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The Hamiltonian system corresponding to the (generalized) H&ton-Heiles 
Hamiltonian H=$(pt+& +-&4x2+$B~+x2y+ey3 is known to be integrable in 
the following three cases: (A=& e=f); (e=2); (B=l&Q, E=?). In the first 
two the system has been integrated by making use of genus one and genus two 
theta functions. We show that in the third case the system can also be 
integrated by making use of elliptic functions. Finally, using the Fairbanks 
theorem, we find Lax pairs for each of the three integrable systems under 
consideration. 

I. INTRODUCTION 

The (generalized) Henon-Heiles Hamiltonian 

H=f&+& +&x2+;B3+x2Y+EY3 (1) 

has been extensively studied in nonintegrable and integrable regimes. Only three integrable 
cases are known:‘4 

(9 A=B, 1 
E=T, 

(ii) e=2, 

(iii) B=16A, E=$, 

and the nonintegrability in some of the remaining cases (including the “historical” Hinon- 
Heiles Hamiltonian’ corresponding to A = B and E= - f) has been established by Ziglin,6 Ito, 
and Fordy.* By integrability here we mean existence of a second (global) integral of motion, 
and in this case the Liouville theorem implies that the problem can be solved by quadratures. 
This, however, can be done only after the finding of special new variables which separate the 
associated Hamilton-Jacobi equation. Such separating variables are known for the case (i) and 
(ii) above: the case (i) trivially separates in Cartesian coordinates 

x=il--p, y=A+p, 

though the case (ii) separates in translated parabolic coordinates 

x2= -4Ap, y=A+,u+(B-4A)/4 (see Ref. 9). (2) 
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In the present paper we shall find separating variables for the case (iii) (Sec. II). For doing 
that we shall make use of the algebraic structure of the problem. Namely, it is well known that 
the majority of integrable polynomial systems are algebraically completely integrable, i.e., the 
complexified system linearizes on an appropriate Abelian variety.t” If it is irreducible and of 
dimension two, then there exists a general procedure, due to Pol Vanhaecke’1’12 for finding the 
separating variables. It turns out, however, that the Abelian variety in our case is a reducible 
one (i.e., it is a direct product of two elliptic curves). Nevertheless the separating variables can 
be found by expecting the Painleve expansions of the solutions near some special divisors on the 
compactified invariant manifolds of the problem. Finally, in Sec. III we apply Fairbanks 
theorem13 to derive Lax pairs for the three integrable cases above. 

II. SEPARATION OF THE VARIABLES 

The Hamiltonian system 

-$x= -x(A+2y), $ y= -16&-x2- 16y2, 

corresponding to the H&on-Heiles Hamiltonian 

H=f(p:+p;) +$4x2+8Ay2+x2y+~~, 

(3) 

(4) 

possesses a second integral of motion3>4 

F=9p:+ 18(A+2y)p$x2- 12pg,x3+x4(9A2- 124y-2x2- 122). 

Let us conjecture that the complex invariant set 

v,=((x,y,p,,p,)~C4:H=h,F=f} 

(5) 

is an atIine part of an Abelian variety. Then this variety contains elliptic curves as 

and hence it should be reducible,‘4 that is to say a product of elliptic curves. Denote by I’, and 
I2 the elliptic curves defined by 

4 0 (w&) d2: -y+8A~+;z+h+T=o 

r2: = 

The functions z1 and 2, on I’t x I2 are uniquely determined (modulo multiplication and 
addition of a constant) by their infinity divisors 

(6) 

As we shall see later z1 and z, are separating variables and the curves l?t and I2 will serve as 
“coordinates axes” on I’i x I2 in the same way as the coordinates axes in R2 (see Fig. 1). 

To verify our conjecture we shall find the functions z1 and z2 having the property (6). This 
can be done by expecting the Painleve expansions of the solutions, and also their Taylor 
expansions around the zero divisor of the function x restricted to Vc. 
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FIG. 1. Coordinates axes on r, X r2. 

Let us compute first the PainlevC expansions. This is a part of the so-called PainlevC 
property test (see Refs. 15 and 16 for instance). If we assign to x and y weighed degrees 2, and 
substitute the PainlevC expansions 

x=; ( %O$"), TIEN, 

(7) 

YEi ( j. bit’“)9 

in (3) we find 

6a. = - 2aobo, 6bo= -a;- 16b;. 

It follows that there are two possible leading behaviors 

x=ao/p, y=b&, (8) 

where 

bo= -3, ao=3 @i 

or 

ao=O, bo= -33/8. 

The Kovalevskaya matrix K corresponding to the system (3) and to leading behavior (8) is 

In the first case we find 

det(K-ill)=(A+l)(j1+7)@--6)(A--12) 

and hence the series (7) can not depend upon three parameters. In the second case 

J. Math. Phys., Vol. 34, No. 6, June 1993 
Downloaded 30 Oct 2002 to 130.120.81.144. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2388 Ravoson, Gavrilov, and Caboz: Separability and Lax pairs for the H&on-Heiles system 

det(K-AI)=(;l+l)(/Z--)(A-7)(2/2--3)/4. 

Thus we may take n=2 in (7) and after calculations we find that indeed the system (3) 
posseses a three-parameter family of solutions of the form 

(9) 

where a, j3, y are the free parameters. It is seen that x and pX= (d/dt)x are not meromorphic 
functions on our Abelian variety, but rather their squares. This suggests to us to consider the 
involution 

b,P.&+( -X,-PA 

acting on Vc and to consider the variety Ac=Vc/l. We note the following obvious identity 

Acn{x=o)=r,ur2. 
It is easy to compute the Taylor expansions of the solutions around the zero divisor of x 
restricted to Vc: 

x=qt-q[ (2do+z4)/6]?+... , 
(10) 

y=do+dlt-8do(do+A)t2-;d,(2do+A)t3+..* . 

After substituting ( 10) in the identities H= h and F= f we determine the following relations 
between the parameters ci, do, dl: 

c; df 
9c;=f, T+T+8z4d;+; d;=h. (11) 

Let us find now the functions z1 and z2 having the property (6). Using ( 10) and ( 11) we have 

PX 2 
i 1 

1 264+2do) IF 1 ; =;2- 3 +-a*, 7=3-g+-**, 

and hence for the divisors of the functions f rf/x’+ (P,/x)~ restricted to A, holds 

[~+($)2]+2r,, [-$+@)'I,-2r2. 

We are looking now for functions which do not blow up at infinity. Using the expansions (9) 
we compute 

PX2 1 ( ) $f Of 3 - 
X ‘$““, x -y=-J+-‘, 2y=-$--A+... . 

Then 
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and we conclude that the functions 

I,=$- [ 3f$2+2y], Z2= -$- [ 3e)2+zy], 

restricted to Ac blow up only on l?t + r2 and (zi) o. =21Y2, (z2) m =2I’,. 
Let us define now on each invariant level set Vcs{H= h,F= f) new variables u and v by 

u=z1lvc’ v=z21vc. 

A straightforward computation shows that on Vc the following identities hold: 

x2= -2 Js/(u-v), 

pi= sf(u+v+4Y)/3(u--v), 

(12) 

(13) 

1 47 
“=2&6(u+v+4y) 

--(3A-u)(3A-v)+24Ay+4(u+v)y+32~ , (14) 
u-v 1 

u+v jlm+@m’ y=- -- 
4 I 1 2(u-v) ’ (15) 

where 

P(u)=u3-3Au2-9A2u+27A3-2@-12h, 

Q(v)=v3-3Av2-9A2v+27A3+2Sf-12h. 

Differentiating (13) and (12) with respect to the time t and using (3) we get 

du dv $$8- m du dv ---=2 
dt dt ,/6 

and hence 

g=J& $= JgG. 

(16) 

(17) 

Thus u,v (and hence x,y,p,,p,,) can be expressed in terms of Weierstrass elliptic functions. 
Finally we note that, according to formulas ( 12), ( 15), and ( 17), the functions x2,y,x.pX 
=f(d/dt)x2, pv= (d/dt)y, are single-valued on r1 x r2. On the other hand these functions live 
on the variety &=Vc/l and following Ref. 17 we may show that Ac can be identified with an 
afline part of r, x r2. 

III. LAX PAIRS 

In this chapter we shall find Lax pairs for the three integrable cases of H&non-Heiles 
Hamiltonian ( 1). 
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Let U, V, and W be functions in f with the property U W+ V2=c, c=const. Then the 
following obvious identity holds 

iL=[L,M], [L,h!f]=LM-iuL, (18) 

where 

v u 
L= w -v’ ( 1 

(19) 

+( -(;)w (f”], &[ Jw “:‘). 
Suppose now that a completely integrable Hamiltonian system is given which linearizes 

(for almost all values of the constants of motion) on a Jacobian variety Jac( r) of a hyperel- 
liptic curve l?: w2=f(z), where f(z) is a polynomial with coefficients depending upon the 
constants of motion. Then, as it has been noted first by FairbanksI (see also Pol Vanhaecke” ), 
we may take c=f(z), and define U, V, W to be the Jacobi polynomials (see Refs. 13 and 18) 
on S?l? - Jac (I’) (g is the genus of I’). Thus we obtain a Lax pair ( 18) depending on a spectral 
parameter z, and the the coefficients of f(z) (and hence the first integrals) are reconstructed 
from the identities 

det(L-WI)=&-V2-UW=w2-f(z)=const. 

Remark: In FairbanksI the matrix A4 is given in the form 

which differs from ours in a linear combination of L and the identity matrix. Our choice of M, 
however, gives simpler expressions in the initial phase variables. 

Suppose first that r is a genus 2 curve. Let p1 andp, be points on r and denote /z=z(pl), 
,u=z(p2). Then the Jacobi polynomials associated with r read 

U(z) = (Z-A) (z-p), V(z) = mmz-P) - @mz-1) 
2-P , 

w(z) p - V(z12 
U(z) * 

Note that W(z) is in fact a polynomial in z. 
Let us find now a Lax pair for the integrable case (ii), ~=2. The corresponding Hamil- 

tonian system has a second integral of motion: 

F=x;+4x2~-4pJpxy-p,x) +4A2y+ (4A-B) (px+Ax2). 
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and the Hamilton-Jacobi equation separates in il, ,U coordinates9 given by (2). On each 
Liouville torus {H=h,F=f) the Hamiltonian system takes the form 

(20) 

where 

Thus our system linearizes on the Jacobi variety Jac( I’) of the genus 2 hyperelliptic curve 
r: d=f(z), and we are in a position to apply the Fairbanks theorem. By making use of the 
first integrals, and (2) we compute the Jacobi polynomials 

U(z) =z- (A+y)z+Ap= 
42- (4~s B-4A)z-x2 

4 , 

v(z) = Jfil)(z-PI - lj7mz-n) 
hJ , 

C(z)= 2P#+xPx 2 , W(z)= 
f(z) -v2(d 

u(z) ’ 

and after some calculation 

W(z) = -42-2(4y+SA- B) +p;-z(x2+4#+4Ay+A(4A- B)). 

At last 

1 dW 1 dU uz+2a(~+~)+b 
--E--c 
2V dt 2V dt 2 ’ 

where 

A+,u=y+ (4A- B)/4, a= 1, b= -(&a- B)/2. 

and hence (1/2V) (dW/dt) =2z+4y+2A. 
Thus we found the Lax pair:19 t=[L,M] where 

2pyz+xpx 42-4zy- (4A- B)z-x2 

L(z) = 42+&y+ B-8A) +px 
+z(X2++---4Ay+W---1) 

-2P#--xPx 

0 
M= 

-z-2y+A 

In the case A = B=O this Lax pair is found first by Newell et aL2’ by making use of 
PainlevC expansions. On the other hand, the case of arbitrary A and B is also interesting, as the 
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constants A, B,f,h provide moduli of the (three-dimensional) space of all Abelian varieties of 
polarization ( 1,2) (see Ref. 17). Suppose now that r: w2 = f( z) is a genus 1 curve. The Jacobi 
polynomials associated with r read 

As in the case (i) and (iii) the Hamiltonian system linearizes on I? x I’ and for the corre- 
sponding variables d,~ holds i = m, ,ti = m, then we find a “pair” of Lax pairs 
(d/dt) Li= [L&J, i= 1,2 where L,,M, depend only on il, and L2,M2 depend only on p (1 is 
just replaced by p in L ,,M1 ) . Thus we may define 4 X 4 matrices 

U(z) =z-a, V(z) = Jm, W(z) = f(z) - V2(4 
U(z) - 

L=(“o’ ;J, A!i$l J 
and we get a Lax pair t = [ L,M] from which the differential equation can be reconstructed. 

Finally after some calculations we find for the case (i) 

Py-Px 

2ti+k[3A+2(y-x)] +3A(y-x)+2(y-x)2 
12 

(21) 

0 

M,= y-x 3A+2k _--- 
3 12 

(22) 

Py+Px 

2#+k[3A+2(y+x)l +3A(y+x)+2(Y+x)2 
12 

(23) 

0 

M2= y+x 3A+2k --_- 
3 12 

In a similar way for the case (iii) we get 

u=+ @/x2-3(pyx2)-2y-k, 

@Px 3 
v=*~-3$-3: (A+2y)+py, 

(24) 

(25) 

(26) 

+t [k2-k(3A+2y) -2(3Ay+g+@)] -2p;Ip,, (27) 

where the signs correspond to L, and L,, the last being defined as in ( 19>, and in a similar way 
we find for M1 and M2 the matrices 
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0 

M1,2= @pz2 ka 
*g-gqy+z-i 
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