Réduction des matrices

1 Diagonalisation des matrices

1.1 Dimension 2

Diagonaliser les matrices suivantes : $\begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix}$, $\begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}$, $\begin{pmatrix} 5 & 3 \\ -8 & 6 \end{pmatrix}$, $\begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix}$.

1.2 Dimension 3

Diagonaliser les matrices suivantes :

$$-\begin{pmatrix} -1 & 2 & -3 \\ 2 & 2 & -6 \\ -2 & 2 & -6 \end{pmatrix}$$
 (montrer que -2 est bien valeur propre),

$$-\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
 (montrer que 6 est bien valeur propre),

$$-\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 2 & 1 & 3 \\ 4 & 2 & 0 \end{pmatrix}$$
 (montrer que -1 est bien valeur propre).

1.3 Dimension 4

Diagonaliser les matrices suivantes :

2 Matrices stochastiques

Soit $M=(m_{ij})$ une matrice $n\times n$ à coefficients réels telle que :

$$\forall i, j, m_{ij} \geq 0 \text{ et } \forall i, m_{i,1} + m_{i,2} + \dots + m_{i,n} = 1.$$

(On dit que M est une matrice stochastique.)

- 1. Montrer que 1 est valeur propre de M.
- 2. Soit λ une valeur propre complexe de M. Montrer que $|\lambda| \leq 1$. (indication : si $(x_1, \dots, x_n) \in \mathbb{C}^n$ est un vecteur propre associé, considérer le coefficient x_k de plus grand module).
- 3. Montrer que si tous les coefficients m_{ij} sont strictement positifs alors $|\lambda| = 1 \Rightarrow \lambda = 1$.

3 opérateur de dérivation

Sur $E = \mathbb{R}_n[X]$ on considère l'application $\varphi(P) = (X^2 - 1)P'' + (2X + 1)P'$.

- 1. Donner la matrice de φ dans la base canonique de $\mathbb{R}_n[X]$.
- 2. Montrer que φ est diagonalisable.
- 3. Mêmes questions pour les applications $\varphi(P) = (X a)P'$ et $\varphi(P) = X(X 1)P' 2nXP$.

4 Endomorphisme sur les suites

Soit E l'espace vectoriel des suites réelles $u=(u_n)_{n\geq 1}$ et f l'endomorphisme de E défini par :

$$(f(u))_n = \frac{u_1 + 2u_2 + \dots + nu_n}{n^2}.$$

Quelles sont les valeurs propres de f?