Final examen in Asymptotic Statistics Thursday 21th of December 2017 Duration 3 hours-13h30-16h30

Manuscript notes and handout of the lectures are allowed

1 Cheap Fish

Let Z be a random variable with Poisson distribution of mean $\mu>0(Z \sim \mathcal{P}(\mu))$. We recall the following formulas

$$
\begin{aligned}
\mathbb{E}(Z) & =\mu \\
\mathbb{E}\left(Z^{2}\right) & =\mu+\mu^{2}, \\
\mathbb{E}\left(Z^{3}\right) & =\mu+3 \mu^{2}+\mu^{3}, \\
\mathbb{E}\left(Z^{4}\right) & =\mu+7 \mu^{2}+6 \mu^{3}+\mu^{4} .
\end{aligned}
$$

Recall further that the sum of two independent Poisson distributed random variables is also Poisson distributed. For $\lambda^{*}>0$, let X_{1}, \ldots, X_{n} be an i.i.d. sample with common law $\mathcal{P}\left(\sqrt{\lambda^{*}}\right)$. To estimate the parameter λ^{*}, we consider the maximum likelihood estimator $\widehat{\lambda}$.

1. Show that $\widehat{\lambda}={\overline{X_{n}}}^{2}$. Here, as usual, $\overline{X_{n}}$ denotes the empirical mean built on the sample X_{1}, \ldots, X_{n}. Compute the two first moments of $\hat{\lambda}$. Compute its mean square error :

$$
R_{\widehat{\lambda}}\left(\lambda^{*}\right):=\mathbb{E}\left[\left(\widehat{\lambda}-\lambda^{*}\right)^{2}\right] .
$$

2. Modify $\widehat{\lambda}$ to build an unbiased estimator $\widehat{\widehat{\lambda}}$. Compute $R_{\widehat{\lambda}}\left(\lambda^{*}\right)$.
3. Show that $\sqrt{n}\left(\widehat{\lambda}-\lambda^{*}\right)$ and $\sqrt{n}\left(\widehat{\hat{\lambda}}-\lambda^{*}\right)$ converge both in distribution towards the same law. What is the limit law?
4. What estimator should we use? Why?
5. Show that the statistical model is LAN. Is $\widehat{\hat{\lambda}}$ optimal?

2 Sobol indices in \mathbb{R}^{p}

For $i=1,2$ let $\left(E_{i}, \mathcal{A}_{\rangle}, \mu_{i}\right)$ be two probability spaces and f be a measurable application from $E_{1} \times E_{2}$ to \mathbb{R}^{p}. Let X be a random variable taking its value in E_{1} and Z arandom variable taking its value in \mathbb{E}_{2}. We assume that X and Z are independent. Set

$$
Y:=f(X, Z),
$$

and assume that

$$
\mathbb{E}\left(\|Y\|^{2}\right)<+\infty
$$

Here, $\|\cdot\|$ denotes the euclidean norm on \mathbb{R}^{p}.
We also set $\mathbb{E}[Y]:=\left(E\left[Y_{1}\right], \ldots, \mathbb{E}\left[Y_{p}\right]\right)^{t}$ (the mean vector of Y), and $\Sigma:=\left(\operatorname{Cov}\left(Y_{i}, Y_{j}\right)\right)_{1 \leq i, j \leq p}$ (its covariance matrix). Recall that Y satisfies the following decomposition

$$
\begin{align*}
Y= & \mathbb{E}[Y]+(\mathbb{E}[Y \mid X]-\mathbb{E}[Y]+\mathbb{E}[Y \mid Z]-\mathbb{E}[Y]) \\
& +Y-(\mathbb{E}[Y]+\mathbb{E}[Y \mid X]-\mathbb{E}[Y]+\mathbb{E}[Y \mid Z]-\mathbb{E}[Y]) . \tag{1}
\end{align*}
$$

The aim is to define some generalization of the classical Sobol indices defined in the lectures in the case $p=1$ to a more general p. This generalized index is

$$
S(Y)=\left(S^{1}(Y), S^{2}(Y)\right)=\left(\frac{\operatorname{Var}(\mathbb{E}[Y \mid X])}{\operatorname{Var}(Y)}, \frac{\operatorname{Var}(\mathbb{E}[Y \mid Z])}{\operatorname{Var}(Y)}\right)
$$

Our index should verify the following statements

1. They are invariant by the action of translation, multiplication by a scalar and leftcomposition by any orthogonal matrix. In order words

$$
\begin{align*}
S(Y+c) & =S(Y), \operatorname{and} S(\lambda Y) \tag{2}\\
S(O Y) & =S(Y), \forall O \in O_{p}(\mathbb{R}) \tag{3}
\end{align*} \quad=|\lambda| S(Y) \forall(c, \lambda) \in \mathbb{R}^{p} \times \mathbb{R}
$$

where $O_{p}(\mathbb{R})$ is the set of all orthogonal matrices of order p.
2. The index should be easy to estimate.

2.1 Case $p=1$

2.1.1

Show that when $p=1$ properties (2) and (3) are satisfied by Sobol indices.

2.2 Case $p \geq 1$

2.2.1 Building an index

1. For any square matrix M of size p, from equation (1) show that

$$
\operatorname{Tr}(M \Sigma)=\operatorname{Tr}(M \operatorname{Var}(E[Y \mid X]))+\operatorname{Tr}(M \operatorname{Var}(E[Y \mid Z]))+\operatorname{Tr}(M \operatorname{Var}(Y-E[Y \mid X]-E[Y \mid Z]))
$$

2. Let us consider the sensitivity index associated with M

$$
S(M ; Y)=\left(\frac{\operatorname{Tr}(M \operatorname{Var}(E[Y \mid X]))}{\operatorname{Tr}(M \Sigma)}, \frac{\operatorname{Tr}(M \operatorname{Var}(E[Y \mid Z]))}{\operatorname{Tr}(M \Sigma)}\right) .
$$

and show that
(a) for any orthogonal matrix O we have $S(M ; O Y)=S\left(O^{t} M O, Y\right)$
(b) show that if $p=1$ then the previous index does not depends on M. Show that, in this case, we recover the classical Sobol index.
3. Show that for $M=I_{p}$ (the identy matrix) properties (2) and (3) hold for $S(M ; Y)$
4. Let

Assume further that M has full rank; and that $S(M ; Y)$ is invariant by left-composition of f by any isometry of \mathbb{R}^{k}. We aim to prove

$$
\begin{equation*}
S(M ; Y)=S\left(I_{p}, Y\right) \tag{4}
\end{equation*}
$$

(a) Show that for any symetric matrix V if M satisfies $M^{t}=-M$ then $\operatorname{Tr}(M V)=0$. Deduce that we can then assume that M is a symetric matrix.
(b) Show that if $M=P D P$ where D is a diagonal matrix and $P^{t} P=I_{p}$ we have

$$
S(M, Y)=S\left(D, P^{t} Y\right)
$$

Deduce that, we can then assume that M is a diagonal matrix.
(c) Show that $M=\lambda I_{p}$ is then the only possible choice.
(d) Conclude
5. Let X_{1} and X_{2} be i.i.d. standard Gaussian random variables and $(a, b) \in \mathbb{R}^{2}$. Compute $S(Y)$ in the following two cases
(a) $Y=\binom{a X_{1}}{X_{2}}$,
(b) $Y=\binom{X_{1}+X_{1} X_{2}+X_{2}}{a X_{1}+b X_{1} X_{2}+X_{2}}$.
2.3 Estimation of $S^{1}=\frac{\operatorname{Tr}\left(\operatorname{Var}\left(E\left[Y \mid X_{1}\right]\right)\right)}{\operatorname{Tr}(M \Sigma)}$

Let $\left(X_{1}, \ldots, X_{N}\right)$ and $\left(X_{1}^{\prime}, \ldots, X_{N}^{\prime}\right)$ be two independent i.i.d sample of law μ_{1}. Let further $\left(Z_{1}, \ldots, Z_{N}\right)$ be an i.i.d sample of law μ_{2}. Set $Y^{i}:=f\left(X_{i}, Z_{i}\right)$ and $Y^{1, i}:=f\left(X_{i}, Z_{i}^{\prime}\right)$.

We define

$$
\begin{equation*}
S_{N}:=\frac{\sum_{l=1}^{k}\left(\frac{1}{N} \sum_{i=1}^{N} Y_{l}^{i} Y_{l}^{1, i}-\left(\frac{1}{N} \sum_{i=1}^{N} \frac{Y_{l}^{i}+Y_{l}^{1, i}}{2}\right)^{2}\right)}{\sum_{l=1}^{k}\left(\frac{1}{N} \sum_{i=1}^{N} \frac{\left(Y_{l}^{i}\right)^{2}+\left(Y_{l}^{1, i}\right)^{2}}{2}-\left(\frac{1}{N} \sum_{i=1}^{N} \frac{Y_{l}^{i}+Y_{l}^{1, i}}{2}\right)^{2}\right)} . \tag{5}
\end{equation*}
$$

1. Show that S_{N} converges almost surely to S^{1}
2. Show that $\sqrt{N}\left(S_{N}-S^{1}\right)$ converges in law to a centered Gaussian distribution.
3. Compute the variance of this limit distribution.
