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1.INTRODUCTION 

The second part of Hilbert 16th problem raises the question 

about an upper bound c(N) for the maximal number of the limit cycles 

(i.e. isolated periodic solutions) of a planar polynomial vector 

field of degree N : 

P(x,y)dx + Q(x,y)dy = 0 (I.I) 

This problem is still open, and it is not known even whether 

c(N) < ~. The above question splits into a few subquestions, the 

first of which is: is the number of limit cycles of a fixed vector 

field finite? It was believed almost 60 years that the answer is 

yes, as claimed Dulac in his memoir "Sur les cycles 

limites"[8].However, in 1985 Yu. Ii'yashenko[12] found a trivial 

technical gap in the final step of Dulac's proof. The correct proof 

was announced in the articles of II'yashenko[21] and Ecalle, 

Martinet, Moussu, Ramis[9] An important part of this proof 

containing the crucial idea appeared recently in [24] 

A possible approach to the Hilbert 16th problem is, starting 

from a known system, to study the possible subsequent bifurcations 
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of the vector field [18]. Consider the perturbed integrable system 

of ordinary differential equations 

dH(x,y) + c. (R1(x,y)dx + R2(x,y)dy ) = 0 (1.2) 

where H, RI, R 2 ace polynomials. If the level sets {H = h} c ~2 of 

the integrable system contain a family of ovals then, after 

perturbing this system some of the ovals sustain the perturbation, 

i.e. become limit cycles. To determine whether it happens we 

consider the Poincar~ map p(h), corresponding to a given oval 

o(h) c {H = h}. The first approximation of p(h) - h with respect to 

c is given by the Abelian integral 

I(h) = ~ R2.dx - R1.dy (1.3) 

o(h) 

The maximal number c(N) (deg H ~ N + i, deg R 1 ~ N, deg R 1 s N) of 

the zeroes of I(h) (including the multiplicities) is an upper bound 

of the number of the ovals, sustaining the bifurcation. 

The next question is: Determine the number c(N). It is also 

known as the 'weakened 16th Hilbert problem"[23]. Recently 

Khovansky[15] and Varchenko[20] proved independently that c(N) < m . 

Consider the simplest case N = 2. The number of zeroes of 

(1.3) is known for certain fixed Hamiltonian functions H, and 

certain perturbatlons [7,13,16~!7]. In [7] the authors consider a 

small one-parameter cubic perturbation of a fixed cubic polynomial 

H. As the moduli space of all cubic Hamiltonians, whose level sets 

contain ovals, is a two-dimensional one (see section 2) then these 

perturbed Hamiltonians represent a co-dimension one "local" family 

(i.e. defined for "small" w~lues of the parameter) of cubic 

polynomials. 

In the pres, ent paper we consider another co-dimension one 

family of Hamiltor~ians, namely Hamiltonians with an invariant line. 

This family is "global", in the sense that it depends upon a 

parameter taking all real values. We prove the monotonicity of the 

period functions (which are given by special Abelian integrals) - 

Theorem i of section 2. Our second result - Theorem 2 of section 2, 

gives an upper bound for the limit cycles of any quadratic 

perturbation of these Hamiltonians. The method exploited here 

applies to general cubic Hamiltonians. The case considered in this 

paper has the only advantage that the computations needed for the 

proofs are simpler. We hope to return to the general case in another 

publication. 

We use well known methods of algebraic geometry : Picard-Fuchs 

equations, Picard-Lefschetz theory. The Abelian integral I(h) 
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d 2 
satisfies a third order Picard-Fuchs equation, and J(h) - dh2I(h) 

satisfies a second order Picard-Fuchs equation. As the coefficients 

of this equation are rational functions in h, then the standard 

technique [2,3,5,6,7,10,16,17] implies a bound for the number of 

zeroes of J(h), and hence of I(h). As we want to find an exact bound 

for the nu1~ber of zeroes then we face two problems : 

- by differentiating I(h) twice we obviously loose 

information about the behaviour of I(h) 

- we need an estimate of the number of the zeroes of J(h), 

which is a priori lower than this number for an arbitrary solution 

of the Picard-Fuchs equation satisfied by J(h). 

To overcome the second problem we have to know what is the 

distinction between J(h) and the remaining solutions of the 

Picard-Fuchs equation. From a geometrical point of view the answer 

is surprisingly simple. Namely, consider the corresponding Riccati 

equation as a two-dimensional autonomous system of ordinary 

differential equations. Then the solution corresponding to J(h) is a 

separatrix solution of this system. To make use of this fact we 

study the global phase portrait, and apply the "Rolle's theorem for 

dynamical systems"[14]. 

To compensate the loss of information after differentiating 

I(h) we use the "local" information about the values of I(h), 

~i d2 
dh (h), -- I(h) at the ends of the interval A 9 h on which the 

dh 2 

ovals are defined. Probably, however, that is not enough to find the 

exact value of the number of zeroes of I(h). 

The paper is organized as follows. In section 2 we formulate 

our results and give some definitions. Section 3 and Section 4 are 

more or less routine. There we derive the Picard-Fuchs equations 

satisfied by our Abelian integrals, and describe their asymptotic 

behaviour. The reader may skip these two sections, and then to come 

back when the occasion arises. In section 5 we prove the 

monotonicity of the period functions corresponding to the 

Hamiltonian functions under consideration. At last, all these 

results are used in section 6, where we prove Theorem 2. 

Remark. When this text was already prepared we learned that 

W.A.Coppel [23] has proved that any quadratic system with an 

invariant line has at most one limit cycle. This implies immediately 

our Theorem 2. Nevertheless we keep it as the proof contains the 

main ideas needed to find an upper bound for the limit cycles of 

quadratic perturbations of the general quadratic Hamiltonian system 

- namely the second derivative of the Abelian integral (1.3) 
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satisfies a second order Picard-Fuchs equation. 

We are grateful to A. Zegeling for pointing out to us the 

paper [23]. We are also grateful to H. Zoladek for the extremely 

important suggestions which helped us to improve the text. 

2. STATEMENT OF THE RESULTS 

Let H(x,y) be a polynomial and ~ = P1(x,y)dx + P (x,y)dy be a 

polynomial one-form, where deg(H) = 3, deg(P1),deg(P2) s 2, and H, 

PI' P2 have real coefficients. Further we shall suppose that for 

some h e ~ the set {H = h} c ~2 contains an oval (i.e. a compact 

real curve F, such that (Hx, Hy ) ~ (0,0) on F). Let A c ~ be the set 

of those h e ~ fox which {H = h} c ~2 contains an oval. A is either 

an open interval or a union of two open intervals. 

Let H = x.(y 2 + (x - g)2 _ i). Define the period function T(h) 

to be the period of the unique periodic solution lying on the level 

set {H= h}, h e A (see [6]). The central results of the present 

paper are the following theorems. 

Theorem i. If h e A, then T' (h) ~ 0. 

£ 
Theorem 2. The Abelian integral I(h) = | ~ either vanishes 

~(h) 
ident:.cally in A, or it has no more than three zeroes (including the 

multiplicities) in A. If Igl z i, then I(h) has no more than one 

simple zero in A. 

If A is not empty, the Hamiltonian system corresponding to H 

has a continuous family of periodic solutions. It is known that in 

this case the system also has a center [23]. Hence, after suitable 

- linear change of the variables H takes the form 

2 y2+ 
H = x + 2 Ax3 + Bx2y + Cxy2 + Dy3 (2.1) 

The reader may check that there always exists a rotation which 

brings H into the form (2.1) with D = 0. If B ~0 we shall also 

suppose (without loss of generality) that B = i, or if B = 0, we 

shall also suppose that A = l.Thus we get the following two normal 

forms 

x 2 + y2 
H = 2 + Ax3 + x2y + Cxy2 (2.2) 
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2 y2+ 
H x + x 3 + Cxy2 

= 2 (2.3) 

Definition. we shall say that the two polynomials H1(x,y), 

H2(x,y ) with real coefficients are equivalent, provided that there 

exists a ~ - linear change of the variables which brings H1(x,y ) 

+ c .H (x,y), for some c I c 2 e ~, c2~0. into the form c I a 2 

The constants A, C defined by (2.2), (2.3) provide moduli for 

the space of all non-equivalent cublc polynomials, whose level sets 

contain ovals. To obtain a one to one correspondance between the 

parameters A, C and thls space we have to reduce ~2{A,C} and ~{C} by 

identifying the points lying in one and the same orbit of the free 

action of a finite group, generated by the rotations and the 

reflections preserving the normal form (2.2) or (2.3) , and the rank 

two group (x,y) ~ (xo-X,Yo-y) , where (Xo, Yo) is the other center 

(if it exists).The upshot is that the moduli space of all 

non-equivalent cubic polynomials is a two dimensional one. 

Dg[iDi%iQn, The Hamiltonlan H (with real coefficients) is 

reducible, provlded that for some h e ~ the set {H = h} c C 2 is 

reducible. 

In the case when deg(H) is an odd number, one easely checks 

that the above definition Is equivalent to 

Definition. The Hamiltonian H (with real coefficients) is 

reducible, provided that for some h ~ ~ holds H - h = HI.H2, where 

H and H are polynomials with real coefficients. 
1 2 

Example. The Hamiltonian (2.3) is reducible. Indeed 

2 y2+ 
x + x 3 + Cxy2 

2 

_ 3 1 3 3 
C = (x + ~ C)°  (y2 + ~ x - ~ C) 

The present paper deals only with a codimension one subspace 

of reducible cubic polynomials, given by H = x. (y 2 + (x - g)2 _ !) 

Let H be a reducible cubic polynomial with real coefficients. 

Then without loss of generallty H = HI.H a, where H I = x and 

deg(H2) = 2, and let 

H = x. (ax 2 + bxy + cy 2 + dx + ey + f). 

If c = 0 then {H = h}n{x = const.} is the empty set, or it 

consists of one point, and hence {H = h} does not contain ovals. 

Thus, without loss of generallty we may put c = 1 and also 

b = e = 0. Further ~ - linear changes show that H is equivalent to 

one of the following Hamiltonians 
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x. (y2 ; (x - g)2 ~ I) 

x. (y2 ; (x - g)2) 

x. (y2 + x ; i) (2.4) 

x. (y2 ; I) 

2 
x.y 

The only reducible Hamiltonians (2.4) contained in the family 

(2.2) or (2.3) are 

x.(y 2 + (x - g)2 ± I)(elliptic case) 

x. (y2 _ (x - g)2 _ + I) (hyperbolic case) 

x. (y2 + x - i) (parabolic case) 

x. (y2 _+ (x - 1) 2 ) (linear case) 

In this paper we shall study only one of the above cases. 

3. THE PICARD - FUCHS EQUATIONS 

Consider the Hamiltonian 

H = x. (y 2 + (x - g)2 _ i) (3.1) 

The level sets {H = h} c ~ are shown on fig.l. For any fixed 

g e C there are three critical values of h. They are h = 0, 
+ 

h = h-(g), where 

h ± = 2. (g. (g 2 - 9) ± (g2 + 3)3/2)/27 

For all non-critical values of h the affine algebraic curve 

Fg,h= {H = h} c C 2 is a smooth complex manifold. The union of the 
÷ 

curves defined by the equations h = 0 and h = h-(g) in C{hsg} form 

the bifurcation diagram. It is given on fig.2. For each fixed g let 

us define on Fg,h the following differential one-forms 

d dx 
= ydx , a = ~-~ ~ = 2xy ' 

d (x - g) dx , = x(x - g).y.dx , b = ~-~ ~ = 2y (3.2) 

dx 
= xy.dx, c = ~ = 2-y 

d 
Here ~-~ is a covariant derivative in the Gauss-Manin connection of 
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¥ 

a) JgJ < 1 b) tgl>l 

x = 
3 

Fig.l.Level sets of Hamiltonian (3.1). 

+ 

b 

Fig 2. Bifurcation diagram of (3.1). 
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the bundle H1(Fg,h,C) ~ h e C\{h+(g),h-(g),0}, associated with the 

local trivial bundle C z ~ Fg,h ~ h e ek{h+(g),h-(g),0} [i]. 

PrODosition 3.1. For any fixed point (g,h) which does not lie 

on the bifurcation diagram, the one-forms a, b, c defined by (3.2) 

form a basis of the three dimensional linear space HI(Fg,h,R). 

Proof. It is more convenient to make the computations in the 

proof of this Proposition using the following new coordinates 

x~x,x.y~z 

The elliptic curve Fg,h = {H = h} c C 2 takes the form 

2 2 
{ z = x. (h - x. (x - g) + x)} (3.3) 

One may easely check that the above change of variables provides a 

biholomorphic mapping between the affine curve (3.3) and Fg,h.~ In 

dx b = x.(x - 9) dx, c = -- dx. the new coordinates we have a - 2z ' 2z 2z 

According to Grothendieck's theorem [ii] the polynomial one-forms 

generate a basis of the first de Rham cohomology group of the affine 

algebraic curve (3.3). Hence it is enough to prove that each 

polynomial one-form restricted to (3.3) is equal, up to an addition 

of an exact form, to a linear combination of the forms a, b, c°  

Namely, each polynomial one-form equals on (3.3) to a sum of one 
s s 

x 
forms x__ dx, s = 0 i, 2 The degrees of the one forms --{ dx is 

Z ; 

reduced with the help of the identity 

d(xS-3.z) = 2(s-3)xS-4"p(x) + xS-3"p'(x) dx 
2z 

where P(x) = x.(h - x(x - g)2 + x), P'(x) = ~xP(X).s~ The leading term 

in the coefficient of the above one-form is x~.(2(s-3)+4), and hence 

s 

x__ dx s z 3 is equivalent on (3.3) to a linear combination of 
Z t I 

x r 
forms --~ dx , r = 0, i, ..., s-l. u 

Proposition 3.2 For each fixed (g,h) the following identities 

hold on Fg,h 

= ~.h.a + g.b + c + .d(xy) 

(3-2g 2) .h (9h + 5g - 2g 3) 1 xy(6x2-10gx + 2g2-3) 

- .a + .b + -.c + d( ) 
24 12 4 24 

gh 2+g 2 xy ( 2x-g ) 

? = --.a + .b + (h+g).c + d( 
6 3 6 

) (3.4) 
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The proof is a straightforward computation : we use (3.2) and the 

identity y = ((h - x. (x - g)2 + x)/x)i/2 

Let ~(h) ~ h be a locally constant section of the bundle 

HI(Fg,h,C ) ~ h ~ C\{h+(g),h-(g),0}. Suppose that 6(h) are 

represented by (homological) ovals on Fg,h. Thus we can associate 

the above section with a continuous family of ovals on Fg,h We 

shall denote these ovals again by 6(h). 

Proposition 3.3, The Abelian integrals A = I a , B = I b I 

~(h) 6(h) 
r 

C = I c , satisfy the following Picard-Fuchs system 

6(h) 

d[A 1 [h89h 22923gh20 I[A 1 
d(h).~-~ B = h(2g-2g3+3h-2g2h),-h(8g+9h) ,0 . B (3.5) 

C h(2g2-2+3gh) , 2h(g2+3) ,0 C 

where 

d(h) = -27h(h - h+(g)) (h - h-(g)) = h(4g4+4-8g2+4hg3-36hg-27h2). 

Proof. We integrate (3.4) along 8(h) and then differentiate 
d d ~=a,~-~=b d with respect to h . As ~-~ C -~ ' dh ~ = c, then we obtain 

a linear system for A, B, ' dh A, d-h B, d C . Solving this system 
d d 

in ~-~ A, B, d--h C (which in view of Proposition 3.1. is always 

possible), we obtain (3.5). m 

It is easy to check that the one forms a, b have no residues 

on Fg,h. Hence they represent elements of H I -- (Fg,h,~), where Fg,h is 

the compactlflcation of Fg,h. AS dim(H1(Fg,h,~)) = dim(H1(Fg,h,Z ) = 2 

(Fg,h is an elliptic curve), then A , B, satisfy a second order 

Picard-Fuchs equation (see (3.5)). 

Let 6(h), 8(h) form a basis of HI(Fg,h,Z ) . For arbitrary 

ratlonal one-forms ~i' ~2 ' which do not possess residues, consider 

the Wronskian 

W(~1,~a) = det 6 (h) 6 (h) 

O(h) O(h) 

It is a rational function in g, h [i]. Now the Liouville theorem, 

applied to the Picard-Fuchs system satisfied by A, B, implies that 

W(a,b) does not depend upon h, as the trace of this (linear) system 

is equal to zero. On the other hand Proposition 3.1. implies that 

W(a,b) ~ 0, if d(h) ~ 0, and hence W(a,b) is equal to a onstant prO. 

• d c,=d A =~ A, dh C satisfy the following Picard-Fuchs system 

 [cl[ I[ I alla12 (3.6) 

A' A' aaia2a 
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where a 1 = W(c",a')/W(c',a'), a12 = -W(c",c')/W(c',a'), a21 = 

W(a",a')/W(c',a'), a22 = -W(a",c')/W(c',a'). A = A(h) satisfies 

the following Picard-Fuchs equation 

p.A" + q.A' + r° A = 0 (3.7) 

where p = W(a',a).d 2, q = - W(a",a).d 2, r = W(a'',a').d 2 d = d(h) 
t 

Below we shall compute the above Wronskians explicitely. For that 

purpose we shall use (3.5). For example to compute W(c',a') we note 

that 

= M(h). 
d(h) Od-~ A B 

where the matrix M(h) is given by (3.5). Then W(c',a') = 

W(a,b).det(M(h)/d 2 = p.det(M(h)/d 2 However, one can prove along 

the same lines as in [13] that W(c',a') has only szmple poles. It 

means that d = d(h) divides the polynomial det(M(h)). The same 

cancelations occur for the remaining Wronskians, and the explicite 

expressions are rather simple. The direct computation gives 

~roDosition 9,4, Let d(h) be as in Proposition 3.3. Then 

W(a',a)/p = 2.(2 - 2g 2 - 3gh)/d(h) , 

W(c',a')/p = 2/d(h) , 

W(c",a')/p = 6h. (2g2h + 15h + 8g)/d(h) 2 , 

W(c",c')/p = 2h. (2g3h + 3gh + 2 - 2g2)/d(h) 2 , 

W(a",c')/p = 4.{h2. (3g 2 - 18) + h.(4g 3 - 24g) + 2. (g 2 - l)2}/d(h) 2, 

W(a",a')/p = !2. (3gh 2 + 4g2h - 5h + 2g. (g 2 - l))/d(h) 2 , 

W(a",a)/p = 4 . { - 8 1 g h  3 + h 2 . ( 6 g  4 - 135g  2 + 81)  + h . ( 8 g  5 - 8 0 g  3 +72g)  

+ 4. (g 2 - l)3}/d(h) 2 , p = const. ~ 0. 

4. ASYMPTOTIC BEHAVIOUR OF ABELIAN INTEGRALS 

Consider the open subsets of ~2 

D + = {(g,h) ~ R2: h-(g) < h <h+(g), g a I} 

u{ (g,h) • ~2: h-(g) < h < 0, Igl < 1 } 

and D- = { (g,h) • ~2: h-(g) < h <h+(g), g -~ - 1 } 

u{ (g,h) • ~2:0 < h < h+(g), Igl < 1 } , 

shown on fig.2. For each (g,h) • D + u D- the set {H = h} c ~2 
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contains an oval ~(h) (see fig.l). Note that for Igl > i, h = 0 the 

complex curve Fg, h is singular (i.e. (g,h) is a bifurcation point). 

Nevertheless it still contains an oval. For all the remaining 

bifurcation points Fg,h does not contain an oval. 

Consider now the open set A = {h E ~ : (g,h) E D+uD-}. For 
g 

each fixed g ~ ~ it coincides with the set A of Theorem i. Let us 

define on Ag the following two meromorphic functions 

~g(h) = ~ c / ~ a, ~g(h) = ~ ~ c / ~ ~h a , 

~(h) 6(h) 6(h) ~(h) 
where the one forms a, b, c are defined by (3.2). The importance of 

these functions were suggested to us by [5,7]. In this section we 

shall study the asymptotlc behaviour of ~g(h), ~g(h), when h tends 

to a point on the boundary Ag \ Ag of Ag. Notice the obvious 

relations : 

D + (g,h) ~ ~ (-g,-h) ~ D , ~g(h) =-~_g(-h), ~g(h) =-~_g(-h). 

Proposition 4.1. ~g(h) has the following asymptotic behaviour 

i) lim ~g(h) > l~m ~g(h), for g z 1 
h~h-(g) heh (g) 

ii) lim ~g(h) > 
h~h-(g) 

for -i < g < 1 

iii) l!m uL~d ~g(h) < 0, for g > -i 
h~h (g) 

d d 
iv) lim ~ ~g(h) = lim ~-~ ~g(h) = - 

he0 h~0 

v) l~m ~h ~g(h) = - ~ , for g i. 
heh (g) 

lim ~g(h) = 0 = lim ~g(h) > l~m ~g(h) 
he0 h~0 heh (g) 

, for -I < g < 1 

PrODosition 4,~, ~g(h) has the following asymptotic behaviour 

i) l~m ~g(h) = l'm ~g(h) , for g z 1 
heh (g) heh ~ (g) 

ii) he01im ~g(h) = he01im ~g(h) =0, for -i -~ g sl 

iii) l~m ~ ~g(h) = - , for g z 1 
h h (g) 

d 
iv) lim ~-~ ~g(h) = ~ , for -i ~- g -~I 

he0 

v) lim ~h ~g(h) < 0 for g > 1 
h~ h- (g) a ' " 

Like in section 3 we can associate the oval ~(h) with the 
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corresponding homological cycle in HI(Fg,h,Z), which we shall denote 

again by ~(h). Now ~(h) can be defined also for complex values 

h ¢ C\{h+(g),h-(g),0}, in such a way that 8(h) ~ h is a locally 

constant section of the bundle H (F -,Z) ~ h 
¢I g,n 

C\{h+(g),h-(g),0}. Thus each Abelian integral ] ~ (and hence (g(h) 

6(h) 
~g(h)) becomes a multivalued meromorphic function on 

C\{h+(g),h-(g),0}, with branch points at h+(g), h-(g), and 0. To 

prove Proposition 4.1. and Proposition 4.2. we shall need a formula 

for the branching of the Abelian integrals at these points. It can 

be derived from the Picard-Lefschetz formula [i]. 

For any fixed g the affine curve Fg,h is singular only if 
+ 

h = 0, or h = h-(g). Suppose that g ~ ± 1 is a fixed real number. 

If h = 0, the level set Fg,h orresponding to the critical value 

/ g2' 
h = 0 contains two Morse critical points (x = 0, y = ± 1 - ) 

+ 

of H. Let us denote the corresponding vanishing cycles by e-. 

Without loss of generality we may suppose that e + and 8- are 
+ 

homological and let us denote them by e ~ 8 + - e-. If h = h-(g), 

Fg h has one double point at x = x = ,y = 0, which is 
' 3 + 

a Morse critical point of H with critical value H = h-(g). Let us 

denote the corresponding vanishing cycle by ~±. Denote 

Dp = {Iz] < p}\{h-(g), 0, h+(g)} c e, where p is a sufficiently big 

fixed real number. Let z °  be a point on the boundary Izl = p of Dp. 

Any loop £ ~ ~(Dp,Zo) induces an isomorphism ~, (monodromy) in the 

first homology group 

~. : HI(Fg, h,Z) -~ HI(Fg,h,Z) + 
~-+ 

Let £0, ~ ~1(Dp,Zo) be loops around 0 and h-(g) respectively. The 

(generalized) Picard-Lefschetz formula [4,1] reads 

O -- -- 
~,(~) = ~ + (8+o~)8 + + (e o6)e = ~ + 2(8o~)e 

+ + (4.1) 
~+- 
.(~) = ~ + (~ o~)~- 

+ + 

where (6-o6), (8-o~), (8o~) are the intersection indexes of the 

corresponding cycles. 

Consider an arbitrary Abelian integral I(h) -- I ~ ' where ~ is 

a(h) 
a meromorphic one-form without residues on Fg, h" The 

Picard-Lefschetz formula (4.1) implies [i] that in a neighbourhood 

of h = 0 holds 

log(h) 
I(h) = ~i "I ~ + P(h) , (4.2) 

8(h) 
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and in a neighbourhood of h = h±(g) holds 

log(h - hi(g)) 

I(h) = 2~i [I r ~ + Q(h - h±(g)) , (4.3) 
t~ 

a-(h) 

where P,Q are meromorphic functions. 

Consider now the case g = z i. The Milnor number [I] of the 

critical point x = 0, y = 0 of H is two, and hence the 

Picard-Lefschetz formula (4.1) can not be directly applied. Denote 

Dp = {Izl < p}\{h-(g), h+(g)} c C 

where p is a sufficiently big fixed real number, and let z be a 
O 

fixed point on the boundary Izl = p of Dp. Let e be a loop around 

(i,0) lying in the complex plane {g = l}xC{h} , and let 

el' ~2 ~ ~1(Dp'Zo ) be loops around (l+e,h+(l+e)) and (l+e,0) in the 

complex plane {g = l+e}xC{h}, where e > 0 is a sufficiently small 

number (fig. 3). 

Denote by M~, M~ , Me , the corresponding monodromy matrices acting 
I 2 

upon H I (Fg, h' Z) . It is well known that M e = M e oM~ . Hence to 
I 2 

ompute the monodromymatrlx M~ actlng upon Hl(Fg,h,E ) it is enough to 

compute M~ and M~ . The Picard-Lefschetz formula implies that in 8, 
I 2 

6 + , 6- coordinates (having suitable orientations) holds 

[11° I Ml2 [i ° ° M 1 = 0 1 0 , = 1 0 

1 0 1 1 0 1 

I'-i 1 0 ] 

M 1 ° S I 0 ] 1 2 1 1 

/ 

Fig.3. Deformation of the loop 1 into the loop 11ol 2 . 
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As the eigenvalues of the last matrix are I, ± i, then it is 

concluded that the Abelian integral I(h) is a meromorphic function 

in a neighbourhood of h = 0, with respect to h I/4 [i]. 

Proof of PrODosition 4.1. 

i) As ~(h) vanishes at h = h-(g) , g ~ • I, into a Morse 

critical point of H, then I ~ ' I ~ are holomorphic functions in 

~(h) 6(h) 
h, in a sufficiently small neighbourhood of h = h+(g). As 

l~m ~ ~ = l~m ~ ~ = 0, then 

h~h (g) 6(h) h~h (g)~(h) 

lim ! ~ / ~ ~ = lim ~ c / ~ a = lira ~g(h) = 

h~h- (g)~ ( ) ~(h) h~h- (g) 6 (h) 6(h) h~h- (g) 

x.dx dx 

= Res I x=x+ ( )/Res I ( ...... )= 
~x. [h-+x. (l_(x_g)2) ] x =x+ /x. [h-+x. (l_(x_g)2) ] 

+ + 2g + ~ 3  
= x , where x = (see fig.l). In quite a similar way 

3 

one computes 1 m ~ ~ / ~ ~ = lim ~.(h) x-.Obviously 

h~h~(g)~(h) ~(h) heh-(g) ~ 
- + 

x < x (see fig.l) and hence to prove i) it remains to consider the 

case g = i. The two cycles 81, e 2 vanish simultaneously when h 0. 

For h < 0, h ~ ~, the projections of these two cycles, and the cycle 

5(h) on the e{x}-plane are shown in fig.4. 

Fig.4. The cycles el, e2, 6 in the complex x - plane. 

x1(h),x2(h),x3(h), are roots of the polynomial h-x.(x-g)2+x , and 

x1(0 ) = x2(0 ) = 0 Fig.4 implies that ~(h) is homological in 

H l(Fg,h,E) to e I -+ e3 where e3 is a cycle represented by a loop 

around one of the "infinite" points on Fg,h. Hence 

dx 
~ c = ~ c ± 2~i.Resl ( ) = ~ + ~ c 

5(h) e,(h) x=~ 2./ (l_(x_g)2 ~ 81(h ) 
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c > 01, and also (the sign of ~ is fixed by the condition 

8(h) 

dx 

~ a = ~ a ± 2~i. Res x= ( ) = ~ a 

6(h) e1(h ) 2x./ (l-(x-g) 2 " e1(h ) 

The Picard-Lefschetz formula implies that the integrals [ c and 

~(h) 
a are holomorphic functions in h I/4 (in a neighbourhood of 

a(h) 

h = 0). Changing the variable x as x 4 z./-h , where /-h > 0 for h 

< 0 we obtain 

zdz 
2.~ c = (-h) I/4. ~ , + ~ = 

/z 6(h) 81(h) (-i + 2z 2 - z3./-h ) 

o / /  z 
= g + ( - h ) l / 4 . ( 2 . j "  dz + 0 ( ( - h ) 1 / 4 ) ) ,  and 

(-1 + 2z 2) 

dz 

6 ( h )  E)I( ) / z ( - 1  + 2z 2 - z 3 . V / ' h  ~ ) 

0 
dz 

= (-h) -I/4. (2.~ + 0((-h)1/4 I) 

-I//7 /z(-1 + 2z 21 
Hence in a neighbourhood of h = 0 we have 

C~g(h) = ci. (-h) I/4 + O((-h) I/2), ci > 0 (4.4) 

which implies hCh -lim(1)~1(h) >heh -lim(1) ~1(h) 

ii) Suppose that -i < g < i, let 8(h) be a vanishing cycle at 

h = 0, and (8(h)o6(h)) = l.The Picard - Lefshetz formula implies 

log(h) log(h) 

~g(h) = ( ~i ~ c + P(h))/( - ~i ~ a + Q(h)) (4.5) 

8(h) 8(h) 

where P(h) and Q(h) are holomorphic functions in a neighbourhood of 

h=O. 

dx 

As ~c= Reel ( ) = 0, 

e(O) x=O 2./ (l-(x-g) 2 ' 

dx 

~a =Reel ( ) , 0, 
{9(0) x=O 2x./ (l-(x-g) 2 



175 

+ 

we conclude that lim ~g(h) = lim ~g(h) = 0. As x > 0 , then ii) is 
h~0 h~0 

proved. 

iii) ~(h) vanishes at h = h-(g) and hence 

d = l~m d ~ ~ = lim ~-~ ~g(h) ( c / a ) 

h%h-(g) h~h (g) ~(h) 6(h) 

d 
lira {(~ ~ c). ~ a- (~h ~ a). ~ c}/( ~ a) 2 

h%h-(g) 6(h) 8(h) 6(h) ~(h) ~(h) 

All integrals above are holomorphic for h in a sufficiently small 

neighbourhood of h-(g) and their limits are equal to the 
+ 

corresponding residues at x = x . After computing these residues we 

obtain 
_ + 

3x- - ~x 
l~m d ~g(h) = < 0 . 

h~h (g) 6.x+. (x + - x-) 

iv) Let e(h) is ~ defined as in ii). We note that in (4.5) 
log (h) 

~ c = 0, ~ a ~ 0. Also as ~ c = Ni ~ c + P(h), then taking 

8(0) 8(0) ~(h) 8(h) 

the limit he0 we conclude that 

log(h) 
P(0) = lim (~ c + ~ c) = lim ~ c = 

he 0 ~i he 0 
~(h) e(h) 5(h) 

l+g dx 

= 1 = arccos(-g) $ 0. 
J 
0 / i - (x - g)Z 

Differentiating (4.5) and using the above relations we obtain 

lim d ~g(h) .... 
he0 

d 
v) If g = 1 then (4.4) implies lim ~-~ ~g(h) = - m Suppose 

he0 
that g > i and let 8(h) be a vanishing cycle at h = h+(g). The 

Picard - Lefshetz formula implies thai: in a neighbourhood of 

h = h+(g) holds ~g(h) - x- = 

log(h - h+(g)) log(h - h+(g)) 

(- 2T[i P (h) + P (h))/(-- 2~i ........ Q1(h) +Q~(h)) 

where P1(h), P2(h), Q1(h), Q2(h) 

_ Q1(h ) P1(h) = (c - a.x ), = 

e(h) 
identity we obtain 

2~i 

are holomorphic functions, and 

a .Differentiating the above 

O(h) 

PI"Q2 - P2"QI 
d 

= " 2 ~--~ ~g(h) {h - h+(g)}.{log(h - h+(g)) 2} Q, 

AS PI(0) = 0 (see i) ) then it is enough to prove that 

.(l+O(h)) 
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l ' m  

h+h ~ ( g ) 

2~i.P2(h) 
< 0 . The formula 

QI( h ) 

log(h - h+(g)) 

c - aox = - 2~i 

8(h) 

P1(h) + P2(h) 

X ~ X-- 

~ C - a.x- = l~m ~ 2x-----~ dx = 
6(h) heh (g)~ (h) 

implies P2(h+(g)) = l'm 
heh~(g) 

2g-2x dx 

= [ ~ 0. Also Q1(h+(g)) = lim [ a = 

- heh-(g)8~h ) ~x. (-x - 2x- + 2g) 
dx 

= 2~i. Res I ( ) ~ 0.Thus we have proved that 

x=x- 2./x. [h++x. (l_(x_g)2) ]" 

heh~(g) d h + 1 m ~-~ ~g(h) = ± ~ . At last we note that for h < (g) 

_ x - x- dx 
~g(h) - x = ~ ~ dx/ ~ -~ > 0, and if h is in a sufficiently 

6(h) 6(h) 

small neighbourhood of h+(g), then 

2~I.P (h) 
~g(h) - x- = 2 .(l+O(h)) It implies that 

Q1(h).log(h-h+(g)) 

2~i.P2(h) 
1 m < 0, and hence Proposition 4.1. is proved. 1 

heh~(g) Q1(h) 

Proof of PrODo$i~iQn 4,2, 

The parts i) and ii) of Proposition 4.2. are proved directly, 

after applying the Picard-Lefschetz formula. For example if g > 1 

then ~g(h) = 

d log(h - h+(g)) log(h - h+(g)) 

d-h ( - 2~i f c + P(h))/ ~ ( - 2~i ~ a + Q(h)) 

e(h)  e(h)  
which , after differentiating and taking the limits, implies 

!~m ~g(h) = l~m ~(h) = x-. If g = 1 then l'm = 
heh (g) heh (g) ~ heh~(g)~g (h) 

heh~l'm(g)~g(h) =0 , as may be seen from the asymptotics of the Abelian 

integrals , derived in the proof of Proposition 4.1. i). 

iii) Differentiating the above formula for ~g(h) we compute that 

for h sufficiently close to h+(g) holds 

d 
~-~ ~g(h) = log(h - h +(g)) .~h ( ~ c / ~ a).(l+O(h)) (4.6) 

e(h)  e(h)  
AS in the proof of Proposition 4.1. iii) we compute that 



177 

3x + - 5x- 
l~m ~ ( c / a) = < 0 , 

heh (g) 6.x-. (x- - x +) 
8(h) O(h) 

and hence l'm d h 
heh~(g)d-h{g ( ) = , . 

iv) If g = i, then the formulae derived in the proof of 
d 

Propsition 4.1. imply that in a neighbourhood of h = 0 in C holds d--h 

~g(h) = c.(-h) -I/2 ~ + .... where c < 0, and hence lim ;u~ ~g(h) = 
he0 

At last consider the case - 1 < g < i. The Picard - Lefschetz 

formula implies that in a neighbourhood of h = 0 holds 

d 
d--h ~g(h) = log(h).~h ( f c / ~ a).(l+O(h)) (4.7) 

e(h) e(h) 

As I c = 0 then we obtain 

e(o) 

d--h ( c / a) = 

e(h) e(h) h=0 

f f I = [ (~-~ c)/( a) ] = 

e(h) e(h) h=0 

x. dx dx 

{Res I [ ~h ( )] 'h=0 ) }/{Res I ( )} 
x=0 /x.[h +x. (l-(x-g)2)l x=0 x./l_(x_g)2 " 

1 
d 

- < 0 , and hence lim ~-~ ~g(h) = ~ . 
2. (i - g2) he 0 

v) As 6(h) vanishes at h = h (g) then we have 

lim _dd ~g(h) = lim ~-~ (~-~ c /~h a ) = 
h~ h-(g)dh h~h-(g) 6(h) 6(h) 

d 2 d d 2 

- -- }/(~ f a) lim { f c).~-~ f a (dh2 f a).~h f c d 2 
h@h- (g) (~h2~ (h) 6(h) 6(h) ~(h) 6(h) 

All integrals above are holomorphic functions for h in a 

sufficiently small neighbourhood of h (g) and their limits are equal 
+ 

to the corresponding residues at x = x °  After computing these 

residues we obtain 

80. (g. (16g 2 + 27) + (20g 3 - 3).~-~+ 3 ) 
lim d ~g(h) =- < 0 

h~h-(g) an 9.R(x+)2.x +. {R(x+) 2 - 2.R(x +) .x + + 5(x+)2} 2 

for g > 1 , and hence Proposition 4.2. is proved, l 
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5. MONOTONICITY OF THE PERIOD 

In this section we prove Theorem i. 

dx 
As ~-~ = aH/Oy then the period T(h) of the only periodic 

solution contained in the level set {H = h) is equal to ~ dt = 

i=x= f J 
2xy a Introduce the following notation (see 

@H/@y 6 (h) ~ (h) 

fig. 2) 

a + = {h ~ R : (g,h) ~ D+}, A- = {h ~ ~ : (g,h) ~ D-} 
9 g 

A + and A, are open intervals and A = A = A+ua - . As T(h) takes the 
g g g g g 

same values at (g,h) and at (-g,-h), it is enough to prove the 

A + In section 3 we derived the Picard-Fuchs theorem for h ~ g. 
r 

equation (3.7) satisfied by A(h) = I a ( = T(h) ) 

8(h) 

p.A" + q.A' + r.A = 0 ' = d 
dh 

where p, q, r are polynomials. As a is the holomorphic one form on 

the compact elliptic curve F R, and A(h) ~ ~, then (without loss of 

generality) A(h) > 0 for h g , and hence the function A'/A takes 

only finite values in A +. We shall prove that the equation A'/A = 0 
g 

does not possess solutions in A + The function A'/A satisfies the g" 

following Riccati equation 

p.x" + q.x + p.x 2 + r = 0 

Consider the autonomous system 

I x = -q.x - p.x 2 - r 

o 

h = p 

# 

# 

o d 
x = x(t), 

dt ' 

h = h(t) 

I 

-i" ~-~I 

(5.1) 

Fig.5. Phase portrait of system (5.1) 
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Suppose that - 1 < g < i Then A + = (h-(g),0) and {h = h-(g)}, 
g 

{h = 0}, {x = A'(h)/A(h)} are invariant sets of (5.1). 

Straightforward computation gives 

lim A' (h)/A(h) 3((R(X+)2 + 4(x+)2) 
= - (5.2) 

h~h-(g) 16(x+)2.R3(x +) 

where x. (h-x. (x-g)2+x)l = x.(x - x+)2.R(x). One easely computes 

J h=h-(g) 
R(x) = - x - 2x + +2g , R(x +) = - ~ < 0, and hence 

lim A'(h)/A(h) > 0 
h~h-(g) 

For h in a sufficiently small neighbourhood of h = 0 in the complex 

log(h) 
domain, the Picard-Lefschetz formula implies A(h) - ~i I a + 

8(h) 
P(h), where 8(h) is a vanishing cycle at h = 0 and P(h) is a 

holomorphic function (see section 4).This implies A'(h)/A(h) = 

(l+O(h))/{h.log(h)}, and hence lim A'(h)/A(h) = +m .Suppose now that 
he0 

the phase curve x = A'(h)/A(h) intersects the line x = 0 . Then it 

intersects x = 0 at least twice (fig.5).Denote these points by P2' 

P3' and put Pi = (0,h (g)) . It is easely seen that on the line 

h = h (g) there is only one equilibrium point, which is a saddle. As 

p = p(h) ~ 0 in A + then the direction of the vector field at the g' 

points PI,P2, P3, implies that there exist at least two points on the 

interval x = 0, h (g) < h < 0, and the vector field (5.1) is tangent 

to the line x = 0 at these points. In other words the polynomial 

r(h) = rg(h) = 12. (3gh2+h. (4g2-5)+2g. (g2-1)) has two zeroes on the 

interval (h-(g),0). This is, however, impossible as it can be seen 

after some tedious but straightforward computations (see fig.6, 

where the level set {(g,h) e ~2: rg(h) = 0} is pictured ). 

Fig.6.Zero set of rg(h). 
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The case g > 1 can be studied along the same lines : formula 

(5.2) holds for any g > - i, and l'm A' (h)/A(h) = +~ The 

h~h~(g) 

polynomial p = p(h) vanishes exactly once in the interval A + and g' 

hence rg(h) has at least one zero in A + g (fig.5). This is ,however , 

a contradiction (fig.6) .At last if g = 1 then the asymptotic 

for I a around h = 0, derived in the proof of expansion 

6(h) 

Proposition 4.2. i), implies that A'(h)/A(h) = -(l+O(h))/4h, and 

hence lim A'(h)/A(h) = +~. This completes the proof of Theorem i. m 
he0 

Remark. In the above proof we used that there is only one 

equilibrium point of (5.1) on the line h = h-(g), and that it is a 

saddle. Of course it can be checked directly in (5.1). However, we 

do not need to make the precise computations. Generically this 

equilibrium is a saddle, or a node. It is a saddle iff 6(h) vanishes 

at h = h-(g) , and a node if it is not so (for example the 

"infinite"point on the line h = h-(g) is a node). In the non-generic 

cases the equilibrium polnt is a standard saddle-node [12]. Indeed, 

all phase curves of the system (5.1) are given by 

f°  f ; ; X ,B=(a. a+8. a ~. a+~. a) , "°"-d---h ' 

~(h) @(h) 6(h) e(h) 
where ~(h),8(h) form a basis of Hi(Fg,h,[), and Fg,h is the 

compactification of Fg,h . Let 6(h) vanishes at h = h (g). Applying 

the Picard-Lefshetz formula we obtain 

31(R(x+) 2 + 4(x+) 2) 
- - - , ~ = 0 

x~, 8 = 16(x+)2 R3(x +) lim 

h~h-(g) , ~ ~ 0 

which implies that the "finite" equilibrium point is a saddle, and 

the "infinite" one is a node. 

6. ZEROES OF THE ABELIAN INTEGRAL 

In this section we prove Theorem 2. 

p@finition (Petrov[16]). We say that the polynomial one-forms 

~i and ~ are equivalent, provided that ~i - ~2 = Pi dH + dP2 where 

Pi and P2 are polynomials. 

Let ~2 be the factor space of all polynomial one forms with 

real coefficients ~ = Pldx + P2dy where deg(P1) s 2 modulo the above 

equivalency. Then dim(~2) = 3 and 
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~2 = ~3{ydx' xydx, y2dx} 

It is enough to prove Theorem 2 for I(h) = I ~ ' where ~ n 2 , 

~(h) 
and h ~ A . 

g 
Remark If g = 0, it is known ([7] Lemma 3.9.) that I(h) has no 

more than one zero in Ag. One can also prove that for all g ~ (-i,i) 

_dddh ~g(h) has no zeroes in a neighbourhood of h = h-(g), h+(g), 0 

(h ~ Ag). That is why we conjecture that I(h) has no more than one 

zero in A for all values of g. 
g 

As I(h) vanishes at h = h-(g), g > -i, and at h = h+(g), g < I, 

then the number of the zeroes of I(h) does not exceed the number of 

d .For an arbitrary one form ~ ~ Q the zeroes of ~-~ I(h) in Ag 
2 

consider the Abelian integral 

~(h) 6(h) 6(h) 6(h) 
and 

I(h) = p. ( ) + q. ( ~-~) + r. ( ) = 

~(h) ~(h) 6(h) 

= p. (~ dx dx q.~ a 
~ ) + q. ( ~ ~) = p.l c + 

~(h) 6(h) 6(h) 6(h) 

dx shall that the (g(h) = As ~ ~ 0 in Ag we prove equation 

~(h) 

_ [ c)/( _ [ a) = const, has no more than three solutions in Ag, for ( 

$(h) ~(h) 
Igl < I, and no more than one solution in Ag, for tgl -~ i . 

Proposition 4.1. implies certain restrictions on the possible 

graphics of <g(h) (fig.7). Namely, if there exists ci= const, and 

~g(h) = c I has more than three (one) solutions in Ag, then there 

exists a constant c2, and ~g(h) = c 2 has at least five (three) 

solutions in A . 
g 

As ~ a ~ 0, ~h ( ~ a)~ 0 for h ~ Ag (see section 5), then 

d ~(h) ~(h) 
d--h ~g(h) = 0 ~ ~g(h) = ~g(h). If the equation (g(h) = c2, JgJ < i, 

has at least five solutions in Ag, then Proposition 4.2. implies 

that there exists a constant c 3 such that the equation ~g(h) = c 3 

has at least three solutions in A + or in Ag. AS ~g(h) = - ~_g(-h) 
g 

then we may suppose that the latter equation has at least three 

solutions in A +. 
g 

Let us suppose that the equation <g(h) = c 2, Igl a i, has at 

least three solutions in Ag. Now the same reasonings, together with 

Proposition 4.2. v) imply that there exists a constant c, and the 
4 

equation ~g(h) = c 4 has at least three solutions in Ag = Ag . 
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Fig.7.Possible graphics of ~g 

in the interval A g 

(h) (bold line) and ~g(h) (dottedline) 
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The next lemma shows that it is impossible 

Lemma 6.1. The equation ~g(h) = const, has no more than two 

solutions in A + g" 

We arrived at the desirable contradiction. To the end of this 

section we shall prove Lemma 6.1. 

The one-forms ~-~ c, a, satisfy a second order Picard-Fuchs 

system (3.6), derived in section 3. The Riccati equation, satisfied 

by ~g(h) has the form 

p.x' + q.x + r.x2 + s = 0 

where p is a cubic, and q, r, s, are quadratic polynomials in h. Now 

Rolle's theorem for dynamical systems [14,15] implies that, if x(h) 

A + then is a solution of the Riccati equation defined for all h ~ g, 

for any x e R, the function x(h) - x has no more than three zeroes 
o o 

in A + We need, however, a stronger statement.To prove Lemma 6.1. we g" 

shall study (as in the proof of Theorem I) the global phase portrait 

of the system 

o o -- d 

x = -q.x - r.x 2 - S , x = x(t), dt ' 

o 

h = p , h = h(t) 

(6.1) 

+h 

Fig.8. Phase portrait of system (6.1). 

All phase curves of the system (6.1) are given by 
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fo fo ;o 
x ,~(h)=(=. c+~. c)/(~, a+~. a)'"° " ~n ' =' 8 ~ ~' 

6(h) 0(h) 6(h) e(h) 

where ~(h),8(h) form a basls of HI(Fg,h,Z), and Fg,h is the 

compactification of Fg,h . Let 6(h) vanishes at h = h (g). Applying 

the Picard-Lefshetz formula we obtain 

4.x+ R(x+). (3.x+_R(x+))/{3. ((R(x+)_x+)2+4(x+)2)} + 
+ 

lim x~ = + x , ~ = 0 
+ 

hSh-(g) x , B ~ 0 

where R(x) is defined in section 5. As 

R(x+).(3.x+-R(x÷)) = - 2.(g + /~+3 ). g~+3 < 0, 

then there are exactly two ( different ) equilibrium points on the 

line h = h-(g), which are a node (with coordinates (h-(g),x+)) and a 

saddle (see fig.8). Notice that ~g(h) ~ Xl,o(h ) . Also, as we have 

proved in Proposition 4.2., 

l~m ~g(h) = x for g > i, and lim ~g(h) = 0 for Igl < i. 
heh (g) he0 

+ 

AS lim ~g(h) = x > max(x ,0), then there always exists a constant 
hSh-(g) 

c, and the vector field (6.1) is tangent to the line x = c at three 

points (at least) - see fig.7. In other words the quadratic 

polynomial P(h) = q.c + r.c 2 + s has three roots in A + which is a 
g 

contradiction. Thus Lemma 6.1., and hence Theorem 2, is proved, m 
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