L3 MAPI3 2014 - 2015

Partiel du 13 Mars 2015- Durée 2h

Questions de cours

- 1. Enoncer la loi forte des grands nombres.
- 2. Enoncer le théorème de Slutsky.
- 3. Enoncer le théorème de la limite centrale.

Dé 1

On jette 100 fois un dé à 6 faces équilibré. Donner une approximation de la probabilité pour que la moyenne des scores observés soit supérieure à 3, 7. Indication $\mathbb{P}(N(0,1) < 2) = 0.9772$.

Statistique d'ordre 2

Soit X_1, \ldots, X_n un *n*-échantillon de loi uniforme sur [0,1]. On pose $m_n = \min_{i=1,\ldots,n} X_i$ et $M_n = \max_{i=1...n} X_i$. 1) Calculer les fonctions de répartition des variables m_n et M_n , puis en déduire leurs den-

- 2) Montrer que (nm_n) converge en loi vers la loi exponentielle de paramètre 1.

3 Mouvement Brownien

Sur un espace de probabilité (Ω, \mathcal{A}, P) , soit $(X_n)_{n \in \mathbb{Z}}$ = une suite i.i.d. de loi normale centrée réduite. Soient $f \in L^2[0,2\pi]$ et f(n) son coefficient de Fourier d'ordre $n \ (n \in \mathbb{Z})$. On pose

$$\xi_N(f) = \sum_{|n| \le N} X_n \hat{f}(n), \quad (N > 0).$$

- a) Montrer que la suite de v.a. $(\xi_N(f))$ converge dans $L^2(\Omega, \mathcal{A}, P)$ (on montrera que $(\xi_N(f))$ est une suite de Cauchy). On note $\xi(f) = \sum_{n \in \mathbb{Z}} X_n \hat{f}(n)$ la limite de cette suite.
- b) Montrer que

$$E(\xi(f)^2) = \int_0^{2\pi} |f(x)|^2 \frac{dx}{2\pi}.$$