Examen du 15 mai 2014-Durée 2h

1 Valeurs singulières des matrices Hadamard de Sylvester

Soit $H_0 := 1$. Pour $n \ge 1$, on pose $N = 2^n$ et

$$H_n := \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix} \text{ et } S_n := \frac{1}{\sqrt{N}} H_n$$

- 1. Calculer S_1 , S_2 et S_3 .
- 2. Soit $n \geq 1$, pour $i, j = 1, \dots, N$, on note s_n^{ij} l'élément de la ligne i, colonne j de S_n et \underline{s}_n^j la colonne j de S_n . Quel est l'ensemble des valeurs possible de s_n^{ij} ? Que vaut $\|\underline{s}_n^j\|_2$ (norme euclidienne standard).
- 3. Montrer par récurrence que la matrice S_n satisfait l'équation $S_n^T S_n = I_N$, où I_N désigne la matrice identité de \mathbb{R}^N . Que vaut $|\det S_n|$?
- 4. Quelles sont les valeurs singulières de S_n ? Donner la décomposition en valeurs singulières de S_n .

2 Un peu de probabilités

2.1 Spectre d'une certaine matrice de Toeplitz

Pour $n \geq 1$, on considère la marice de Toeplitz $n \times n$

$$T_n := \begin{pmatrix} 0 & -1 & 0 & \cdots & 0 \\ -1 & 0 & -1 & \cdots & 0 \\ -0 & -1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Soit, pour $\lambda \in \mathbb{R}$, $P_n(\lambda)$ le polynôme caractéristique de T_n .

- 1. Montrer que $P_1(\lambda) = -\lambda$, $P_2(\lambda) = \lambda^2 1$.
- 2. Montrer que $P_n(\lambda)$ satisfait la récurrence

$$P_n(\lambda) = -\lambda P_{n-1}(\lambda) - P_{n-2}(\lambda), \quad (n \ge 3). \tag{1}$$

3. Montrer, par récurrence sur n, que pout tout $x \in \mathbb{R}$,

$$P_n(-2\cos x) = \frac{\sin(n+1)x}{\sin(x)}.$$

4. Quelle sont les valeurs propres de T_n .

2.2 Forme quadratique gaussienne

Soit (ε_n) une suite i.i.d. de loi gaussienne standard. On considère la forme quadratique aléatoire $W_n=n^{-1}\sum_{i=1}^{n-1}\varepsilon_i\varepsilon_{i+1}$.

- 1. En utilisant la partie 2.1 et le théorème de Cochran, montrer que W_n peut s'écrire comme une somme de variables aléatoires indépendantes identiquement distribuées de loi $\chi^2(1)$ et pondérées par les valeurs propres de T_n .
- 2. Calculer l'espérance et la variance de W_n . Montrer que ces quantités convergent toutes les deux vers 0. Quelle est la limite, quand n tend vers $+\infty$ de $n\text{Var}W_n$?
- 3. En déduire que la suite (W_n) converge en probabilité vers une limite non aléatoire à préciser.