Final examen in Asymptotic Statistics Thursday 15th of December 2016 Duration 4 hours

Manuscript notes of the lectures are allowed

1 Be Gaussian or not that is the question

Let $x \in \mathbb{R}$ be a fixed given point and $\theta \in \mathbb{R}$ be an unknown parameter. Let X_{1}, \ldots, X_{n} be an i.i.d. sample with common law $\mathcal{N}(\theta, 1)$. Set

$$
\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-t^{2}}{2}} d t
$$

To estimate $p:=\mathbb{P}\left(X_{1} \leq x\right)$, we propose the two following estimators :

$$
\begin{aligned}
& \widehat{p}_{n}:=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{X_{i} \leq x}, \\
& \tilde{p}_{n}:=\Phi\left(x-\bar{X}_{n}\right) .
\end{aligned}
$$

Here, as usual, \bar{X}_{n} denotes the empirical mean associated with the sample X_{1}, \ldots, X_{n}.

1. Show that both estimators converge almost surely to p.
2. Show that both estimators are asymptotically Gaussian when they are properly normalized. Compare the asymptotic variances.
3. What estimator would you choose?

2 Do you speak contiguity?

On a given measurable metric space, let p_{1} and p_{2} be two probability densities with respect to some σ-finite measure μ. We define the the total variation distance between p_{1} and p_{2} by

$$
\left\|p_{1}-p_{2}\right\|_{1}:=\int\left|p_{1}-p_{2}\right| d \mu
$$

1. Let \mathbb{P} and \mathbb{Q} be two probability measures. Set

$$
\|\mathbb{P}-\mathbb{Q}\| \|_{1}:=\sup _{A}|\mathbb{P}(A)-\mathbb{Q}(A)| .
$$

Here, the supremum runs over all measurable sets. Show that if $\mathbb{P}=p_{1} \mu$ and $\mathbb{Q}=p_{2} \mu$ then

$$
\|\mathbb{P}-\mathbb{Q}\|\left\|_{1}=\right\| p_{1}-p_{2} \|_{1}
$$

2. Let $\left(\mathbb{P}_{n}\right)_{n}$ and $\left(\mathbb{Q}_{n}\right)_{n}$ be two sequence of probability measures that are both dominated by μ. Assume that $\left\|\left\|\mathbb{P}_{n}-\mathbb{Q}_{n}\right\|\right\|_{1} \rightarrow 0$, show that \mathbb{P}_{n} and \mathbb{Q}_{n} are mutually contiguous.
3. Let for $\theta>0, \mathbb{P}_{\theta}$ be the uniform distribution on $[0, \theta]$. Let \mathbb{P}_{θ}^{n} denote the distribution of n i.i.d. draws from \mathbb{P}_{θ}. Let $h \in \mathbb{R}$, discuss the contiguity of \mathbb{P}_{1}^{n} and $\mathbb{P}_{1+h / \sqrt{n}}^{n}$.

3 Strange whistle : la, la, LAN for AR(1)

Let $\theta \in \mathbb{R}$ with $|\theta|<1$. Let X_{0} be a centred Gaussian random variable with variance $\left(1-\theta^{2}\right)^{-1}$ and $\left(\varepsilon_{n}\right)$ be an i.i.d. sequence of standard Gaussian random variables. We assume that the sequence $\left(\varepsilon_{n}\right)$ and X_{0} are independent. For $n \in \mathbb{N}$, we set

$$
X_{n+1}=\theta X_{n}+\varepsilon_{n+1} .
$$

1. For $n \geq 1$, write the joint density of $X_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n}$. Compute the joint density of $X_{0}, X_{1}, \ldots, X_{n}$.
2. Let \mathbb{P}_{θ}^{n} be the distribution of $X_{0}, X_{1}, \ldots, X_{n}$. For $h \in \mathbb{R}$ small enough, compute the likelihood ratio $L_{\theta}^{n}(h):=\frac{\mathrm{d} \mathbb{P}_{\theta+\frac{h}{n}}^{n}}{\mathrm{~d} \mathbb{P}_{\theta}^{n}}\left(X_{0}, X_{1}, \ldots, X_{n}\right)$.
3. Set

$$
S_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \text { and } T_{n}:=\frac{1}{n} \sum_{i=0}^{n-1} X_{i} X_{i+1} .
$$

Show that S_{n} and T_{n} are respectively unbiased estimator of $r(0):=\mathbb{E}\left(X_{i}^{2}\right)=\frac{1}{1-\theta^{2}}$ and $r(1):=\mathbb{E}\left(X_{i} X_{i+1}\right)=\frac{\theta}{1-\theta^{2}},(i \in \mathbb{N})$.
4. For what follows, we will admit the following Theorem

Theorem 1

(a) The covariance matrix of the random vector $\sqrt{n}\left(S_{n}, T_{n}\right)^{T}$ converges to a positive matrix Γ.
(b) $\sqrt{n}\left[\left(S_{n}, T_{n}\right)^{T}-(r(0), r(1))^{T}\right]$ converges in distribution to a two dimensional centred Gaussian vector with covariance matrix Γ.

Show that $\log L_{\theta}^{n}(h)$ converges in distribution towards a Gaussian random variable with mean $m(h)$ and variance $V(h)$. Express $m(h)$ and $V(h)$ as functions of $h, \Gamma, r(0)$ and $r(1)$.
5. What is your intuition on the relationship between $m(h)$ and $V(h)$?

4 No life without Sobol

Let f be a measurable function from \mathbb{R}^{d} to \mathbb{R} and $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be a random vector with independent components.

Set $I_{d}:=\{1,2, \ldots d\}$ and let \mathbf{u} be a subset of I_{d}. Further, set

$$
S^{\mathbf{u}}:=\frac{\operatorname{Var}\left(\mathbb{E}\left[Y \mid X_{k}, k \in \mathbf{u}\right]\right)}{\operatorname{Var}(Y)}
$$

Let $X^{\mathbf{u}}$ be the random vector in \mathbb{R}^{d} such that $X_{k}^{\mathbf{u}}=X_{k}$ if $k \in \mathbf{u}$ and $X_{k}^{\mathbf{u}}=X_{k}^{\prime}$ if $k \notin \mathbf{u}$ where X_{k}^{\prime} has the same law as X_{k} and is independent of all the other random variables (for example if $d=5$ and $\mathbf{u}=\{2,4\}, X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ and $\left.X^{\mathbf{u}}=\left(X_{1}^{\prime}, X_{2}, X_{3}^{\prime}, X_{4}, X_{5}^{\prime}\right)\right)$. Further, let

$$
Y:=f(X) \text { and } Y^{\mathbf{u}}:=f\left(X^{\mathbf{u}}\right)
$$

1. Show that

$$
\operatorname{Var}\left(\mathbb{E}\left[Y \mid X_{k}, k \in \mathbf{u}\right]\right)=\operatorname{Cov}\left(Y, Y^{\mathbf{u}}\right)
$$

2. Now let $\left(Y_{j}, Y_{j}^{\mathbf{u}}\right)_{1 \leq j \leq N}$ be a N i.i.d. sample with the same distribution as $\left(Y, Y^{\mathbf{u}}\right)$. We set further

$$
S_{N}=\frac{\frac{1}{N} \sum_{j=1}^{N} Y_{j} Y_{j}^{\mathrm{u}}-\left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}\right)\left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}^{\mathrm{u}}\right)}{\frac{1}{N} \sum_{j=1}^{N} Y_{j}^{2}-\left(\frac{1}{N} \sum_{j=1}^{N} Y_{j}\right)^{2}}
$$

Show that

$$
\sqrt{N}\left(S_{N}-S^{\mathbf{u}}\right) \underset{N \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \Sigma_{S}\right) .
$$

Compute explicitly Σ_{S}.
3. Consider now the particular case where $d=3$ and the inputs X_{1}, X_{2}, X_{3} are i.i.d and uniformly distributed on $[-\pi, \pi]$. Further, let Y and f be defined by

$$
Y=f\left(X_{1}, X_{2}, X_{3}\right):=\sin \left(X_{1}\right)+7 \sin \left(X_{2}\right)^{2}+0.1 X_{3}^{4} \sin \left(X_{1}\right)
$$

Take successively $\mathbf{u}=\{1\},\{2\},\{3\}$. In each case, compute explicitly the exact values of $S^{\mathbf{u}}$ and Σ_{S}.

