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Abstract

Let f :€? — C be a polynomial map with isolated critical points. We describe the
Euler characteristic of its fiber f~!(2) in terms of u(f) and p(f) , where p(f) is the
global Milnor number of f and p(f) is another topological invariant which counts the
non-bounded ramification points of the curve f~!(#) as ¢ varies.

f defines a trivial fibration at infinity if and only if p(f) = 0 and we show that in
this case the first homology group of the general fiber f~1(¢) has a distinguished basis
of vanishing cyvcles. As a simplest example we compute the Dynkin diagrams of cubic
polynomials.
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1 Introduction

Let f :C" — € be a holomorphic map in a neighborhood of 0 € €™, f{0) = 0. It is well known
that the local fiber f7'(¢) has the homotopy tvpe of a bouquet of u spheres of dimension
n — 1 [11]. The Milnor number pof f) of f at 0 € €™ may be defined as the number of cycles
of dimension »n — 1 in the fiber f~!{{) that vanish at 0 as ¢ — 0. In the case when f is

.

a polynomial. by analogy with the "local” case, the middle homology of the general global
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fiber () is a direct sum of vanishing homologies corresponding to the atypical points of
f (see [4], Proposition 3). On the other hand the vanishing homology is also important as
the monodromy of the fibers f~!(¢) may be determined in terms of vanishing cycles and
their intersection numbers (Picard-Lefschetz formula [1] ). For arbitrary n and for a large
class of polynomials (the so called tame polynomials) the vanishing homology is studied
by Broughton in [3.4]. It turns out that H,_i(f~1(¢),2) = Z#)-#) H.(f-1(1),Z) = 0,
1 #n—1, where
p(N) =2 mlf), ()= X mlf)
P pef=1(t)

are the global and the fiber Milnor numbers of f.

The study of the vanishing homology in general turns out to be a difficult (still unsolved)
question. It is well known that the number of values for ¢ (called atypical) such that f :
C™ — C is not locally trivial over t is finite (see [10,5] for a discussion). It is not clear,
however, how to determine these points except in the simplest case n=2. According to a
result of Ha and Nguyen [8,9] if the fibration €* 5 €, f € €[z,y], is not locally trivial over
to € C , then either #o is a critical value, or there is a ramification point of the projection
{(z.y) €C*: f(z,y) =t} — x which tends to infinity as ¢ — to. Using this and Broughton’s
results [3,4], we give a description of the Euler characteristic of the fiber f~(¢),n = 2, and
any ¢ € €, in the case of a polynomial with isolated critical points (u(f) < oo). This is our
main result and it is formulated in Theorem 3.3 of section 3.

The paper is organized as follows. In section 2 we give some formulae which will be
used in the proof of Theorem 3.3. In particular we explain how to compute H,(T',Z) for
any smooth affine plane curve (Corollary 2.3) . In section 3 we define a new topological
invariant p(f) of a polynomial f, similar to the Milnor number u(f). The fibre f~%(¢) is
then described in terms of these two numbers. If p(f) = 0 then the polynomial f is good in
the sense that it defines a trivial fibration at infinity. In this case the description of f~1(t)
coincides with the one of Broughton [3,4] but nevertheless the class of good polynomials is
larger than the class of tame polvhomials.

In section 4 we apply our main result Theorem 3.3 to classification of polynomials. We
prove that, if two polynomials belong to the same connected component of the set A, , of
degree n polynomials with fixed p(f) = p. u(f) = y, then their general fibres are equivalent
up to a proper isotopy. In the case of a good polynomial we define a distinguished basis of
vanishing cycles and prove that it generates the first homology group of the general fibres. As
a simplest example we study the space of cubic polynomials and describe the corresponding
Dynkin diagrams ( table 1).

2 The homology of a smooth affine plane curve

=, p— " 2
Suppose that I' and I" are compact Riemann surfaces and let

- =

T: =1

be a non-constant holomorphic mapping with mapping degree deg(r) = n. Consider a closed
set S C ' such that its boundary &S is homeomorphic to a finite disjoint union of circles
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and points, and define

MeT & Pal -a{5).
For any p € T let v(p) be the multiplicity of = at p. The Euler characteristics x(I'), x(I') of
I and I are related by the foliowing

Theorem 2.1 (Riemann-Hurwitz formula)

X(T) = nx(I') = _(v(p) = 1) .
pel’

Proof. If S = ( then I' and I’ are compact and this is the usual Riemann-Hurwitz formula.
If S # @ we may always find an open neighborhood S, of S in T and such that

- 98, is a disjoint union of circles

- there are no ramification points of 7 in the open set S, — S

-0 =T =S, is a deformation retract of I .
It follows that [, = T — 7~ 1(S,) will be a deformation retract of I' and we have a well defined
holomorphic map

m: =T

between bordered closed surfaces. The same proof as in the case S = § (see for example [7])
shows that
X(Te) =nx(T%) = 2 (v(p) = 1) .0
pele
Consider a smooth irreducible affine curve T' = {(z,y) € C : f(z,y) = 0}. We shall use
the Riemann-Hurwitz formula to compute the first homology group Hy(I') = Hy(I', Z) in
terms of ramification points.

Definition 1 4 linear function | is general with respect to f provided that for any ¢ € C
the intersection index of the straight line {I = ¢} C C and the affine curve I' is ezactly
n=deg(H).

To each non-constant linear function [ corresponds a direction {{(x,y) = 1(0,0)} inC* and
there are exactly n = deg(f} such directions corresponding to non-general linear functions.
Consider the projection
7. =C:(a,y) — Uz, y).

where [ is a general linear function and for any = € I let v(z) be the ramification index of .
Proposition 2.2 dim(H,('))=1—-n+ 3. cplv(z) —1).

The above proposition implies that the number of ramification points
T .er(v(z) — 1) does not depend on the general projection =. Let f(z,y) = apy™ + a;y™"' +
.. + a, where a; = ¢;(x) € C[z] and deg{¢;(x)) < 1. The linear function z is general if and
only if ag # 0. Without loss of generality we may suppose (after a suitable linear change of
variables) that [ = z. Then, as it is easily seen, the number of ramification points equals
to the degree in a of the discriminant Aj(z) of f with respect to y. On the other hand
deg:As(z) < n{n —1) and we get



Corollary 2.3
dim H{(T) =1 — deg(f) + deg.As(2) < (n — 1)2

Ezamples
- Let f = —3—’—:5-1-'- z. As 2 is general with respect to f, and the discriminant A;(z) of
f with respect to y is —162° then dimH(I') =1 -3 +3=1. The curve [' = {f=0}isa
Riemann sphere with two removed points.
- Let f =2z" +y" + 1. One easily computes Ag(z) = c.(z" + 1)*7?, ¢ = const. &£ 0 and
hence dimH,(I') = 1 —=n+n(n—1) = (n—1)%. On the other hand I is a genus g Riemann sur-
face with n removed points and dim H,(I') = 29 —n+1. Thus we obtain g = (n—1)(n—2)/2.

Proof of Proposition 2.2. Let T be the smooth model of the compactified curve sy
T =T UD.,CP!=C Uococ. The ]DIOJectIOH map 7 can be continued to a holomorphic map

:T — CPL. As lis general then 7~'(o0) = D,.. The Riemann-Hurwitz formula applied
to I‘, I['=CP'. §=oc € CP! gives

Y(T) = nx(C) = > (v{p) — 1)

pel

But I' has the homotopy type of a bouquet of dim Hy(T') circles and hence x(I') = 1 —
dem H1(T'). A
Further we shall study rather the fibration

F i@

and its general fibers f~'(t), than a single affine curve. To each isolated critical point p € €2
of f we associate its Milnor number

ol f = dime Op(x,y)/< Fondy &

where O,(z.y) is the local ring of €% at p (it may be any of the rings of rational functions
defined at p, formal or convergent power series in a neighborhood of p) and < f;, f, > is the
Jacobian ideal in O,(z,y) generated by the gradient of f. We define also the global Milnor
number u(f) of f

£y= " ol ) =dim@z /< fu fy >
i
[ has only isolated critical points if and only if u(f) is finite.

Proposition 2.4 If u(f) < =c then the general fiber of the polynomial map f :C? — € is
smooth and irreducible. If ([} = oc then [ = Ag? + ¢ for some constant ¢ and A € Clz, y],

g € {Lle,y) -C}.
Thus, if f has only isolated critical points, Proposition 2.2 a pplies to the general fiber of

f:C* =C.
Proof of Proposition 2.4. Let us suppose first that u(f) < oc. By Bertini’s theorem the
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general fiber f~(¢) is smooth and for ¢ in a Zariski closed set the fiber js reducible. We have
to prove that this set is not (.

Let us suppose that for all ¢ € C the fiber f7'(t) is reducible. Then Bertini’s theorem
([14, chapter 2.6]) implies that the curve T, = (z,y) €C*: f(z,y) = t} is reducible over
m. In other words f(z,y) — ¢ = Plx,y)Qiz,y) where P and @ are polynomials in z.
with coefficients algebraic functions in ¢ and deg(P),deg(@) > 1.

We may also choose Py(2.y), Q(z,y) in such a way that their coefficients are well defined
for any ¢. Indeed, as the highest order homogeneous component of f is a product of the
highest order homogeneous components of Pi(z,y) and Q(z,y) then it is reducible over €.
Thus we may choose the highest order homogeneous components of Fi(z,y) and Q,(z,y)
to be polynomials which do not depend on t. If for some to some coefficient of P(z,y)
tends to oo as ¢ tends to o then for (z, y) in a Zariski open set holds lim; .y, Py(z,y) = oo
and limg_y, Q¢(2,y) = 0. The last contradicts however to the choice of the highest order
homogeneous component of Q. y).

For almost all ¢ the curves

{(z.y) €€ : Pf2.y) = 0}, {(2.y) €C? : Qu(z,y) = 0}

do not intersect each other (otherwise I'; would be singular for almost all ) and hence the
resultant R(t) of P,(z, ) and Qi(x,y) with respect to y is a polynomial in z of degree 0. If for
some ¢ the algebraic function R(¢) vanishes then the curves {P(z,y) =0} and {Q4(z,y) = 0}
have a common component. This component is a (one-dimensional) critical set of flz,y)
and hence p(f) = .

Finally we shall consider the case R(t) = const. # 0, that is to say for all ¢ {P\(z,y) =
0} N {Q«z,y) = 0} = 0. Let for some ¢ = to (z1,41) € {P(z.y) = 0} and (22,y2) €
{Qiz,y) = 0} and let ! be the line passing through these two points. We may suppose that
L:{y = c} and then ;, 2, will be two distinct roots of the polynomial g(z) = f(z,c) — ¢,.
Now using the fact that the Dynkin diagram of a polynomial is connected we conclude
by a standard argument (see for example [1], vol.2 example 2.9.) that there is a path on
the € - plane connecting #y to some fy such that along this path the roots z; and T, are
continuously deformed to some double root &1 = I of the polynomial f(z,c) —fo. As the
point (Z,¢) = (&, ¢) for ¢ = £, belongs both to {Pi(z,y) = 0} and {Q(z,y) = 0} we arrive
to the desirable contradiction.

At last if f = Ag® + ¢ then f. and f, have a common factor g in Clz,y] and hence
#(f) = oo. If p(f) = oc then f, and fy have a common factor ¢ and let C be the curve
{(z,y) €eC?: gla,y) = 0}. We may suppose that C is irreducible and let, z be an uniformizing
parameter in a neighborhood of a simple point of C. We have

d d d
7= (2l2).ylz)) = f; ot b 2 LYS 0

and hence f is a constant on C. Thus there exists a constant ¢ such that f —c¢ = ) g™
for some integer m and \ € Clz,y). Finally m > 2 as if m = 1 then fz, fy will not vanish
identically on C. A



3 The general fiber of the fibration f:C* —C

Definition 2 A polynomial f : C* —C is called a "tame” polynomial if there is a compact
neighborhood U of the critical points of f such that ||grad(f)|| is bounded away from the
ortgin on C" — U.

Let
gy = 32 wlh)

pE€f1(t)

be the fiber Milnor number of f. The following theorem is proved by Broughton [3,4]

Theorem 3.1 If f is a tame polynomial then for anyt € C the fiber f7(t) has the homotopy
type of a bouquet of u(f) — p'(f) spheres of dimension n — 1.

The tame polynomials can be characterized by the fact that their critical points stay in
a finite plane €™ after a small perturbation with an arbitrary linear function.

Proposition 3.2 [3] 4 polynomial f is tame if and only if u(f) = p(f +€l) for each linear
function | and all sufficiently small €

If fis not tame. but u(f) < oo and under some additional condition which always
holds for n = 2, it is proved by Broughton [3] that for the general fibers f~'(¢) holds
Ho_1(f~1(t),Z) =~ Z#)+2) Here u(f) is the global Milnor number of f and p(f) is the
"jump of Milnor numbers at infinity”. The number p(f) as it is defined in [3] is however
not very computable. Further we shall specialize to the case n = 2 and we shall characterize
p(f) in a different way.

The total Milnor number x( f) of a polynomial is easily computed for any given polynomial
f € €*[z,y]. Suppose that z is general with respect to f. If Rys(z) is the resultant of f;
and f, with respect to y then

p(f) = degRy ()

and the condition that x is general is indeed necessary. Note that u(f) is a topological
invariant of f. It means that il [ is topologically conjugate to the polynomial g then
w(f) = plg). We shall define now another topological invariant of f.

Let us suppose that [ = z is general with respect to f and for any ¢t € € denote by A(t, z)
the discriminant of f(z,y) —t with respect to y. Let d(t) be the degree of A(¢,z) in z and
let d be the degree of A(t,z) for general t. Obviously d — d(¢) > 0 and there is only 2 finite
number of values for ¢ such that d — d(t) > C.

Definition 3 We denote

Py =d—=dit), p(f)=)_0"(f).
tel



The fact that p(f) is a topological invariant will follow from Theorem 3.3. The number
p"(f) counts the number of ramification points of the curve I', = {f(z,y) =t} which tend
to oo as t tends to ¢y and then the number p(f) is the total number of ramification points
which tend to infinity as ¢ varies. For any given polynomial f(¢) the number p(f) is also
easily computed.

The main result of this section is the following

Theorem 3.3 If f is a polynomial with isolated critical points then the Euler characteristic
of the fiber f~1(t) is given by

XUTHR)) =1 = ul(f) = p(f) + u'(F) + p'(f) - (1)
Theorem 3.3 implies immediately

Corollary 3.4 If the fibre f~1(t) is connected then it has the homotopy type of a bouquet of
(Y + p(f) = p'(f) = p*(f) civcles.

If ¢ 1s general then p'(f) = p*(f) = 0, the fibre f~'(¢) is smooth and irreducible (Proposition
2.4) and hence it is homeomorphic to a (connected) Riemann surface with several, but at
least one, removed points. We shall see below (in the proof of Theorem 3.8 for example)
that if p(f) = 0 then f defines a trivial fibration "at infinity”. On the other hand the local
Milnor fibre of an analytic function is always connected which implies that if p(f) = 0 then
f7(t) is connected. Now Corollary 3.4 gives the following

Corollary 3.5 The general fibre f~1(t) of a polynomial with isolated critical points has the
homotopy type of a bouquet of u(f)+ p(f) circles and hence

dim Hy(f7H(t)) = p(f) + p(f) - (2)

Corollary 3.6 If p(f) =0 then f~'(t) has the homotopy type of a bouquet of w(f) = p*(f)
circles.

Corollary 3.6 indicates that a class of well-behaved polynomials are those with Aef) =0
For such polynomials the conclusion of Theorem 3.1 holds but the class is larger than the
one of the tame polynomials. This justifies the following

Definition 4 The polynomial f is good provided that p(f) = 0.

The properties of good polynomials will be studied in more details in section 4.

Proposition 3.7 Each tame polynomial is good but there exist good polynomials which are
not tame.

Theorem 3.3 and Proposition 3.7 will be proved later in this section.

Let Ay CC be the smallest set such that f:C* — f~Y(A;) =€ — A; is a locally trivial
fibration. Then by definition Ay is the set of non-general values of ¢ and it is often called a
set of atypical values. Let A. be the set of critical values of f,

Ac={teC: 4(f) > 0},
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and put

Ax = {t€C:p'(f) > 0}.

It is well known that A; is a finite set (see [10.5] for a discussion).The following two theorems
du to Ha Huy Vui, Lé Dung Trang and Nguyen Le Anh are closely related to our Theorem
3.3

Theorem 3.8 ([8,9]) A; = A. U AL.
For completeness we give below a proof of Theorem 3.8.

Theorem 3.9 ([10], but see also [5], Proposition 4.6 on p.22) The fibration €* L
is locally trivial over tg € C provided that the Euler characteristic of f~*(to) equals the Euler
characteristic of the general fibre f~1(1).

Note that that in Theorem 3.8 and Theorem 3.9 f is an arbitrary polynomial, possibly with
non-isolated critical points.

Proof of Theorem 3.8. It is well known that the fibration €2 %€ is not locally triv-
ial over A, ([10], remark 4). Let o € Ao — (A: N Ax) and suppose that [ = z is a general
function with respect to f(x,y). Then it is general with respect to f(z,y)—t for any constant

t €C and let ,

Altz) = ). ailt)e (3)
i=0
be the discriminant of the polynomial f(z,y) —t with respect to y. By Definition 3 5 € Ay
means that ag(tg) = 0. Thus the smooth affine curves f~1(¢) and f~1(ty), ¢ ~ %o, have
different number of ramification points under the projection (z,y) — z. Now Corollary 2.3
implies that dem Hy(f~'(t)) # dim Hi(f~*(40)) and the fibration C? L@ is not locally trivial
over ig .

Suppose now that fo & A;. We have to prove that €2 Leis locally trivial over ¢;,. We
may use a vector field argument as in [9], or use directly the Ehresmann fibration theorem
(see for example [5]) in the following way.

As tg € Ay then ag(ty) # 0 and there exist ¢g > 0,e¢ > 0, such that if | ¢t — ¢y |< ¢,
then A(t,z) # 0 on the set {z :| ¢ |> ¢g}. It follows that for any t € €,c € IR, such that
|t —tg |< €. ¢ > cg, the cylinder

Ce= {(z.y) €C*:| z |= ¢}

is transverse to the smooth affine curve {(z,y) € C*: f(z,y) = t}. Thus f~(t)NC,, ¢ > ¢,
is smooth and as z is general with respect to f then f~1(¢)NC. is a finite unramified covering
over the circle {x :| z |= ¢}. We conclude that f~1(¢) N C. is a finite disjoint union of circles
for any ¢ > ¢ and hence we obtain the following two proper submersions

0 1 ) B0 [ a5k, | = 1 | (4)

[vs}



and
f7H)NCe = (te), |t —tg <& e2 ey, (5)
The Ehresmann fibration theorem implies that f fibres the pair

(O 0 {(x,y) €0 |2 |< a0}, f(E) N Cy)

locally trivially over the disc {t € :
over the set

t — 1o |< €}, and that (5) is a locally trivial fibration

{teC:ft—to|<e}x{c€ER:c>c}.

The latter claim however implies that

FHON{(z,y) €C? iz >0} Lt (6)

is locally trivial over the disc {t € :|t — 4, |< e}. This together with the local triviality of
(4) gives the local triviality of (2 L @ over tg. O

Definition 5 4 polynomial f defines a trivial fibration at infinity, provided that for any
to € € there exist € > 0, ¢ > 0. such that (6) defines a trivial fibration over the disc
{teC:|t—t5|< ¢}

From the proof of Theorem 3.8 we obtain

Corollary 6 f defines a trivial fibration at infinity if and only if p(f) = 0, that is to say f
w5 a good polynomial (Definition J).

[ is defines a trivial fibration at infinity if for any fiber f='(to) the nearby fibres "lock like
it” at infinity. Thus our definition of a good polynomial is the same as in [12].
Proof of Theorem 3.3. If f is tame then the result follows from Theorem 3.1. If f
is not tame then almost all linear perturbations make it tame. It remains to compare the
fibres of f with the fibres of the perturbed polynomial. Let us give the details.

We shall study first the general fibres of [, i.e. the fibres f=1(¢) with t & A;. In this case
the affine curve

Te={(2.9) €C: fla,y) = 1)

is smooth and irreducible (Proposition 2.4) and we may apply Proposition 2.2. Without loss
of generality we shall suppose that the linear function [ = z is general with respect to the

polynomial f (Definition 1) and hence with respect to f —1 for any ¢ € €. As in Proposition
2.2 we consider the projection

7 —=C:(z,y) = 2 (7)
and let v(p} be the ramification index of 7 at p € I't. Then we have

dim(H\(T'})) = 1 —deg(f) + 3 (v(p) — 1) (8)
rel’,
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and we wish to prove (2) which in this case is equivalent to (1) . Consider also the affine
curve (possibly singular and reducible]

= {(a 2, 9f _
C = 1\(.1._3’)6([- : ay —U}.

The ramification index 3 ,er, (v(p) — 1) can be interpreted as the number of zeros of the
(holomorphic) function f on C. More precisely, for a fixed p € C let f be the image
of f in the local ring O,(C). Then the multiplicity of the zero of f|c at p is defined as
ord,f = ordpf = dimg Q,(C)/(f) where (f) is the ideal generated by fin 0,(C). On the
other hand ord,f is the intersection index I(C NT,p) of C and T at ¢ ({6, page 81]) which
also equals to v(p) — 1. Keeping the same notation for the map

m: [ —=C: (2,y) -z

where ['f = {(z.y) € C : f(z,y) + ex = t}, ¢ - sufficiently small, we obtain by Proposition
2.2

dim(Hy(T5)) = 1 —deg(f) + )_ (v(p) = 1). (9)
pel’y
We may also suppose that for all sufficiently small non-zero € the polynomial f + ez is
tame. Indeed. consider the affine space V = {f+7:1 € Cy[r,y]} C A where f C A, , is fixed
and ! is an arbitrary linear function. As u(f) is a lower semi-continuous function on A — A%
([3], Proposition 2.3) then there is a Zariski open dense subset Vin V =V N.A® such that
w( f + 1) is a constant on it. According to Proposition 3.2 V consists of tame polynomials
and we conclude that for a fixed general linear function and any sufficiently small non-zero
¢ the polynomial f + el is tame. Without loss of generality we may suppose that | = z.
Now Theorem 3.1 implies dim H,(T§) = u(f + ex) for t € Asi,. Thus according to (8),
(9), the identity (2) is equivalent to

plf+ex)—p(f)—p(fi= > (v(p)—1) = > (v(p) — 1). (10)

pels pel

Let C — C be the normalization of C. C will be in general a disjoint union of several
Riemann surfaces and let D.. = 3, p; be the infinity divisor. Thus C — D, is the pre-image
of C and for any polynomial ¢ let § be the image of ¢ in the function field ©(C). Let ord,§
be the order of the meromorphic function § at p, § = 2°7%9 u(z) where z is an uniformizing

parameter in a neighborhood of p. u(0) # 0. As g is a polynomial then § will have no poles
on the affine part C — D of C and hence

-

the number of zerosof gon C” = — Z ordy,g. (11)
pED

Note now that u(f + ex) (respectively p(f)) is exactly the number of zeros of %E: + € (respec-

tively 3.;,) on C ~C — D, and T perdv(p) — 1) (vespectively 3 per (v(p) — 1)) is the number
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of zeros of f +t -+ €3 (respectively f +¢ ) on C ~ C — Dy. This combined with (11) shows
that for general ¢ (10) is equivalent to the identity

a1
Zord f-l-ft—l—te:b_ Zord 82+6
+

d::

If p(t) is a ramification point on the curve I'; that tends to infinity as ¢ tends to some
finite value, then also p(t) € C and as a point on C it tends to some p; € Doo. If p,, (f) is
the number of such points then

=3 pulf)

and hence it will be enough to prove that for any ¢ and for general values of ¢ holds

frtted o
ord,, _f-:t—“— —p. () =ords, xé_f . (12)
oz

Let = be an uniformizing parameter on C in a neighborhood of p = p; € Do, p(0) = pi.
If p,, > 0 then

Fz) = f(0) + ) u(z), u(0) # 0. (13)
On the other hand if p,, = 0 then .
ord, f < 0. (14)
We have "
qu_dfd de __Bfa’A
Fril il g e a*;r
I.’f S ok 3 e C)f
E\‘l("} -eT) = (()1 + 5;
and hence

T = = (15)
+£f(2) g»g

If p,.(f) = 0. then (14) and (15) imply (12). On the other hand if p,(f) > 0 and
ord,# < 0 then (13) combined with (15) implies again (12). Thus it remains to prove that
ord, & < 0.

As we noted before the condition that x is general with respect to f means that f(z,y) =
T ax)y™ Tt where deg(a;(2)) <7 and ag # 0.1t follows that z is also general with respect
to the function f,. Thus no zeros of & —c tend to D = ¥ p; as ¢ varies and hence ord,, 2 < 0.
Formula (2) is proved.

Next, we shall find the homotopy type of the non-general fibre f~'(t5),t0 € Ay. If
p(f)+ o (f) # 0 but p(f) = 0 this can be done as in [3]. If p(f) = 0 but p*(f) # 0 we
note that for ¢ ~ g the fibre f~*(t) is smooth and according to Riemann-Hurwitz formula
for ¢ # g

x(F o)) — x(F71(1) = p(f) -



In general we may reason in the following way. Let pi = (z;,%:), ¢ = 1,2,...,k, be the
critical points of f on the fibre f~'(4p), S = {z €T : |z —z; |[< €}, § = ¥, 5, and with

abuse of notation we denote by 7 also the map (compare with (7)) = :€? —C : (z,y) = .
To compute x(f™(to)) — x(f~*(¢)) we shall use that

(1) = x(F @ na(S)
+x(f7H(t) — int 77 (S0)) (16)
—x(FH ) N="H8S,)).

As the ramification points of f~1(¢,) under the projection 7 are isolated then there exists
€0 > 0 such that if € < ¢ the cylinders {(z,y) €* :| 2 — z; |= €} are transversal to f~(to)
and in addition for all ¢ sufficiently close to to the cylinders {(z,y) €* :| z — z; |= ¢} are
transversal to f~'(t). Thus #71(35,) N f~1(¢) for t ~ ¢4 is a disjoint union of circles and
hence its Euler characteristic is zero. We shall prove that

p() = x(f (ko) —int 7 1(80)) — x(F7H(t) — int 7~ Y(SL)) (17)

and
PP(f) = x(F7 (%) N77Y(S)) — (ST () N =7(Se)) - (18)

Indeed, the Riemann-Hurwitz formula applied to the projection
[ M) —int 7~ Y8,) S C —int S,

implies (17). To prove (18) we note that for t = t; the fibre f~}(¢) is transverse to r=1(3S.)
for any ¢ < €. Thus f~1{ts) N 7~1(S,) is a disjoint union of cones over the N pre-images
q1,42. -y gn of 21, 29,..., 24 in f7'(t5) under = and hence y(f~!(o) N 77 S:)) = N. On
the other hand for ¢ sufficiently close to o but t # ¢; the set f~1(¢) N 7~1(S.) is a smooth
bordered surface and it is not difficult to see that it is homeomorphic to the disjoint union of
local Milnor fibres obtained by taking the intersection of f~1(t) with sufficiently small balls
centered at the N pre-images ¢1, ¢z, ....gn. Thus f7'(£) N #~(S.) has homotopy type of a
disjoint union on N bouquets of y,,(f) circles. This implies that

N

) =21 —pg(f)) =N — p(f)

=1

(iR ol

and {17) is proved. Now (16). (17). and (18) imply

X(F7 () = x(F7HR)) = pP(f) + p°(f)

This combined with (2) implies (1). Theorem 3.3 is proved. O

Proof of Proposition 3.7. As in the proof of Theorem 3.3 let C be the normalization
of C = {(z,y) €C*: fylz,y) =0}, Do = ¥, p; its infinity divisor, and fx the image of f. in
the function field €(C).

Let us suppose that f is tame.If f, has a zero at p: then there exists a sequence {¢};,
¢: € C, and such that |¢;| — oc, f.(¢;) — 0 which shows that f is not tame. It follows that

12



ordplfz < 0. On the other hand ord, @ < 0 (see the proof of Theorem 3.3) and if z is a local
parameter in a neighborhood of p; then

T

f=i.

o] &
&

and hence ord,, f < 0. The last inequality implies that for any i po(f) = 0 and hence
p(f) = 0 and the polynomial { is good.
To prove the second part of Proposition 3.7 it suffices to give a counterexample. We

(y?-z)°

claim that the polynomial f{x,y) = *——= —y is good but not tame. Of course this may
be elementary checked by Definition 2. We prefer to give another proof which, together with
Proposition 3.2, describes any good but non-tame polynomial.

As z is a general linear function with respect to f then according to Definition 4 we
compute the discriminant A(¢,z) of f(zx,y) —1 with respect to y

-

=
Auﬁ):_wm@+mﬁﬁ+ﬂmx—iﬁ—mﬁ

and hence d(t) = d = 3 and the function f is good. Moreover the discriminant of the function
f+ex equals to A(t—ex, x) which shows that f+ez is also good (but d(¢) = d = 4 in this case).
If f is tame then by Proposition 3.2 for sufficiently small € holds u(f) = u(f + ex). Thus
the general fibre of the two polynomial functions has the same homology which contradicts
to Corollary 2.3, as deg. A(l,2) # deg- A(t — ez, z) .A

4 On the classification of polynomials

Let A be the set of all complex polynomials in two variables and degree exactly n. Then we
have
A=A+ A,
o

where A¥ = {f € A: pu(f) = <} and A,, = {f € A: u(f) = p,p(f) = p}. Thus we
have a kind of "stratification” of the affine variety A and conjecturally each stratum A, , is
a smooth algebraic variety. The set A is not smooth so it should be further decomposed
in a similar way, but we shall not study this here. The main fact about the set A, , is the
following

Proposition 4.1 If two polynomials fo, f1 belong to one and the same connected component
of the set A, ,. then any two general fibers {5 (to), fy '{t1) are equivalent up to proper isotopy.

Proof. Let a € Y, N = (n+ 1)(n + 2)/2 be the vector of coefficients of an arbitrary
polynomial in A which we denote by f,. Suppose that f,, = f; and let fal(to) be a general
fiber of the polynomial f,,. It suffice to prove that the map F

F i@V x@ —=C" xC: (q,2,y) — (a,1), t = fu(a,y) (19)

defines a fibration with a base A, , x €, which is locally trivial over (ag,t).
ey o 0+ 40
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Note first that the critical points of f, depend continuously on @ and their number is
fixed to p = p(fa). Then u*(f,,) = 0 implies that p*(f,) = 0 for (a,t) sufficiently close to
(ag,to) and hence the fibres f~!(¢) are smooth. As before we suppose that z is general with
respect to f,, (and hence to f, for a ~ ¢g) and consider the projection (7) 7 : f71(t) — x.
The number of ramification points of = is equal to (Proposition 2.2, and Theorem 3.3)

dim Hy (7)) +n—-1l=p+p+n—1-p(f)

and as p*°(f,,) = 0 then
dim Hy(f71(t) < dim Hy(f7 (to) - (20)

On the other hand the ramification points of f~!(¢) under the map = depend continuously
on a and ? and using once again Proposition 2.2 we obtain

dim Hy(f7H(8) > dim Hy(f7 (o) - (21)

The inequalities (20) and (21) tmply that for all («,t) sufficiently close to (ag,to) we have
also p*(f.) = 0.

Further we prove the local triviality of (19) along the same lines as Theorem 3.8. Namely,
if to & Ay then there exist co > 0, such that for any complex ¢ sufficiently close to g, ¢ > ¢,
the cylinder

Ce = {(x,9) €€ ]z |= <)

is transverse to the smooth affine curve {(z,y) € C*: f, (z,y) = t}. Thus, for a = ay and ¢
sufficiently close to ty, we obtain the following two proper submersions

0N {(r.y) €€ 7 |< e} B (1), (22)
and
fa_.l(t) M —SHd i)y B8y, (23)

Now the point is that (22), (23), remain proper submersions for all {a,t) sufficiently close
to {ag,fp) and such that f, € A, ,. Indeed, (22) is a submersion because, for (a,t) ~ (aq, o)
the cylinder C,, is still transverse to f7(t), and f, has no critical points on the fibre f;1(t)
(that is to say p*(f,) = 0).

On the other hand (23} is a submersion if and only if the cylinder C. is transverse to
foH(t) for ¢ 2 ¢o. The last is equivalent to 9f,/0y # 0 on the set

AN {(2,y) €€ 2 |2 oo}
and hence we have to prove that the projection
7 7NN {(z,y) €€z |2} b o (24)

has no ramification points. This is true for («,t) = (ag,t0) and the local triviality of (22)
implies that it is also true for any (a.1) sufficiently close to (ag,to), fo € A., - otherwise
f71(t) will have more ramification points than f7!(1g) which contradicts to p*(f,) = 0. We
conclude that (23} is a proper submersion.

14



The same arguments as in the prool of Theorem 3.8 show that the map (19) defines a
fibration which is locally trivial over («ag.ty) € A, , xC.

At last. if two polynomials fy, = f.,. f; = f., belong to the same connected component of
A, then we may connect them by a continuous compact arc a = a(s),0 < s <1, a(0) = ay,
a(l) = a1, fa(s) € Ay, We proved, however, that any two sufficiently close polynomials f, ;)
have their general fibres equivalent up to a proper isotopy. Proposition 4.1 is proved. O

To the end of this section we shall study in more details the set of good polynomials A, o,
p(f) = 0 (Definition 4).

Let 1.1, ..., 15 be the critical points of a good polynomial f € A,, and let D CC be a
closed disc centered at the origin and such that {; € D, 2 = 1,2...,s. We consider a system
of paths u;,ug, ..., 1, connecting 1;,%,.....t; and some fixed non-critical value 1o € 9D of f
and such that (see fig.1) i

i) each path has no self-intersection points

i) two distinct paths u; and u; meet only at their common origin 4;(0) = u;(0) = 4.

ii1) the points #; and the paths w; are numbered in the order they start from the point 1,
counting clockwise.

fig.1

We may also suppose that f is a Morse function. Indeed if it is not so then let ¢ : R —
IR™ be a monotone C'™ real function such that for some ¢ > 0 holds e(r) = 0 on [0, ¢| and
e(r) =1 on [2¢.oc]. Then let g(x,y) be a polynomial and consider

fz,y) = flz.y)+eel]z | + |y Dol y). (23)

If ¢ is sufficiently small and ¢ sufficiently big, then f~1(t) — t is locally trivial on the
complement of the set of critical values of f, (f) = u(f), and the general fiber f‘l(t) is
homeomorphic to the general fiber /~'(¢). Although the function fis not a polynomial, it
coincides with f in a complement of a compact subset of €, and equals to f(z,y) + eg(z,y)
in a disc containing the critical points of f. If g(z, ) is for example a general linear function
then Sard theorem implies that f as a complex function on IR ~ €2 has only simple critical

points and we may also suppose that the corresponding critical values are all different (see
[1},vol.2 chapter 1).



Now we define in a standard way cycles v;(ty) € Hi(f~'(to)) vanishing at the critical
points corresponding to the critical values of f. Namely, let P € C2? be a critical point of
fand f(P) = t;. The fibration f~1(#) — t is locally trivial along the path u; — ¢; and its
"limit” fiber f~'(¢;) has a simple singular point P which appears by contracting a cycle ~;(t)
in the fiber f~1(t) to the point P. ~(?) is called a vanishing cycle at ¢; along the path w;.
Thus we have a family of cycles 7;(¢5),7 = 1,2, ..., u(f) in the fiber f~1(zy).

Definition 7 The set v;(to), 2 = 1.2,..., u([f) of cycles with the numbering as described above,
is called a distinguished basis of vanishing cycles for Hi(f~1(to)).

The above definition is justified by the following

Proposition 4.2 The vanishing cycles form a basis of the first homology group of the general
fiber f7Y¢t), t € A.. of any good polynomial f.

Note that according to Corollary 3.6 for a good polynomial we have Hi(f~1(¢t)) = u(f) —
p*(f). As in each singular fibre exactly u‘(f) cycles vanish then by Proposition 4.2 the
vanishing cycles form a basis in any fibre f~1(¢). Before proving Proposition 4.2 let us note
that a natural consequence is that we may completely describe, as in the local case, the
monodromy of the fibres of f.

Consider the fundamental group

T = ﬂ'l(D\{tlatZa ""#tS}!tO)

and its monodromy representation » — AutH,(f~1(¢)). If a; € 7 corresponds to the path
u; and goes once around f; anticlockwise, where t; is a simple critical value, then the corre-
sponding classical monodromy transformation is given by the usual Picard-Lefschetz formula

Loy == <79 >7 Yy € Fa(f7H(1) (26)

where v; is the cycle vanishing at ¢; and < 7,9; > is the intersection number. If ¢; is a non-
simple critical value then the classical monodromy transformation is obtained by composing
the monodromy transformations T;,,T;,, ..., T}, associated to the cycles Veiys Yty s ooy Vi, VAD-
ishing at ¢; and ordered as in the distinguished basis of H,(f1(1o)) defined before. Thus the
classical monodromy of the general fiber f~1() is completely determined by the intersection
form < .,. > and the distinguished basis.

Definition 8 The matrix

I,.r. = (( ’:r‘,_':‘y'j >)§t3’il,11# — fu(f)

is called the intersection matriz of the good polynomial f with respect to the distinguished
basts .= 1,2, ....u4lf).
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We recall that a Dynkin diagram corresponding to the intersection matrix L, is a graph such
that to each cycle v; corresponds a vertex and two distinct vertices Yi,%j,t < j are joined
by k edges (respectively k dotted edges) if their intersection number is & (respectively —k).
If two polynomials belong to one and the same connected component of the set 4, , then
their general fibres are equivalent up to a proper isotopy. It follows that they have the same
Dynkin diagram.

As a simplest example we shall classify the set of all cubic polynomials that we denote
by A. For doing that we need some normal forms. We shall say that the polynomials f
and g are linearly conjugate if there exists a linear bijective change of the independent vari-
ables H : €* — € and a linear bijective change of the dependent variable A : € — C such
that fo H = hog. If f3 and g4 are the highest homogeneous parts of f and g we have
faoH = hogs. On the other hand a cubic homogeneous polynomial f; is linearly conjugate
either to z° (f3 is a third power of a linear form) or to z(y® — az?) (f3 is not a third power).
With further linear changes of the variables we obtain the following four families of cubic
polynomials.

L zy’+ey —ar® —ba? —ca
II. 2y —az® —ba® —cx

L y? — az® — ba? — ¢z

IV.y —az® — ba? — e

Note that if f is a real polynomial then the linear changes of variables may be chosen
real. The above list was first obtained by Newton in his investigation of real cubics (see [2],

p-92 for details). Further we compute u(f), p(f) and the corresponding Dynkin diagram for
any value of ¢, b, c,e. It turns out that

4
Az 8 s b llg gl

=0

where the set A, has two connected components and the other are connected. The cor-
responding normal form with respect to the left-right action of the group of real linear
bijections is shown in the second column of table 1 (the parameter ¢ is equal to 0 or +1).
If two polynomials belong to the same connected component A, , then, as we noted, they
have the same Dynkin diagram which is shown in the third column. We denote the first 6
families of polynomials by DT A5, 4,, A, + Ay, Ay, Ap according to the type of their Dynkin
diagram. In each family there is a polynomial with a "most singular” fiber. This polynomial
Is given in the last column of table 1 and the family is a deformation of it in the class of
cubic polynomials with fixed g(f) and p(f). We note that the polynomial zy? + ey + z,
although it is good. has a disconnected Dynkin diagram. The polynomial 242 + y is the only
non-good, and hence non-tame (Proposition 3.7 ) cubic polynomial. This was observed also
by Broughton [3.4].
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| set normal form Dynkin diagram | notation | representative
Aso |2y +ey £2° — b2 —cz o—0=s & z(y® £ %)
Aso 2y’ +ey—zl—¢cx |  o—e——so Az z(y? — )

| Az y* —2° = bz* —cx — A, y? — g3
Ao | zy?+ey+w, e=0,1 s o A+ A Ty’

| Ao Ty — > — bx? —cx ° Ay zy — x°

| Ao y —2° — br® —cx Ag y —z°
Ao, 2y’ +y 2y’ +y

| A e | Ty

Real normal forms for cubic polynomials and their Dynkin diagrams (¢ = 0, 1)
Table 1

Proof of Proposition 4.2. As the proof will be similar to the one in the case of an isolated
singularity then we shall omit some of the details referring the reader to [1]. Consider the
real valued function

Flz.y) =} flz,y) |:C* - R*.

If R is the radius of the disc D then it is easily seen that F~'(r) — r is a locally trivial (and
hence trivial) fibration on the interval (R, oc). Note that each fiber F~!(r) on its hand is
the total space of the locally trivial fibration FYreV=1®) — ¢ € S' with a base the circle
S and which is not trivial in general.

It is concluded that the space

Ve | = U 7

[t|<R r<R

is a deformation retract of €* = F~1(IR*).Thus we shall restrict our attention to the fibration
f~Yt) —» t with ¢t € D = {| t |< R}. Further we shall replace the non-compact fibers f~'(t)
with some compact subset f; of it and such that f; is a deformation retract of f~*(2).

Consider the cylinder {| z |= ¢} CC? ¢ > 0. As usual we suppose that z is general with
respect to f. The set f~'(t)N{| = |= ¢} is compact and as a real analytic subset of R* ~ (*
it is of dimension one. Further the set {| @ |= c} intersects transversally the fiber f~!(t)
at some point P if and only if | f,(P) |# 0. On the other hand f is a good polynomial
and no ramification points P € f~'(¢) N f;1(0) tend to infinity as ¢ varies in the compact
set D). Thus there exists ¢y € RT and such that for any fixed ¢ > ¢y and ¢t € D the set
YN {] » |= ¢} is smooth and compact and hence it is a disjoint union of circles. It
is clear now that each connected compouent of the set V' N {| @ |= ¢} is homeomorphic to
D x S provided that ¢ > ¢5. The fibration V' N {| 2 |= ¢} — c is locally trivial on (c, o0)
and hence V N {| x |= ¢} is a deformation retract of V N {|  |> ¢o}. We shall denote

fo= U N {(z,y) €C° | 7 |< o}
and we shall study from now on the fibration f; — ¢ for ¢ € D. It is clear that its total space

Usep [t 1s a deformation retract of the space V' and hence it has homotopy type of a point.
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The fiber f, is obtained from [~1(¢) bv removing a small disk around each “infinite” point
il § ! R =}
on the compactified algebraic curve f~1{{) (fig.2).

fi is the Riemann surface f=1(1) with removed small disks around each “infinite” point
fig.2

Consider further the union U/ = U;u; of the paths connecting tg to t;. It is a deformation
retract of the disk D and the covering homotopy theorem implies that ¥ = U,y fi is a
. deformation retract of U,ep fi. It follows that ¥ also has homotopy type of a point. If we
remove from Y the singular fibers f ,7 = 1,2,..,s then we obtain a space fibered over the
set U7 =i, {:} the last being contractible to a point. It follows that ¥ —U; f;, has the same
homotopy type as the fiber fi,.

Finally we may use a standard argument (see for example [1})to show that, up to homo-
topy , the space 1" can be built up from the fiber f,, by adjoining to each va.nishiﬁg cycle ’)fo
a two-dimensional disk D?. On the other hand the (reduced) homology of Y is trivial which
shows that fi, {and hence f~!(15)) has a homotopy type of u(f) circles and Hy(f (o)) is
generated by the vanishing cycles of f.

Indeed. as

Hi(Y) = Hy(Y) = 0. Hy (Y = Uiy fi,) = Ha(fio) = Hi(f7 (o)) (27)
then the long exact sequence associated to the pair (Y, Y — U, f,.)
= Hy (V) = Ho(Y Y — UL, fir) — Hi (Y = Uil f) — Hi(Y) — . (28)

gives
Hi(f7 {to) ~ Ho(Y.Y = Ui, fu.).

On the other hand the fibers f; are compact, df; — t is trivial on U = Uju; and exactly as
in [1] we obtain

wl(f) w(f)
Hy(Y.Y = UL, [i,) = € Ho(D?.OD?) = @ Ho(S?) = 2#V), (29)
=1 i=1

The identity (29) clearly holds if f has only simple critical points and different critical values
(s = p(f) in this case). If it is not so, then we replace f by [, where the function f is
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defined as in (25). All the preceding reasonings hold also for f, and the general fiber f; is
homeomorphic to the general fiber f,. We conclude that H;(f~!(t0)) = Z*) and moreover
the image of the generator of H,(D7,dD?) under (28) is the vanishing cycle v;(t5). A
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