TD2 de Statistique Inférentielle

Vraisemblance, Exhaustivité, Information de Fisher

1^{ere} Année Magistère 07-08

1 n-échantillon d'une loi de Poisson

On considère X_1, X_2, \ldots, X_n un n-échantillon d'une loi de Poisson de paramètre θ inconnu, $\theta \in [0, \infty[$.

- 1) On cherche à estimer θ .
 - a) L'estimateur $\overline{X} = \frac{X_1 + \ldots + X_n}{n}$ est-il sans biais? Quel est son risque quadratique?
 - b) Montrer que, pour tout estimateur $h(X_1, ..., X_n)$, il existe un estimateur $\hat{h}(X_1 + ... + X_n)$ de θ de risque quadratique inférieur : \overline{X} est une statistique exhaustive.
 - c) Quel est l'estimateur du maximum de vraisemblance de θ ?
- 2) On cherche maintenant à estimer $e^{-l\theta}$, probablité pour que sur l expériences futures, on observe toujours 0.
 - a) On propose l'estimateur, $e^{l\overline{X}}$? Est-il sans biais? Quel est son risque quadratique?
 - b) Déterminer une fonction g de \mathbb{N} dans \mathbb{R} telle que $g(n\overline{X})$ soit un estimateur sans biais. Que se passe-t-il si on prend $n=1,\ l=2$?

2 Loi de Poisson

Considérons le modèle dominé $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \{\mathcal{P}(\theta), \theta > 0\})^n$ où $\mathcal{P}(\theta)$ est une loi de Poisson de paramètre θ .

- a) Montrer que $T(X) = \sum_{i=1}^{n} X_i$ est une statistique exhaustive sans utiliser le Théorème de Neyman-Fisher.
- b) A l'aide du Théorème de Neyman-Fisher retrouver ce résultat.

3 Exhaustivité

Soit (X_1, \dots, X_n) un n-échantillon de loi générique celle de X. Le support de la loi de X est v_1, \dots, v_{k+1} avec les probabilités respectives $\theta_1, \dots, \theta_{k+1}$, $(\sum_{i=1}^{k+1} \theta_i = 1)$. Notons l'ensemble des paramètres :

$$\Theta = \left\{ \theta = (\theta_1, \dots, \theta_{k+1}), \theta_i > 0 \text{ et } \sum_{i=1}^{k+1} \theta_i = 1 \right\},\,$$

 θ inconnu. Soit N_j le nombre des X_j qui sont égaux à v_j .

- a) Notons $N = (N_1, \dots, N_k)$. Montrer que N est exhaustive pour θ .
- b) Quelle est la distribution de (N_1, \dots, N_{k+1}) ?

4 Modèle exponentiel

a) Utiliser la propriété de reparamétrisation des familles exponentielles pour calculer dans le cas d'un n-échantillon (X_1, \dots, X_n) de loi gaussienne de paramètres μ et σ :

$$\mathbb{E}_{\theta}(\sum X_i), \mathbb{E}_{\theta}(\sum X_i^2), \operatorname{Var}_{\theta}(\sum X_i), \operatorname{Var}_{\theta}(\sum X_i^2).$$

b) Même question pour le modèle de Rayleigh : $f(x, \theta) = (x/\theta^2) \exp(-x^2/2\theta^2)$, pour x > 0 et $\theta > 0$.

5 Modèles exponentiels

Montrer que les distributions suivantes peuvent se mettre sous la forme d'un modèle exponentiel en θ , $\theta > 0$, dont on précisera à chaque fois le paramètre naturel et la satistique exhaustive.

- Loi de Poisson : $P(y = k) = e^{-\theta} \frac{\theta^k}{k!}, k \in \mathbb{N}.$
- Loi binomiale : $P(y=k) = \binom{n}{k} \theta^k (1-\theta)^{n-k}, k=1,\ldots,n.$
- Loi binomiale négative : $P(y=k) = \binom{n+k-1}{n-1} \theta^n (1-\theta)^k, k \in \mathbb{N}.$
- Loi gamma : $f(x) = \frac{\theta^a}{\Gamma(a)} e^{-\theta x} x^{a-1}, x > 0, a > 0.$
- Loi de Weibull : $f(x) = \theta ax^{a-1} \exp(-\theta x^a), x > 0, a > 0.$
- Loi de Pareto : $f(x) = \frac{\theta a^{\theta}}{x^{\theta+1}}, a > 0, x > a.$

6 Loi uniforme sur $[0, \theta]$

On considère une suite de variables aléatoires réelles X_1, \ldots, X_n indépendantes, de même loi uniforme sur l'intervalle $[0, \theta], \theta > 0$.

- a) Donner une statistique exhaustive pour ce modèle.
- b) Montrer que cette statistique est totale.
- c) Trouver un estimateur sans biais de variance minimale de l'espérance $\theta/2$.

7 Estimation d'une probabilité de panne

Soit X_1, \ldots, X_n une suite indépendante de temps de panne, supposés distribués selon une loi exponentielle de paramètre θ , $\theta > 0$.

Touver un estimateur sans biais de variance minimale de la probabilité de panne à l'instant t, t > 0 fixé.

8 Loi log-normale

Soit X_1, \ldots, X_n une suite de variables aléatoires réelles positives, indépendantes de même loi, telle que $\log X_i$ soit distribué selon une loi normale de paramètre θ réel inconnu, et devariance 1.

- a) Montrer que $\sum_{i=1}^{n} \log X_i$ est une statistique exhaustive totale et minimale.
- b) Donner une estimateur sans biais de variance minimale de θ .
- c) Donner l'information de Fisher du modèle en θ .
- d) Donner un estimateur sans biais de e^{θ} .

9 Loi Hypergéométrique

Pour N et n fixes, on considère $\Theta = \{0, 1, ..., N\}$ et la famille $(P_{\theta})_{\theta \in \Theta}$ des lois hypergéométriques sur $\Omega = \{0, 1, ..., n\}$ donnée par

$$P_{\theta}(k) = \frac{\binom{\theta}{k} \binom{N - \theta}{n - k}}{\binom{N}{n}}, \quad 0 \le k \le \inf(n, \theta).$$

On observe X de loi P_{θ} . Donner un estimateur uniformément de variance minimale parmi les estimateurs sans biais de θ . Calculer cette variance.

10 Efficacité

Soit X_1, \ldots, X_n un n-échantillon de la loi F_{θ} . Discuter de l'efficacité de \overline{X} comme estimateur de la moyenne dans les cas suivants : F_{θ} est la loi $\mathcal{B}(1,\theta)$, $\mathcal{N}(\theta,1)$, $\mathcal{P}(\theta)$, $\mathcal{E}(\theta)$, Géométrique (θ) et enfin $\mathcal{U}([0,\theta])$.

11 Loi de Binomiale

Soit X_1, \ldots, X_n un n-échantillon de la loi $\mathcal{B}(1, \theta), \ 0 < \theta < 1$. On pose $T = \overline{X}(1 - \overline{X})$ et $S = \frac{n}{n-1}\overline{X}(1 - \overline{X})$. On veut estimer $f(\theta) = \theta(1 - \theta)$.

- a) Donner un estimateur uniformément de variance minimale parmi les estimateurs sans biais de $f(\theta)$.
- b) Quelle est la borne de Cramér-Rao pour les estimateurs sans biais de $f(\theta)$?
- c) On veut montrer que $\operatorname{Var}_{\theta}(S) = \frac{1}{n}\varphi(\theta) + O(n^{-2})$ et calculer $\varphi(\theta)$.
 - α) Calculer $E_{\theta} f(\overline{X})$ et $E_{\theta} f(\overline{X})^2$ en utilisant la formule de Taylor appliquée à $f(\overline{X}) f(\theta)$ et $f(\overline{X})^2 f(\theta)^2$.
 - β) Vérifier que $E_{\theta}(\overline{X}-\theta)^3$ et $E_{\theta}(\overline{X}-\theta)^4$ sont de l'ordre de $O(n^{-2})$.
 - γ) Conclure.
- d) Calculer $Var_{\theta}(S)$.

12 Super éfficacité

Soit X_1, \ldots, X_n un n-échantillon de la loi $\mathcal{N}(\theta, 1)$ et on pose $\widehat{X} = \overline{X} \mathbb{1}_{|\overline{X}| > n^{-1/4}}$. Calculer le risque quadratique $R_n(\theta)$ de \widehat{X} pour estimer θ ainsi que $\lim_{n \to \infty} nR_n(\theta)$ en $\theta = 0$. En déduire que pour $\theta = 0$ et pour n grand, \widehat{X} est meilleur que \overline{X} , bien que \overline{X} soit efficace. L'inégalité de Cramér-Rao est-elle contredite?

13 Support d'une loi uniforme

Soit X_1, \ldots, X_n une suite de variables aléatoires indépendantes de même loi uniforme sur $[\theta - 1/2, \theta + 1/2]$. Quel est l'estimateur du maximum de vraisemblance de θ ?

14 Temps de panne censuré

On suppose que le temps de première panne de certains appareils suit une loi géométrique de paramètre θ (sur une échelle de temps discrète, le temps étant compté par exemple en jours, en mois, ...). On observe n objets et on note les instants de pannes inférieurs strictement à r+1. Quel est l'estimateur du maximum de vraisemblance de θ ?

15 Loi de Pareto

On appelle la loi de Pareto unilatérale de paramètres α et r la loi de densité

$$f_{\alpha,r}(x) = \frac{\alpha r^{\alpha}}{x^{\alpha+1}} \mathbb{I}_{(x>r)} \quad \alpha > 0, \ r > 0.$$

- a) Calculer sa moyenne (pour $\alpha > 1$) et sa variance (pour $\alpha > 2$).
- b) On observe désormais un n-échantillon de cette loi. Donner une statistique exhaustive pour le paramètre (α, r) .
- c) En supposant α connu, déterminer l'estimateur du maximum de vraisemblance pour r et calculer sa loi. Cet estimateur est-il sans biais?