Final examen in Asymptotic Statistics Preparation 1 hour

Manuscript notes and handout of the lectures are allowed

1 Cheap Bin

Let Z be a random variable with binomial distribution of parameters $M \in \mathbb{N}_*$ and $0 < \pi < 1$ $(Z \sim \mathcal{B}(M, \pi))$. We recall the following formulas

$$\mathbb{E}(Z) = M\pi,$$

$$\mathbb{E}(Z^2) = M\pi(1 + (M-1)\pi),$$

$$\mathbb{E}(Z^3) = M\pi(1 - 3\pi + 3M\pi + 2\pi^2 - 3M\pi^2 + M^2\pi^2),$$

$$\mathbb{E}(Z^4) = M\pi(1 - 7\pi + 7M\pi + 12\pi^2 - 18M\pi^2 + 6M^2\pi^2 - 6\pi^3 + 11M\pi^3 - 6M^2\pi^3 + M^3\pi^3).$$

For $0 < \pi^* < 1$, let X_1, \ldots, X_n be an i.i.d. sample with common law $\mathcal{B}(1, \sqrt{\pi^*})$. To estimate the parameter π^* , we consider the maximum likelihood estimator $\widehat{\pi}$.

1. Show that $\widehat{\pi} = \overline{X_n}^2$. Here, as usual, $\overline{X_n}$ denotes the empirical mean built on the sample X_1, \ldots, X_n . Compute the two first moments of $\widehat{\pi}$. Compute its mean square error:

$$R_{\widehat{\pi}}(\pi^*) := \mathbb{E}[(\widehat{\pi} - \pi^*)^2].$$

- 2. Modify $\widehat{\pi}$ to build an unbiased estimator $\widehat{\widehat{\pi}}$. Compute $R_{\widehat{\widehat{\pi}}}(\pi^*)$.
- 3. Show that $\sqrt{n}(\widehat{\pi} \pi^*)$ and $\sqrt{n}(\widehat{\pi} \pi^*)$ converge both in distribution towards the same law. What is the limit law?
- 4. What estimator should we use? Why?
- 5. Show that the statistical model is LAN. Is $\widehat{\widehat{\pi}}$ optimal?