Final examen in Asymptotic Statistics

Thursday 15th of December 2016 Duration 4 hours

Manuscript notes of the lectures are allowed

1 Be Gaussian or not that is the question

Let $x \in \mathbb{R}$ be a fixed given point and $\theta \in \mathbb{R}$ be an unknown parameter. Let X_1, \ldots, X_n be an i.i.d. sample with common law $\mathcal{N}(\theta, 1)$. Set

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt.$$

To estimate $p := \mathbb{P}(X_1 \leq x)$, we propose the two following estimators :

$$\widehat{p}_n := \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{X_i \le x},$$
$$\widetilde{p}_n := \Phi(x - \overline{X}_n).$$

Here, as usual, \overline{X}_n denotes the empirical mean associated with the sample X_1, \ldots, X_n .

- 1. Show that both estimators converge almost surely to p.
- 2. Show that both estimators are asymptotically Gaussian when they are properly normalized. Compare the asymptotic variances.
- 3. What estimator would you choose?

2 Do you speak contiguity?

On a given measurable metric space, let p_1 and p_2 be two probability densities with respect to some σ -finite measure μ . We define the total variation distance between p_1 and p_2 by

$$||p_1 - p_2||_1 := \int |p_1 - p_2| d\mu.$$

1. Let \mathbb{P} and \mathbb{Q} be two probability measures. Set

$$\||\mathbb{P} - \mathbb{Q}\||_1 := \sup_A |\mathbb{P}(A) - \mathbb{Q}(A)|.$$

Here, the supremum runs over all measurable sets. Show that if $\mathbb{P} = p_1 \mu$ and $\mathbb{Q} = p_2 \mu$ then

$$|||\mathbb{P} - \mathbb{Q}|||_1 = ||p_1 - p_2||_1.$$

- 2. Let $(\mathbb{P}_n)_n$ and $(\mathbb{Q}_n)_n$ be two sequence of probability measures that are both dominated by μ . Assume that $\||\mathbb{P}_n - \mathbb{Q}_n\||_1 \to 0$, show that \mathbb{P}_n and \mathbb{Q}_n are mutually contiguous.
- 3. Let for $\theta > 0$, \mathbb{P}_{θ} be the uniform distribution on $[0, \theta]$. Let \mathbb{P}_{θ}^{n} denote the distribution of n i.i.d. draws from \mathbb{P}_{θ} . Let $h \in \mathbb{R}$, discuss the contiguity of \mathbb{P}_{1}^{n} and $\mathbb{P}_{1+h/\sqrt{n}}^{n}$.

3 Strange whistle : la, la, LAN for AR(1)

Let $\theta \in \mathbb{R}$ with $|\theta| < 1$. Let X_0 be a centred Gaussian random variable with variance $(1-\theta^2)^{-1}$ and (ε_n) be an i.i.d. sequence of standard Gaussian random variables. We assume that the sequence (ε_n) and X_0 are independent. For $n \in \mathbb{N}$, we set

$$X_{n+1} = \theta X_n + \varepsilon_{n+1}.$$

- 1. For $n \geq 1$, write the joint density of $X_0, \varepsilon_1, \ldots, \varepsilon_n$. Compute the joint density of X_0, X_1, \ldots, X_n .
- 2. Let \mathbb{P}^n_{θ} be the distribution of X_0, X_1, \ldots, X_n . For $h \in \mathbb{R}$ small enough, compute the $d\mathbb{P}^n_{\theta + \frac{h}{\sqrt{n}}}(X Y)$

likelihood ratio
$$L^n_{\theta}(h) := \frac{1}{\mathbb{C}^n} \frac{1}{\mathbb{C}^n} (X_0, X_1, \dots, X_n)$$

3. Set

$$S_n := \frac{1}{n} \sum_{i=1}^n X_i^2$$
 and $T_n := \frac{1}{n} \sum_{i=0}^{n-1} X_i X_{i+1}$.

Show that S_n and T_n are respectively unbiased estimator of $r(0) := \mathbb{E}(X_i^2) = \frac{1}{1 - \theta^2}$ and $r(1) := \mathbb{E}(X_i X_{i+1}) = \frac{\theta}{1 - \theta^2}$, $(i \in \mathbb{N})$. 4. For what follows, we will admit the following Theorem

Theorem 1

- (a) The covariance matrix of the random vector $\sqrt{n}(S_n, T_n)^T$ converges to a positive matrix Γ .
- (b) $\sqrt{n}[(S_n, T_n)^T (r(0), r(1))^T]$ converges in distribution to a two dimensional centred Gaussian vector with covariance matrix Γ .

Show that $\log L^n_{\theta}(h)$ converges in distribution towards a Gaussian random variable with mean m(h) and variance V(h). Express m(h) and V(h) as functions of h, Γ , r(0) and r(1).

5. What is your intuition on the relationship between m(h) and V(h)?

4 No life without Sobol

Let f be a measurable function from \mathbb{R}^d to \mathbb{R} and $X = (X_1, X_2, \ldots, X_d)$ be a random vector with independent components.

Set $I_d := \{1, 2, \dots, d\}$ and let **u** be a subset of I_d . Further, set

$$S^{\mathbf{u}} := \frac{\operatorname{Var}\left(\mathbb{E}\left[Y|X_k, k \in \mathbf{u}\right]\right)}{\operatorname{Var}(Y)}.$$

Let $X^{\mathbf{u}}$ be the random vector in \mathbb{R}^d such that $X_k^{\mathbf{u}} = X_k$ if $k \in \mathbf{u}$ and $X_k^{\mathbf{u}} = X'_k$ if $k \notin \mathbf{u}$ where X'_k has the same law as X_k and is independent of all the other random variables (for example if d = 5 and $\mathbf{u} = \{2, 4\}, X = (X_1, X_2, X_3, X_4, X_5)$ and $X^{\mathbf{u}} = (X'_1, X_2, X'_3, X_4, X'_5)$). Further, let

$$Y := f(X)$$
 and $Y^{\mathbf{u}} := f(X^{\mathbf{u}})$.

1. Show that

$$\operatorname{Var}\left(\mathbb{E}\left[Y|X_k, k \in \mathbf{u}\right]\right) = \operatorname{Cov}\left(Y, Y^{\mathbf{u}}\right)$$

2. Now let $(Y_j, Y_j^{\mathbf{u}})_{1 \le j \le N}$ be a N i.i.d. sample with the same distribution as $(Y, Y^{\mathbf{u}})$. We set further

$$S_{N} = \frac{\frac{1}{N} \sum_{j=1}^{N} Y_{j} Y_{j}^{\mathbf{u}} - \left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}\right) \left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}^{\mathbf{u}}\right)}{\frac{1}{N} \sum_{j=1}^{N} Y_{j}^{2} - \left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}\right)^{2}}.$$

Show that

$$\sqrt{N} \left(S_N - S^{\mathbf{u}} \right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N} \left(0, \Sigma_S \right).$$

Compute explicitly Σ_S .

3. Consider now the particular case where d = 3 and the inputs X_1, X_2, X_3 are i.i.d and uniformly distributed on $[-\pi, \pi]$. Further, let Y and f be defined by

$$Y = f(X_1, X_2, X_3) := \sin(X_1) + 7\sin(X_2)^2 + 0.1X_3^4\sin(X_1).$$

Take successively $\mathbf{u} = \{1\}, \{2\}, \{3\}$. In each case, compute explicitly the exact values of $S^{\mathbf{u}}$ and Σ_S .