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1. STATEMENT OF THE RESULT

Consider the following Hamiltonian system on the plane

X=y (1)
»=daV(x)/éx, overdot = d/dt, ’

where V(x) is an arbitrary polynomial of degree four. All topologically
different phase portraits of (1.1) are given in Fig. 1. Let {y(p)},., be a
continuous family of periodic solutions, parameterized by p= 1y’ — V(x),
and defined on a maximal open interval 4cR. The period function
T(p)={, dt=],, dx/y assigns to the periodic solution y(p) its minimum
period. The system (1.1) possesses O, 1, 2, or 3 period functions (see Fig. 1).

THeOREM (Chow and Sanders [1]). The period functions of (1.1) can
have at most three critical points (including the multiplicities).

In the present paper we improve the above result.

THEOREM 1. The period functions of (1.1) can have at most one simple
critical point. More precisely. if a period function has a critical point, then
the phase portrait of the system (1.1) is topologically equivalent to Fig. 1d.

To prove Theorem | we use well-known methods of algebraic geometry.
Namely, the period function T(p) satisfies a second order Picard-Fuchs
equation and x(p)=T'(p)/T(p) satisfies a Riccati equation. Instead of this
equation we consider the equivalent polynomial autonomous system on the
plane R*!x, p} and study its global phase portrait. As it was noted in
[2, Sect. 5], the phase curve x(p)=T'(p)/T(p) possesses the following
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FiG. 1. Phase portraits of system (1.1).

fundamental property. Suppose that for p=p, the periodic solution
v(p) vanishes. Then im, , , T'(p)/T(p)= x,# +, the equilibrium point
(Py. Xo) is a saddle and (p=1, x=T'(r);/T(1}) is a separatrix solution in a
neighbourhood of (p,,, x,). At last we use the fact that for all p the Abelian
integral 7'(7) can be expressed explicitely as a linear combination of two
Abelian integrals which do not vanish for pe 4 (formula (2.8)). This is the
main point of our proof as the remaining assertions can be proved along
the same lines as in [1]. Nevertheless we prefer to study autonomous
systems on the plane than Riccati equations because of the simple
geometrical property of the phase curve x(p)=T'(p)/T(p), explained
above.

2. THE PROOF

We shall use the notation and the results of {1]. One may suppose,
without loss of generality, that the potential function V(x) is brought in the
following normal form:

a b

V(x):z-x‘+;-.\‘:+k-x, where a=+1l,andb=+2,0.
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In the cases u=1, h=42, and a= — 1, b= -2, our Theorem 1 follows
from [1, Sect. 4]. To this end we shall study the cases a«= —1, =2, and
a=—1,h=0.

Case 1. V(x)= —1-x*+k.x (see Fig. 1d).

From [1, Formula (4.3)], we obtain the following Picard-Fuchs
equation satisfied by 7= T(p)

- T"+d& - T +28p.-T=0, prime = /dp, (2.1)

where 3 =64 -p* +27-k* is the discriminant of the polynomial ¥(x)+ p.
For each k € R there exists an unique p, <0, such that é(p,) =0 (see Fig. 2)
and the period function T(p) is defined for p > p,. As 7> 0 on this interval,
then the function x(p)= T'(p)/T(p) takes only finite values, It satisfies the
following Riccati equation

O-X'+6 - x+6-x’+28.p=0. (2.2)

Instead of (2.2) we consider, as in [2, Sect. 5], the equivalent autonomous
system

{'\”‘=~(5’-.\'—(5~»\‘2—281’ (2.3)

p=20.
It has only one equilibrium point with coordinates
(xo=7 -k *3/36, py= —3-k*3/4)

which is a saddle. From [1, Lemma 4.1], we obtain lim,,, T'(py/T(p)=
7.k *3%/4 and hence the curve x= T'(p)/T(p) is a separatrix solution of

FiG. 2. The level set 64p* +27k* = 0.
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(2.3). Suppose that this phase curve intersects the line x =0 at least twice.
Denote the points of intersection by P,, P,, and put P, =(p,,0) (see
Fig. 3a). The direction of the vector field at the points P,, P,, P.,
implies that there exist at least two points on the line x =0, and the vector
field is tangent to the line at these points. In other words —28p has two
zeroes which is a contradiction. The same conclusion holds if P,=P,=
(p1,0), ie, p, is a critical point of T(p) of multiplicity two. Hence if
k#0, then T(p) has no more than two critical points, including the
multiplicities. In fact the period function has exactly one critical point.
Indeed lim,, , , T(p)=0, and hence for sufficiently big positive values of p
T'(p)<0 holds (Fig.3b). At last suppose that £=0. The autonomous
system corresponding to (2.2) takes the form

Y= — v — 1 2..2__
{\ 48px — 16p"x*—7 (2.4)

p=16p%

One easily computes that lim, , T'(p)/T(p)= —oc, and T'(p)<0 for
sufficiently big positive values of p. The same arguments imply that 7 has
no critical points (see Fig. 3¢).

The upshot is that for each fixed k the period function has at most one
critical point.

Cuase 2. V(x)= —1.x*+ x?+k.x (see Figs. 1d-1f).

The period function T satisfies the following Picard--Fuchs equation (see
[1, Formula (4.3)]

OB-T"+(0'B—0B)- T'—-2-T=0, (2.5)

where 2 =96(1+p)> — 12k3(5+ 21p), B=—8(1+[))+9k2, and &=
64p(1 4 p)> — 16k>(1 + 9p) + 27k*. Note that & is the discriminant of the
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FiG. 3. Phase portrait of system (2.3).
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polynomial ¥(x)+ p. From (2.5) we derive the Riccati equation satisfied by
x=TYT

OB- X' +(0B—0B)-x+dB-x* -2 =0 {2.6)

and the equivalent autonomous system reads

X=(6B'—0'B)-x—0B-x*+2X
{\ ( ) x X+ (2.7)

p=0B.

The curves d=0, B=0, and X =0 are given in Fig. 4. The two pgi_nts of
intersection of these three curves have coordinates (p= 13, k= +3 v 0). We
have three subcases

(i) O<|k| <%./6 (sce Fig If).

For each fixed k, there exist three points p, < p, < p; such that é(p,) =0,
i=1,2, 3. Furthermore there are three one-parameter families of periodic
orbits with period functions 7, /=1, 2, 3. defined on (p,, p3), (p,. p3), and
{p,, o), respectively. Note, however, that T, is equal to T, on (p,, p3),
as the periodic orbits 3,(p), 7.(p) corresponding to T,, T,, represent
homological cycles on the complex compactified curve {(x, y)e C*: 3y’ =
Vix)+pj.

Consider now the phase portrait of the system (2.7) (Fig. 5): it possesses
four equilibrium points with coordinates (p,, x,), i=1,2, 3,4, where
B(p) =0, xq= =2 (p)/dpa) B'(ps), ;=2 (p)/B(p)dip) i=1273
One casily computes (using Fig. 4) that x,,x,,x,>0, x;<0. As the

FiG. 4. Level sets of 3, 2. A, B.
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curve x=T1(p)/T,(p), p.<p<p, is a phase curve of (2.7), it passes
through the points (pg4, x4) and (p,, x,). Using [1, Lemma 4.1], we obtain
lim,,, T\(p)/T\(p)=p,. We have also lim,,, T)=ac (see [, p.63]),
and hence for all p < p;, such that p is sufficiently close to p;, 77 > 0 holds.
Now Fig. 5 implies that lim ., T\(p)/T(p)= x.

Suppose that the curve x=T{(p)/T,(p) intersects the line {x=0}
{see the dotted line on Fig. 5). Then it intersects this line at least twice,
and hence the vector field (2.7) is tangent to {x=0} at some point. In
other words X(p) vanishes in the interval (p,, p;) which is a contradiction
(see Fig. 4). It is concluded that 7', and T, have no critical points.

Consider now the period function T;(p), p>p;. We shall prove that
T, <0. Indeed [1, Formula {(4.2)] implies

6. Ty=A-T,+B-T,, (2.8)

where Ty(p)=[..,, dx/v. Ta(p)={,,, x dx/y, A(p)= —16p(1+p)+ 6k
(the polynomials &(p) and B(p) are given after formula (2.5)). As
T,, T.>0, and for all sufficiently big p, § >0, 4 <0, B<0 hold (we use
Fig. 4), then for these values of p Ti(p)<0. On the other hand Fig. 5
implies that lim,,, T3(p)/Ts(p)= —oc. Hence if T3(p) vanishes on the
interval (p,, oc) then it vanishes at least twice, and the vector field (2.7)
is tangent to {x=0} at some point (0,q) (see Fig.5). It means that
2(q)=0 and without loss of generality one may also suppose that
TWq)/Ty(g)>0. As A(q)<0, B(q)<0, d(q)>0 (see Fig.4), Eq.(2.8)
implies T5(p)/T,(p) <0 which is a contradiction. It is concluded that for
all p>p;, T3(p) <0 holds.

(i) k=+%./6 (see Fig. le).

Here p,=p, and using (2.8) we obtain as above that for p>p; Ti<0
holds. By continuity 7', does not possess simple critical point in the interval

_/

FiG. 5. Phase portrait of system (2.7) for 0 < Jk| <2 V-b'
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FiG. 6. Phase portrait of system (2.7) for (k| > /6.

(pi.p>). f T,(p) has a double critical point then (2.5) implies that X(p)
vanishes in the interval (p,, p,) which is a contradiction.

() k=0 (see Fig. le).

Here p,=p,. By continuity 7, and 7T; do not possess simple critical
points in the intervals (p,, p;) and (p;, o0), respectively. Suppose that T,
(or T5) has a double critical point. Then (2.5) implies that Z(p) vanishes
in the interval (p,, ps;) or (ps, oc) which is a contradiction. Hence 7, and
T, have no critical points.

(iv) k| >3\/€ (see Fig. 1d).

We have only one period function 7(p) defined on the interval (p,, ),
where o(p,)=0. The system (2.7) possesses two equilibrium points with
coordinates (p,, x;), i=1,2, where B(p,)=0, x,=2(p,}/B{(p,)d'(p,)>0,
Xa= —2(p,)/d(p,) B'(p,) <0. One easily checks that (p,, x,) is a saddle,
and (p,,x,) is a node. The phase portrait of (2.7) is given on Fig. 6.
Since [1, Lemma4.1], implies that lim,,, T'(p)/T(p)=x,, the curve
x=T'(p)/T(p) 1s a separatrix solution of the system (2.7). If T has more
than one critical point in the interval (p,, p,), then the same arguments as
in (i) show that X(p) has at least three zeroes in (p,,p,)} which is a
contradiction. It is concluded that T(p) has exactly one critical point in
this interval. If p>p,, then A(p)<0, B(p)<0, 0>0, and (2.8) implies
T'=(A-T+B-{,, X" dx/y)/d <0. Thus we have proved that the period
function T(p) has exactly one critical point in the interval {p,, x). It
completes the proof of Theorem 1.
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