Partiel de Statistique

Durée 2 heures

Les notes manuscrites de cours sont autorisées

1 Loi Binomiale

Soit X_1, \ldots, X_n un n-échantillon de la loi $\mathcal{B}(1, \theta_*), \ 0 < \theta_* < 1$. On pose $T = \overline{X}(1 - \overline{X})$ et $S = \frac{n}{n-1}\overline{X}(1 - \overline{X})$. On veut estimer $f(\theta_*) = \theta_*(1 - \theta_*)$.

- a) Donner un estimateur sans biais de $f(\theta_*)$.
- b) Quelle est la borne de Cramér-Rao pour les estimateurs sans biais de $f(\theta_*)$?
- c) On veut montrer que $\operatorname{Var}_{\theta_*}(S) = \frac{1}{n}\varphi(\theta_*) + O(n^{-2})$ et calculer $\varphi(\theta_*)$.
 - α) Calculer $E_{\theta_*} f(\overline{X})$ et $E_{\theta_*} f(\overline{X})^2$ en utilisant la formule de Taylor appliquée à $f(\overline{X}) f(\theta_*)$ et $f(\overline{X})^2 f(\theta_*)^2$.
 - β) Vérifier que $E_{\theta_*}(\overline{X} \theta_*)^3$ et $E_{\theta_*}(\overline{X} \theta_*)^4$ sont de l'ordre de $O(n^{-2})$.
 - γ) Conclure.
- d) Calculer $Var_{\theta_*}(S)$.

2 Cuatro Cuaranta

Soit n_1 et n_2 deux entiers strictement positifs fixés et $n=2p>2\max(n_1,n_2)$. On considère pour $j=1\ldots n$, des variables aléatoires ε_j i.i.d de loi normale centrée de variance σ^2 et le modèle de régression périodique :

$$Y_{j} = a_{0} + a_{1}\cos(2\pi n_{1}\frac{j}{n}) + a_{2}\cos(2\pi n_{2}\frac{j}{n}) + b_{1}\sin(2\pi n_{1}\frac{j}{n}) + b_{2}\sin(2\pi n_{2}\frac{j}{n}) + \varepsilon_{j}.$$

a) Montrer ou admettre pour i, i' = 1, 2, les relations suivantes :

$$\sum_{j=1}^{n} \cos(2\pi n_i \frac{j}{n}) \cos(2\pi n_{i'} \frac{j}{n}) = 0 \quad \text{si } i \neq i'$$

$$= p \quad \text{si } i = i'$$

$$\sum_{j=1}^{n} \sin(2\pi n_i \frac{j}{n}) \sin(2\pi n_{i'} \frac{j}{n}) = 0 \quad \text{si } i \neq i'$$

$$= p \quad \text{si } i = i'$$

$$\sum_{i=1}^{n} \cos(2\pi n_i \frac{j}{n}) = \sum_{i=1}^{n} \sin(2\pi n_i \frac{j}{n}) = \sum_{i=1}^{n} \cos(2\pi n_i \frac{j}{n}) \sin(2\pi n_{i'} \frac{j}{n}) = 0.$$

b) Dans ce modèle linéaire, montrer que les estimateurs des paramètres sont :

$$\begin{split} \widehat{a}_0 &= \frac{1}{n} \sum_{j=1}^n Y_j \\ \widehat{a}_i &= \frac{1}{p} \sum_{j=1}^n Y_j \cos(2\pi n_i \frac{j}{n}), \ i = 1, 2 \\ \widehat{b}_i &= \frac{1}{p} \sum_{j=1}^n Y_j \sin(2\pi n_i \frac{j}{n}), \ i = 1, 2 \\ S^2 &= \frac{1}{2p-5} \sum_{j=1}^n \left(Y_j - \widehat{Y}_j \right)^2, \ \text{où} \\ \widehat{Y}_j &:= \widehat{a}_0 + \widehat{a}_1 \cos(2\pi n_1 \frac{j}{n}) + \widehat{a}_2 \cos(2\pi n_2 \frac{j}{n}) + \widehat{b}_1 \sin(2\pi n_1 \frac{j}{n}) + \widehat{b}_2 \sin(2\pi n_2 \frac{j}{n}) \end{split}$$

- c) Construire le test d'hypthèse de $a_1 = a_2 = b_1 = b_2 = 0$, puis celui de $a_1 = b_1 = 0$.
- d) Application numérique pour le second test de la question précédente. Cas de la note LA, $n_2=440$ n=1000. Tester si la note est un LA pur (c'est-à-dire $a_1=b_1=0$) avec $S_{\text{obs}}^2=1,5$, $\widehat{a}_1^{\text{obs}}=0,52$, $\widehat{b}_1^{\text{obs}}=0,98$. On rappelle que $P(\chi^2(3)>7.81)\approx 0.05$.