Examen de Plans d'expérience du 9 Décembre 2013

Durée: 2h, 13h30-15h30

Notes de cours autorisées. Les résultats seront être justifiés. Les calculatrices sont autorisées

1 Un petit modèle de régression linéaire

Soit $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ deux vecteurs libres de la sphère unité de \mathbb{R}^2 . On considère le modèle de régression linéaire

$$Y_i = u_i \alpha^* + v_i \beta^* + \varepsilon_i, \ i = 1, 2. \tag{1}$$

 $\begin{pmatrix} \alpha^* \\ \beta^* \end{pmatrix}$ est le paramètre inconnu et $\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix}$ est un couple de variables aléatoires gaussiennes centrées indépendantes et de même variance σ^2_* .

- 1. Calculer l'estimateur du maximum de vraisemblance du paramètre.
- 2. On pose $X = (u \ v)$. Calculer les valeurs propres de la matrice d'information $X^T X$.
- 3. On rappelle qu'un plan d'expériences est dit *E*-optimal lorsqu'il minimise la plus grande valeur propre de la matrice de variance-covariance de l'estimateur du maximum de vraisemblance du paramètre. Décrire les plans *E*-optimaux pour le modèle linéaire (1).

2 Modèle linéaire

2.1 Construction de Sylvester des matrices de Hadamard

Soit $H_0 := 1$. Pour $n \ge 1$, on pose $N = 2^n$ et

$$H_n := \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}.$$

- 1. Calculer H_1 , H_2 et H_3 .
- 2. Soit $n \geq 1$, pour $i, j = 1, \dots, N$, on note h_n^{ij} l'élément de la ligne i, colonne j de H_n et \underline{h}_n^j la colonne j de H_n . Quel est l'ensemble des valeurs possible de h_n^{ij} ? Que vaut $\|\underline{h}_n^j\|_2$ (norme euclidienne standard).
- 3. Montrer par récurrence que la matrice H_n satisfait l'équation $H_n^T H_n = NI_N$, où I_N désigne la matrice identité de \mathbb{R}^N . Que vaut $|\det H_n|$?

2.2 Modèle additif associé à la matrice de Hadamard

Soit $\theta^* = (\theta_j^*)_{j=1\cdots N-1} \in \mathbb{R}^{N-1}$, $\sigma_*^2 > 0$ et (ε_n) une suite i.i.d. de variables aléatoires de loi normale standard. On considère le modèle linéaire gaussien dont la *i*-ème observation $(i=1,\cdots,N)$ vaut

$$Y_i = \sum_{j=1}^{N-1} h_n^{ij} \theta_j^* + \sigma_* \varepsilon_i.$$

- 1. Mettre le modèle linéaire sous la forme vectorielle standard $Y = X\theta^* + \sigma^*\epsilon$.
- 2. Pour j = 1 ... N 1 Calculer l'estimateur du maximum de vraisemblance $\widehat{\theta}_j$ de θ_j^* en fonction de \underline{h}_n^j , (on notera $\langle \cdot, \cdot \rangle$ le produit scalaire). Quelle est la loi de l'estimateur du maximum de vraisemblance débiasé de σ_*^2 ?
- 3. Pour $\lambda > 0$, on considère maintenant l'estimateur ridge $\widehat{\theta}^{\lambda}$ de θ^* obtenu par minimisation du critère des moindres carrés pénalisés :

$$||Y - X\theta||_2^2 + \lambda ||\theta||_2^2$$
.

Pour $j = 1 \dots N - 1$, calculer $\widehat{\theta_j^{\lambda}}$. Quel est sont biais? Sa variance? Son risque quadratique?