Révisions

Séance du 29 Novembre 2012

1 Modèle linéaire

1.1 Cuatro Cuaranta

Soit n_1 et n_2 deux entiers strictement positifs fixés et $n = 2p > 2 \max(n_1, n_2)$. On considère pour $j = 1 \dots n$, le modèle de régression périodique :

$$Y_j = a_0 + a_1 \cos(2\pi n_1 \frac{j}{n}) + a_2 \cos(2\pi n_2 \frac{j}{n}) + b_1 \sin(2\pi n_1 \frac{j}{n}) + b_2 \sin(2\pi n_2 \frac{j}{n}) + \varepsilon_j.$$

a) Montrer ou admettre pour i, i' = 1, 2, les relations suivantes :

$$\sum_{j=1}^{n} \cos(2\pi n_i \frac{j}{n}) \cos(2\pi n_{i'} \frac{j}{n}) = 0 \text{ si } i \neq i'$$
$$= p \text{ si } i = i'$$

$$\sum_{j=1}^{n} \sin(2\pi n_i \frac{j}{n}) \sin(2\pi n_{i'} \frac{j}{n}) = 0 \quad \text{si } i \neq i'$$

$$= p \quad \text{si } i = i'$$

$$\sum_{i=1}^{n} \cos(2\pi n_i \frac{j}{n}) = \sum_{i=1}^{n} \sin(2\pi n_i \frac{j}{n}) = \sum_{i=1}^{n} \cos(2\pi n_i \frac{j}{n}) \sin(2\pi n_{i'} \frac{j}{n}) = 0.$$

b) Montrer que les estimateurs (du maximum de vraisemblance) des paramètres sont :

$$\widehat{a}_{0} = \frac{1}{n} \sum_{j=1}^{n} Y_{j}
\widehat{a}_{i} = \frac{1}{p} \sum_{j=1}^{n} Y_{j} \cos(2\pi n_{i} \frac{j}{n}), i = 1, 2
\widehat{b}_{i} = \frac{1}{p} \sum_{j=1}^{n} Y_{j} \sin(2\pi n_{i} \frac{j}{n}), i = 1, 2
S^{2} = \frac{1}{2p-5} \sum_{j=1}^{n} \left[Y_{j} - \left(\widehat{a}_{0} + \widehat{a}_{1} \cos(2\pi n_{1} \frac{j}{n}) + \widehat{a}_{2} \cos(2\pi n_{2} \frac{j}{n}) + \widehat{b}_{1} \sin(2\pi n_{1} \frac{j}{n}) + \widehat{b}_{2} \sin(2\pi n_{2} \frac{j}{n}) \right) \right]^{2}$$

- c) Construire le test d'hypthèse de $a_1=a_2=b_1=b_2=0$, puis celui de $a_1=b_1=0$.
- d) Application numérique pour le second test de la question précédente. Cas de la note LA, $n_2=440$ n=1000. Tester si la note est un LA pur (c'est-à-dire $a_1=b_1=0$) avec $S_{\rm obs}^2=1,5$, $\widehat{a}_1^{\rm obs}=0,52$, $\widehat{b}_1^{\rm obs}=0,98$

1.2 Régression polynômiale

Soient p et n deux entiers tels que $0 \le p < n$. Pour tout $1 \le j \le n$ on pose $x_j = j - \frac{n+1}{2}$. On considère $\psi_0, \psi_1, \dots, \psi_p$ polynômes fixés tels que :

- $\operatorname{degr\acute{e}}(\psi_i) = i, \ \forall 0 \le i \le p$
- $\sum_{i=1}^{n} \psi_i(x_i) \psi_k(x_i) = 0, \ \forall 0 \le i \ne k \le p$

On a en vue d'étudier le modèle de régression

$$Y_j = \sum_{i=0}^p \lambda_i \psi_i(x_j) + \varepsilon_j, \quad 1 \le j \le n$$

où $\varepsilon_1, \ldots, \varepsilon_n$ sont indépendantes et de même loi $\mathcal{N}(0, \sigma^2)$ et $\lambda_0, \ldots, \lambda_p, \sigma^2$ sont des paramètres inconnus.

- a) Estimer les paramètres de ce modèle.
- b) Ecrire un test de niveau α de " $\lambda_p = 0$ " contre " $\lambda_p \neq 0$ ".

Le revenu net par action de la compagnie Gillette pour les années 57 à 64 est le suivant :

Année (z_i) : 1957 1958 1959 1960 1961 1962 1963 1964 Revenu en $Y_i(\omega)$: 0,93 0,99 1.11 1,33 1.52 1,60 1,47 1,33

On pose $x_j = z_j - 1960, 5$ puis $\psi_0(x) = 1, \psi_1(x) = 2x$ et $\psi_2(x) = x^2 - 21/4$.

- c) Vérifier brièvement que le choix ci-dessus de $x_j, \psi_0, \psi_1, \psi_2$ rentre dans le cadre décrit plus haut.
- d) En supposant que $Y_j = \sum_{i=0}^2 \lambda_i \psi_i(x_j) + \varepsilon_j$, $1 \le j \le 8$ avec $\varepsilon_1, \ldots, \varepsilon_8$ indépendantes et de même loi $\mathcal{N}(0, \sigma^2)$, estimer $\lambda_0, \lambda_1, \lambda_2$ et σ^2 . Tester si $\lambda_2 = 0$.
 - e) Faire une prévision pour le revenu net par action en 1965.

<u>N.B.</u> Pour faciliter les calculs, on indique les valeurs numériques suivantes :

$$\overline{\sum_{j}} \psi_{1}^{2}(x_{j}) = \sum_{j} \psi_{2}^{2}(x_{j}) = 168 \sum_{j} Y_{j}^{2}(\omega) = 13,65 \sum_{j} \psi_{0}(x_{j}) Y_{j}(\omega) = 10,28$$

$$\sum_{j} \psi_{1}(x_{j}) Y_{j}(\omega) = 6,86 \sum_{j} \psi_{2}(x_{j}) Y_{j}(\omega) = -4,1.$$

1.3 Modèle linéaire et test d'hypothèses non linéaires

Soit ε_{ij} , $i=1,\ldots,k$ $j=1\ldots n$, des variables i.i.d., de loi normale centrée réduite. Soit $m_1,\ldots,m_k\in\mathbb{R}$, on pose $Y_{ij}=m_i+\varepsilon_{ij}$ $i=1,\ldots,k$ $j=1\ldots n$.

- a) Quels sont les estimateurs du maximum de vraisemblance \widehat{m}_i de m_i (i = 1, ..., k)?
- b) On se propose maintenant de construire une statistique de test pour les hypothèses non linéaires :

$$H_0 \sum_{i=1}^k m_i^2 = 1 \quad H_1 \sum_{i=1}^k m_i^2 \neq 1.$$

Pour cela, on se propose d'utiliser la statistique de test

$$T_n = \sqrt{n} \left(\sum_{i=1}^k \widehat{m}_i^2 - 1 \right).$$

Montrer que T_n peut s'écrire sous la forme suivante

$$T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^k (\xi_i^n)^2 + 2 \sum_{i=1}^k (\xi_i^n) m_i + \sqrt{n} (\sum_{i=1}^k m_i^2 - 1),$$

o $(\xi_i^n)_{i=1...k}$ sont i.i.d. de loi $\mathcal{N}(0,1)$.

- c) On suppose que H_0 est vérifiée. Montrer que $\frac{1}{\sqrt{n}} \sum_{i=1}^k (\xi_i^n)^2$ converge en probabilité vers 0. En déduire que T_n converge en loi. Préciser la loi limite.
- d) On suppose que H_1 est vérifiée. En utilisant la question précédente, montrer que presque sûrement $\lim_{n\to\infty} |T_n| = +\infty$.
- e) Déduire des questions précédentes une procédure de test pour décider entre H_0 et H_1 .

2 Théorèmes asymptotiques

2.1 Loi asymptotique des extrêmes

Pour $n \geq 1$, soit X_1, \ldots, X_n des variables i.i.d. de densité f.

- On suppose que le support de f est [0,1] et que cette fonction admet le développement :

$$f(x) = c_0 + c_1(1-x)^{\alpha}(1+\varepsilon(x)),$$

où $\alpha > -1$ et $\lim_{x\to 1^-} \varepsilon(x) = 0$. Discuter, en fonction de α de la normalisation stabilisant la loi de $X_{(n)}$ et déterminer la loi limite.

- Reprendre la question précédente dans le cas de la loi de Pareto de densité

$$f(x) = c_{\alpha} x^{-\alpha} 1_{\{x > 1\}}.$$

On a ici $\alpha > 1$

2.2 Grandes déviations précises

On considère le modéle de régression

$$Y_i = a^* X_i + \varepsilon_i, \ i = 1, \dots, N.$$

Où les vecteurs (X_i, Y_i) , i = 1, ..., n sont toutes i.i.d.. On suppose de plus que, pour tout i = 1, ..., n, X_i et ϵ_i sont des variables aléatoires indépendantes qui possèdent des moments d'ordre 4 finis.

- 1. Calculer \hat{a} l'estimateur des moindres carrès de a^* .
- 2. Montrer que, en général, \hat{a} est un estimateur biaisé.
- 3. Montrer que $\sqrt{n}(\widehat{a} a^*)$ converge en loi vers une gaussienne centrée dont on précisera la variance.
- 4. On suppose que les variables (X_i) et (ε_i) sont des gaussiennes standard. Donne un équivalent, pour n grand et t > 0, de $\mathbb{P}(\widehat{a} a^* \ge t)$ et de $\mathbb{P}(\widehat{a} a^* \le -t)$.
- 5. Reprendre la question précédente lorsque les (ϵ_i) sont des gaussiennes standard ou de loi de Laplace et que les variables (X_i) sont uniformément distribuées sur $\{-1,1\}$ ou sur $\{-1,0,1\}$.

3 Processus gaussiens stationnaires

$3.1 \quad AR(1)$

On considère le processus gaussien AR(1) causale

$$X_{n+1} = \theta^* X_n + \epsilon_{n+1}, (n \in \mathbb{Z}),$$

où $|\theta^*| < 1$ et (ϵ_n) est une suite i.i.d. de loi gaussienne standard. Calculer l'estimateurs de θ^* obtenu par la méthode du maximum de vraisemblance puis par la méthode de Yule Walker. Comparer leurs propriétés asymptotiques.

$3.2 \quad AR(2)$

On considère le processus gaussien AR(2) causale

$$X_{n+1} = (\theta_1^* + \theta_2^*) X_n - (\theta_1^* \theta_2^*) X_{n-1} + \epsilon_{n+1}, (n \in \mathbb{Z}),$$

où $|\theta_i^*| < 1, (i = 1, 2)$ et (ϵ_n) est une suite i.i.d. de loi gaussienne standard. Exprimer X_n comme une fonction des (ϵ_i) de son passé. En déduire la fonction de covariance du processus et sa densité spectrale.