x1, x2] be a non-degenerate swh polynomial of type
w = (wy, wp) and degree!, f = Zf:of,-, fi—weighted homogeneous of weighted degree
i. Consider the polynomial deformation

g (x1, x2) = (f (xat™4 xt™2/ M) — 1) /1t = fu(xr, x2) + 179 fy_q(xp, x2) +- -+ 17 fo— L.

defined forr € [1, OO], g1(x1, x2) = f(xl, x2) — 1, oo (X1, X2) = fy(x1, x2) — 1. According
to proposition 3.2 the polynomigl is tame (so.(g;) = 0) andu(g,) = u(f,) is a constant
in z. Thus, theorem 2.5 applies and the fibration

[0, 00] x C? — [tg, o0 : (£, &, *(0)) — ¢ (10)

is trivial, provided that G= C is a typical value ok, for all ¢ > ry. Clearly the last condition
is satisfied for sufficiently large.

Let y(rn) € Hl(gtgl(O), Z) be any cycle. Trivializing the fibration (10) we obtain a
continuous family of cycleg (1) € Hi(g1(0), Z) defined for allz > #. Denote byy ()
the image of the cyclg (¢) in Hi(f~%(t), Z) under the map

wy/d —wz/d).

(x1, x2) = (xat™ "M, xat

To compute the asymptotic behaviour of any Abelian integral along the g\c)ewe have
just to change the variables. In particular consider the ‘area’ fun&tion We have

S(l) = / X2 dxl = f th/dXZ dtwl/dxl = [(w1+w2)/df X2 dX]_.
y () v () 7 ()

As fﬂoo) xpdx; is well defined and finite then far sufficiently large and some non-zero
constantc holds

1S(1)] < Ct(wl-&-wz)/d.

If the period functionT (r) = fy(,) dx1/fy, = S'(¢) is identically a constant, sayr2 then
S(t) = 27t and hencew; + wy > d. On the other hand, we suppose that w, < d/2.
We conclude thatv; = wy; = d/2 and the polynomialf = Z?:o f; is of (non-weighted)
degree at most two. O

4. Systems with simple critical points

We recall that an isolated singularity of a germ of a holomorphic funcfian(C", 0) —
(C,0) is called simple (or du Val singularity, or rational double point) if its modality is
0 [1]. Such singularities are classified according to the Coxeter graup®;, Eg, E7, Eg
(i.e. according to regular polyhedra R?).

Theorem 4.1.Let f € C[x, y] be a good polynomial having only simple singularities. If a
critical level set off contains a single critical point which is Morse and isochronous, then
the corresponding vanishing cycle represents a zero homology cycle on the Riemann surface
of the algebraic curvef ~1(r).
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Figure 2.

Proof. Suppose that0, 0) is an isolated isochronous Morse critical point of the good
polynomial f = (x2 4+ y?)/2 4+ ---. Let us suppose that the associated cyele)
Hi(f~(t), Z) vanishing at(0,0) ast — 0 is not homologous to zero on the Riemann
surface of f~%(¢r). This implies that the genus of this surface is at least one and hence
one may always find another non-zero cyglé) € Hi(f(t), Z) having a non-zero
intersection number withy (). Further, according to theorem 2.4, we may suppose that
7(¢) is a vanishing cycle. Namely, letbe the critical value corresponding #dr). Choose
a disk D c C centred at the origin and containing the set of critical poits Let g € 9D
be a non-critical point, and and# be non-intersecting paths i@ connectingsy and the
critical valuest = 0 andr = 7, and!l, I € m1(D — A, 1p) be loops correspond to andi as
on figure 2. Further we shall suppose thdt) (y(¢)) is a cycle vanishing along the path
u (1) ast — 0 (t — ), and that the intersection numbgr (o) o y (t0)) is non-zero. Note
that we do not suppose thgt () contains a single critical point.

Trivializing the fibration f~%(r) — ¢ along/ and/ we obtain homeomorphisms

hi i f o) — f o)
which induce automorphisms
his i, * Hu(f 72 (t0), Z) — Hi(f " (10), Z).

We claim that the intersection number;, y (fo) o y (fo)) is not zero. Assuming that it is not
difficult to prove theorem 4.1. Indeed, I&t), §(r) be a continuous family of cycles in the
fibre f~%(¢) defined fort ~ t; and such that

8(to) = hy,y (to), 8(to) = hus o hy,y (to).
Then the Picard-Lefschetz formula reads
8(t0) = hid(to) = 8(t0) — (8(t0) o ¥ (10))y (to)
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and hence for ~ 19

8(t) = 8(t) — (8(to) o y (10))y (1)
or equivalently

/wzf w—(S(ro>oy(to)>f : (11)
8(1) 8(t) y(t)

On the other hand, the analytic continuation of the period funcfign along the loops
and! gives (forr ~ to)

T(t):/ a):/ a):/ w=2r
0] 8(t) 80

which, combined with (11) implies that the intersection number

(hz,y (to) o ¥ (t0)) = (8(t0) 0 ¥ (t0))

is zero.
Finally to show that the above intersection number is non-zero we use the fact that the
guadratic form of simple singularity is negative definite [1]. More preciselyyle} be a
cycle vanishing at the critical poirik, y) ast — 7. For simplicity, suppose first thaf, y)
is the only critical point contained in the fibrg~1(7). Denote byf, the local Milnor fibre
of the singularity

f1(C% (% 5) — (C.D.
This means thaf, = f~1(z) N B.(X, ), t € Ds(f), where
B(i,5) ={x, ) eC: x =i+ |x - < e} Ds(i) ={r e C: |t —i| <6}
and O0< § < € « 1. The fibration
(f,0f;) > t teDs(t)—1 (12)

is locally trivial. We may suppose that the pathis transversal td Ds (). Then the path
i N Ds(f) connectingo = #Nd D;s(7) andz defines a looy’ € w1(Ds(7) —1, fo). Trivializing
the fibration (12) alond’ we obtain a smooth map (monodromy)

hy < fiy = fo
which on its turn induces an automorphism (monodromy operator)
hp,  Hi(f%, Z) — Hi(f7,, Z)
and a homomorphism (variation operator)
var, = Vary : Hi(f;,, 9f;) — Hi(fi,, Z2).
Consider also the natural ‘restriction’ homomorphism
Hi(f (ko). Z) — Hi(fiy, 3fiy) 1 v (o) — ¥, (o)

which maps a cycle in the global fibrg=1(7) to its ‘part’ lying in the local Milnor fibre
fi,- We have now

(hj,y (to) o v (t0)) = (hj,y (fo) o v (to)) = (Vary y,(fo), v, (fo)) = S(Var, y, (i), Vars y, (io))
where

S (Hi(fr, Z), Hi(f:, Z)) = Z
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is the Seifert bilinear form [1] of the singularity

[i(C@E5) = (€D
As the quadratic fornQ (a, b) = S(a, b)+S(b, a) is negative definite thetk;, y (fo)oy (to) is
not zero unless Vary, (fo) € H1(f;, Z) is homologous to zero. But the variation operator is
in fact an isomorphism and the relative homology gréiigf; , d/;) is identified canonically
with the dual group(Hy(f;, Z))* via the intersection form. Thus, it remains to prove that

¥+ (f0) is not in the kernel of the intersection form @ (f;, Z). As (y (1) o 7 (t0)) is not

zero then(y, (fp) o 7 (fp)) # 0 and henceh;,y (1) o y (10)) # 0.
Suppose at last that the critical level g&tl(f) contains several critical pointg?, ).
We associate to each critical poi@it’, ') a local Milnor fibre i and a variation operator

Varj} : Hl(ft{), af,{)) — Hl(f*i)’ Z).

If y(to) € Hi(f;,, Z) then we denote, as before, PY(7o) its ‘part’ lying in the local Milnor
fibre f/. We have

(hi,y (t0) 0 ¥ (0)) = (Z var, v} (). ) v, (fo>> = _(Varj v/ (o). v/ (o))
=) S'(Var, v/ (%), Var, v/ (fo))

where S’ is the Seifert bilinear form of the singularity
fi(CE T = (D).

The same argument as before shows thaty (fo) o y (o)) < 0 which completes the proof
of theorem 4.1. O

5. Examples

In this sectionf e C2?[x, y] will be a polynomial with a Morse critical point at the origin
and y (r) will be a one-cycle in the fibref~(¢) that vanish at the origin as tends to
0. We denote by5(¢) the area functior}fym ydx and byT () the period functionfy(t) w,
o = dx/f,. The generic level sef () and the vanishing cyclg () in the examples that
follow are shown in figure 3.

An algebraic automorphism of? is a bi-polynomial map(x, u) — (u, v). Clearly
dx Ady = c¢du A dv for some non-zero constantthat may be supposed equal to 1. Now if
we put f(x, y) = ((u(x, y) —u(0, 0))% + (v(x, y) — v(0, 0))?)/2, then the canonical change
of variables

(.X, y) - (u(x, )’) - u(07 O)’ U('x7 J’) - 'U(O, 0))
transforms the Hamiltonian system

X =0f/dy
y=—af/dx
into a linear onet = v, v = —u. As a time-independent inversible (complex) change of

variables preserves the isochronicity of a centre (Morse critical point), we conclude that
any centre of the initial Hamiltonian system is isochronous too. The first natural guess is
that in this way we obtain all polynomial Hamiltonian isochronous systems. The following
example shows that it is not so.
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(1) (2) (3)

(4) (5)

Figure 3.

Example 1. The generic fibre of the polynomigf = yx(x — 1) is C** (Riemann sphere
with three removed points) and hence there is no algebraic automorphism that jmits
the formx24y2. On the other handf has an isochronous Morse critical point at the origin.
Indeed, its period function is given by the residue at the origin of the forfix ¢ — 1).

Example 2. The cubic polynomialf = x(xy + x + y) has an isochronous Morse critical
point at the origin. To check the above assertions we computeftiimt good polynomial
(A(f) = 0) with a global Milnor numbey.(f) = 2. The fibre f~1(0) has two components:
C (Riemann sphere with a removed point) aBt (Riemann sphere with two removed
points) with one common point which is a normal crossing. We have

t — x?2
x(1+x)

S(1) = / ydrx = 27+/—1Resq, (ydr) = 27+/—1 Resg =27+/—1t
y (@)

and hencel' (1) = S'(t) = 27 +/—1 = constant.

The next guess may be that if a polynomial has an isochronous Morse critical point
then its generic fibre is a Riemann sphere with several removed points. The next examples,
suggested by E Artal and | Luengo, show that it is not so.

Example 3. The polynomialf = y(x2y? 4 x + y) has an isochronous Morse critical point
at the origin. IndeedA(f) = 0, u(f) = 4, and the generic fibre of is a genus one



446 L Gavrilov

Riemann surface with three removed points. As above
S@) = / xdy = 2rv/—1Resy, (x dy) = 2nv/—11.
y(®

Example 4. The polynomialf = y((y +x?)y?+x — y) has an isochronous Morse critical
point at the origin. We check that(f) = 0, w(f) = 6, and the generic fibre of is a
genus two Riemann surface with three removed points. As before the area fufigtioa
the residue of dy at co; and hence it equals tar2/—1z.

In the above examples the vanishing cycle is homologous to zero on the Riemann surface
of the fibre f~1(¢), as it was conjectured in the introduction. The next example shows,
however, that it does not guarantee the isochronicity.

Example 5. The generic fibre of the polynomigf = (x2 + y?(x + 1)?)/2 is a Riemann
sphere with four removed points. Nevertheless the Morse critical goji) of f is not
isochronous. Indeed

dx dx dx 2x
T(t):/ —:/ ——— =2n+/—1Res = .
yor [y Sy Y+ 1)? Fyx + 1?2 1—1¢
It is seen that the period function is not single-valued. Thus, although the intersection form

on Hi(f~%(t), Z) is identically zero, the cycle (r) has a monodromy. This is explained
by the fact thatf is not good. We haveu(f) = 1, A1(f) = A(f) = 2.

6. Isochronous systems and the Jacobian conjecture

Jacobian conjecturany polynomial canonical map
C? - C2: (x,y) — (u,v) dx Ady =du A dv

is globally inversible.

The Jacobian conjecture was first formulated ® H Keller in 1939 (see [3] for a
survey). It is, in fact, equivalent to prove that the mapy) — (u, v) is injective. We
shall show, however, that this is not compatible to the conclusion of theorem 4.1.

Let (x, y) — (u, v) be a polynomial map, such that d dy = du A dv, and put

Fx,y) = @P(x, y) + v2(x, ¥)/2.

We may also suppose that0, 0) = 0, v(0,0) = 0 so the origin inC? is an isochronous
Morse critical point of f (section 5). Denote, as usual, () a continuous family of
one-cycles contained in the fibse () and vanishing at the origin as— 0.

Proposition 6.1. If the map(x, y) — (u, v) is not injective, thery (¢) represents a non-zero
homology cycle on the Riemann surface of the algebraic cfirver).

The above proposition raises the natural question (asked in the introduction), whether there
are isochronous Morse critical points with non-zero homology cycle. A negative answer
would imply the injectivity of the mapx, y) — (u, v), and hence the Jacobian conjecture.

Proof of proposition 6.1. Suppose that the map, y) — (u, v) is not injective, that is to
say there are two distinct pointsg, yo) and (x1, y1) such thatu(xg, yo) = u(x1, y1) = 0,
v(xo0, yo) = v(x1, y1) = 0. Without loss of generality we shall p(to, yo) = (0, 0). Suppose
that the vanishing cycle () associated t@0, O) is homologous to zero on the compactified
algebraic curvef~1(¢), or equivalently, the intersection number(t) o «()) is zero for
any cyclex(t) € Hi(f~(t), Z). We shall prove that this leads to a contradiction.
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(u,v) = (0,0)

Figure 4.

As u,v are polynomials with isolated critical points (in fact they have no critical
points at all) then their generic level sets are smooth and irreducible. Further without
loss of generality we shall suppose that the affine cum@s y) + +/—1v(x, y) = 0 and
u(x,y) —+/—1v(x, y) = 0 are smooth and irreducible (and hence connected)atdtr )
be a continuous path on the cumvéx, y) + v—1v(x, y) = 0 (u(x, y) — ~/—1v(x, y) = 0)
connecting the two pointéxg, yo) and (x1, y1). We may suppose that the only intersection
points ofa™ anda ™~ are their ends and denate= o™ Ua~. We claim that by continuity the
closed loopx defines, for all sufficiently small, a closed loopx(z) ¢ (), «(0) = «.
Indeed f = (u + ~/—1v)(u — +/—1v)/2 and it suffice to definer(r) in a neighbourhood
of the Morse critical pointS(xo, yo) ((x1, y1)). We may suppose thdty, yo) = (0, 0),
u+-Iv=x,u—+/-lv=y,t R, t >0, and define in a neighbourhood @, 0) the
loop «(t) to be the real curvay = 2r wherex,y > 0. Ast — 0 the loopa(¢) tends to
atUa~, wherea™ is defined byx =0,y > 0, anda™ by y =0, x > 0. The loopa(r) is
shown on figure 4.

We note finally that if

y(6) = {x = V2rexp’, y = V2rexp ¥, ¢ € [0, 27])
is a cycle vanishing a0, 0) ast — 0, then the intersection numbez(¢) o y (¢)) equals to
+1 and we arrived at a contradiction. O
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