L3 MAPI3 2014 - 2015

TD 4. Intégration et Probabilités

Intégrabilité 1

- Montrer que la fonction $\frac{1}{x+y}$ est intégrable sur $[-1,1]^2$. Montrer que la fonction $\frac{1}{x^2+y^2+z^2}$ est intégrable sur $[-1,1]^3$.

2 Produit

Soit X et Y 2 variables aléatoires indépendantes de densités f et g par rapport à la mesure de Lebesgue. Prouver que Z = XY a la densité :

$$\int_{R} f(\frac{z}{y})g(y)\frac{1}{|y|}dy.$$

Quotient 3

Soit X et Y 2 variables aléatoires indépendantes de loi normale centrée réduite. Montrer que $\frac{X}{V}$ a une loi de Cauchy. Montrer que c'est aussi le cas pour la loi de densité $\frac{\sqrt{2}}{\pi} \frac{1}{1+x^4}$.

Espace produit 4

Soit (Ω, \mathcal{A}, P) un espace de probabilité et X une v.a positive sur cette espace. Montrer que les ensembles

$$G = \{(\omega, X(\omega)), \ \omega \in \Omega\} \text{ et } H = \{(\omega, x), \ \omega \in \Omega \ 0 \le x \le X(\omega)\}$$

sont dans $\mathcal{A} \otimes \mathcal{B}(R)$. Montrer, en notant λ la mesure de Lebesgue

$$E(X) = \int_0^{+\infty} P(X \ge x) dx = (P \otimes \lambda)(H).$$

Loi gaussienne bivariée 5

Soit U_1 , U_2 , U_{12} trois v.a indépendantes gaussiennes centrées et de variances non nulles v_1, v_2, v_{12} . Soit $X_1 = U_1 + U_{12}, X_2 = U_2 + U_{12}$. Quelles sont les lois de X_1 et de X_2 , leurs moyennes, leurs variances σ_1^2 et σ_2^2 ? Quelle est le coéficient de corrélation ρ de (X_1, X_2) ? Montrer que (X_1, X_2) a la densité

$$\frac{1}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2}\exp\{-\frac{1}{2(1-\rho^2}\left[\frac{x_1^2}{\sigma_1^2}-2\rho\frac{x_1x_2}{\sigma_1\sigma_2}+\frac{x_2^2}{\sigma_2^2}\right]\}.$$

Même questions pour $X_2 = U_2 - U_{12}$. Pour $\sigma_1 = \sigma_2$, prouver :

$$P(X_1 \ge 0, X_2 \ge 0) = P(X_1 \le 0, X_2 \le 0) = \frac{1}{4} + \frac{1}{2\pi} \operatorname{Arcsin} \rho.$$

6 Mesurabilité

- Soit f une fonction réelle sur R^2 telle que pour tout x de R la fonction f(x,.) soit mesurable et pour tout y de R la fonction f(.,y) soit continue. Montrer que f est une fonction mesurable.
- Soit g une fonction réelle sur R^k qui, lorsque l'on fixe k-1 variables, est continue en la variable restante. Montrer que g est mesurable. Indication considérer pour $\frac{i-1}{n}=a_{i-1}\leq x\leq a_i=\frac{i}{n}$:

$$f_n(x,y) = \frac{a_i - x}{a_{i-1} - a_i} f(a_{i-1}, y) + \frac{x - a_{i-1}}{a_{i-1} - a_i} f(a_i, y).$$