Moyenne structurelle d'un vecteur localisé sur une partie de l'espace

F. Gamboa* V. Achard[†]

Projet GMM3

Résumé La moyenne ou espérance m^* associée à une mesure de probabilité $\mathbb P$ sur $\mathbb R^d$ se calcule classiquement par la formule

$$m^* = \int_{\mathbb{R}^d} x \mathbb{P}(dx).$$

Elle peut aussi être vue comme le vecteur de \mathbb{R}^d qui minimise le moment d'inertie

$$I(m) = \int_{\mathbb{R}^d} d_e^2(x, m) \mathbb{P}(dx),$$

où d_e désigne la distance euclidienne usuelle sur \mathbb{R}^d . Si la mesure de probabilité est supportée par un ensemble non convexe $S_{\mathbb{P}}$ m^* est située très souvent en dehors de $S_{\mathbb{P}}$ et est donc peu informative sur la distribution \mathbb{P} . Le but de ce projet est d'étudier, par exemple dans le cas des courbes paramétrées, la construction de moyennes basée sur la minimisation de I lorsque l'on remplace la distance euclidienne par une mesure de dissimilarité adaptée à la structure de $S_{\mathbb{P}}$. Par exemple, pour une courbe paramétrée, il es naturel de mesurer la proximité de deux points de la courbe à l'aide de l'abscisse curviligne. Le cas d'une divergence de Bregman pourrait également être étudié.

Mots clefs : Barycentre. Distance. Divergence de Bregman

Thème applicatif: Imagerie

^{*}Institut de Mathématiques de Toulouse fabrice.gamboa@math.univ-toulouse.fr

 $^{^\}dagger \mathrm{ONERA}$ Toulouse veronique.achard@onera.fr