EXAMEN SESSION 2-2018 MODELISATION ALEATOIRE

Durée 2 heures-Notes de cours autorisées

PROBLÈME I

5 points

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi exponentielle $\mathcal{E}(1/n)$ et soit $Y_n = X_n - [X_n]$ où $[X_n]$ désigne la partie entière de X_n .

- 1) Quel est l'ensemble des valeurs prises par la variable aléatoire Y_n ?
- 2) Montrer que la fonction de répartition F_n de Y_n est donnée par

$$F_n(x) = \begin{cases} 0 & \text{si } x \le 0, \\ \frac{1 - \exp(-x/n)}{1 - \exp(-1/n)} & \text{si } 0 \le x \le 1, \\ 1 & \text{si } x \ge 1. \end{cases}$$

- 3) En déduire que (Y_n) converge en loi vers Y dont on précisera la loi.
- 4) Proposer un programme pour visualiser cette convergence.

PROBLÈME II

8 points

La durée de vie d'une batterie d'un ordinateur portable peut être modélisée par une variable aléatoire positive X de densité de probabilité f donnée par

$$f(x) = \begin{cases} \frac{a}{\theta^a} (\theta - x)^{a-1} & \text{si } 0 \le x \le \theta, \\ 0 & \text{sinon} \end{cases}$$

avec a > 0 et $\theta > 0$. On peut noter que, si a = 1, X suit la loi uniforme sur l'intervalle $[0, \theta]$. On propose d'estimer θ , à partir d'un n-échantillon (X_1, X_2, \dots, X_n) de même loi que X, par

$$\widehat{\theta}_n = \max_{1 \le k \le n} X_k$$

- 1) Calculer la fonction de répartition F_n puis la densité de probabilité f_n de $\widehat{\theta}_n$.
- 2) Montrer que $\widehat{\theta}_n$ converge presque sûrement vers θ .
- 3) Montrer à partir de la question 1) que

$$n^{1/a} \Big(\theta - \widehat{\theta}_n \Big) \xrightarrow{\mathcal{L}} Z$$

où Z suit une loi de Weibull $\mathcal{W}(a,\lambda)$ i.e. $Z^a \sim \mathcal{E}(\lambda)$ avec $\lambda > 0$ à déterminer.

4) Pour a=1, proposer un programme illustrant la loi forte pour $\widehat{\theta}_n$.

PROBLÈME III

7 points

On considère la chaîne de Markov $(X_n)_{n\geq 0}$ d'espace d'états $E=\{0,1\}$ et de matrice de transition P donnée, pour 0 < a,b < 1, par

$$P = \left(\begin{array}{cc} 1 - a & a \\ b & 1 - b \end{array}\right).$$

1) Montrer que pour tout $n \ge 1$

$$P^{n} = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^{n}}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

- 2) En déduire la limite de P^n lorsque n tend vers l'infini.
- 3) Calculer l'unique probabilité invariante μ de la chaîne de Markov $(X_n)_{n\geq 0}$.
- 4) Si $S_n = X_1 + X_2 + \cdots + X_n$, montrer la convergence en probabilité sous μ

$$\frac{S_n}{n} \longrightarrow \frac{a}{a+b}.$$

5) Proposer un programme pour simuler cette chaîne de Markov et visualiser ce résultat de convergence, où les paramètres a et b sont affectés par l'utilisateur.