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Abstract

This work investigates the problem of construction of designs for estimation and discrimination
between competing linear models. In our framework, the unknown signal is observed with the addition
of a noise and only a few evaluations of the noisy signal are available. The model selection is performed
in a multi-resolution setting. In this setting, the locations of discrete sequential D and A designs are
precisely contraint in a small number of explicit points. Hence, an efficient stochastic algorithm can
be constructed that alternately improves the design and the model. Several numerical experiments
illustrate the efficiency of our method for regression. One can also use this algorithm as a preliminary
step to build response surfaces for sensitivity analysis.

1 Introduction

A new algorithm for building optimal designs is proposed in this paper to estimate an unknown signal
η. We will use a one dimensional framework but all our results can be extended to multi-dimensional
cases provided E is a finite union of finite dimensional compact and convex spaces. We discriminate
competing models in a multi-resolution setting described by a set of functions (Λr,t)(r,t). The signal is
observed with the addition of a noise

∀x ∈ E f(x) = η(x) + σζ(x), (1)

where ζ(x) will denote a normalized white noise and σ2 is the variance of the model. To estimate η, we
allow ourself as few observations of f as possible but we can choose the locations where f is evaluated
to build our design. For any set I of pairs (r, t) where r is a resolution index and t a translations factor,
and any design x, we estimate η as

η̂(x) =
∑

(r,t)∈I

θ̂r,tΛr,t(x).

Of course, θ̂ depends on I and x and we aim to obtain a good estimation of η with a small variance. We
suppose that the cost of the evaluation of f is larger than any optimisation procedure to get I and x and
our algorithm will have to select a few points among E to provide good estimations of η. A good example
of such situations can be encountered in biology where experiments are often expensive and one cannot
make many experiments. Another example is provided in the experimental section, dealing with the
Motorcycle impact experiment introduced in [S85]. Hence, our motivation is to obtain a multi-resolution
estimation with a few number of points in the design.

In the last decade, a large amount of works concerned by models selection based on stochastic or
penalized approaches has been successfully developed. From a theoretical point of view, the recent `1

penalized approaches (Lasso of [T96], LARS of [EJHT03] or Dantzig Selector of [CT07]) propose to
introduce some `1 penalties to constraint the estimator θ̂ to obtain sparse estimation η̂ in the basis
(Λr,t)(r,t). These works reach satisfactory theoretical results for the selection of the model. But to the
best of our knowledge, no exact optimization method for selecting a design dedicated to the sparse
reconstruction of the model exists. Implicitly, the `1 penalized regression methods rely on properties
of the design to obtain some good reconstruction but no work has been proposed to choose explicitly
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a design in order to satisfy such properties. The work [CK03] uses an heuristic adaptive thresholding
technique and propose a model selection procedure that deals with any (non-regular) design. One may
also mention the interesting work [LO06]: their authors propose a construction of optimal and sequential
designs for nonparametric regression models in the Daubechies basis with a simulated annealing strategy.
This approach is also coupled with a model selection strategy. At last, the paper [KP04] considers a
warping method of the space state and then thresholds the wavelet coefficients with non-regular designs.
In [AAP06], some methods are provided to use wavelet bases with irregular designs using wavelet kernel
penalized estimation. In the experimental section, we will provide comparisons of our method with `1

penalized approach (the LARS estimator of the Adaptive Lasso [Z06]) and the thresholding methods of
[AAP06].

Regarding now the community of optimal designs, many works have been concerned by finding
designs represented as a continuous measure on the state space E. But there exist a few amount of
explicit results for discrete optimal designs. Moreover, a large amount of these numerical methods yield
some continuous designs although from a practical point of view, discrete designs are easier to handle.
Some results can be found in [DS97] but most of them are obtained by the optimization of numerical
algorithms like simulated annealing and therefore are not explicit. Concerning the special case of multi-
resolution bases and optimal designs, several authors have already used a simulated annealing procedure
for building robust minimax integer-valued designs (see for instance [FW00], [LO06] or [OW03]). Note
that simulated annealing may be a costly task when the dimension of the problem becomes large. Among
these methods, few ones propose a model selection approach except [LO06] or [BC02] where the model
selection strategy is implemented with an hypothesis testing approach.

We want to expand the signal η in a multi-resolution basis (Λr,t)r,t. We successively select some
points xi where f is evaluated to build a n-set x = {x1, . . . xn} and elements of (Λr,t)r,t to reach a
correct estimation η̂ of η. But for numerical reasons, it is infeasible to explore all possible subsets of
functions and all n-sets x to choose among them the best model and design. In our settings, the design
x = {x1, . . . , xn} will be adapted to the sequential ealuations of f . We propose to develop a recursive
strategy: we iteratively evaluate f with a sequence (x1, . . . xn) of points in E and find both a design
xn = (x1, . . . xn) and a family of linearly independent functions in an optimal way to estimate η.

Our contribution is twofold, we first provide an algorithm based on multi-resolution bases and adap-
tive strategy. This algorithm is then applied with several bases. In the very special case of triangle
Schauder basis, we provide also a new theoretical result about the locations of discrete optimal designs.
This result will be useful for numerical implementations. and can be tensorized to dimensions larger
than one. We will use some classical ideas of optimal design theory such as D− or A−optimal designs
(see e.g. [KC87, DS97] for general classical reminders on the subject). The model selection strategy
will use ideas coming from the adaptive regression point of view developed with Multivariate Adaptive
Regression Splines (MARS) described in [F91] and classical coarse to fine multi-resolution methods (see
e.g. [M90, DJ94, BG05]). Given any initialization (x0, I0), our method will produce xn+1 from xn by
the addition of a new point xn+1 ∈ E. We will not remove an element of xn at step n + 1 as it would
amount to loose some available information (which is costly!), thus xn ⊂ xn+1. The variance of our
model will be controlled by the construction of a suitable design dedicated to In. The computation of In
will rely on a stochastic approach that aims to optimize the bias of our linear reconstruction. The paper
is organized as follows: next section presents our model and our algorithm. Section 3 recalls optimal
design theory and the location properties of optimal designs. Section 4 precisely describes the stochastic
algorithm for the model selection. At last, Section 5 provides some experimental comparisons, especially
with `1-penalized approaches which are widely used now and the kernel penalized wavelet estimator
described in [AAP06].
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2 Model

2.1 Integrated Mean Square Error

Assume E = [0; 1], η is supposed to be expanded in a multi-resolution basis denoted by (Λr,t)r≥0,0≤t≤2r−1:

η =
∑
r,t

θr,tΛr,t. (2)

Note that this assumption is true as soon as η belongs to some Besov space. More precisely, we will
assume that for some unknown s > 0, η belongs to some homogeneous Besov space Ḃs,2

2 . These spaces are
described for instance in the chapter VI, paragraph 9 of [M90]. We will not technically detail this point
as it is not in the scope of this work, but note that such spaces contain a very large class of functions.
In the sequel, we will use a generic notation I to refer to a list of pairs I = {(r1, t1), . . . (rp, tp)}. In will
thus describe the functions used at step n among the whole set (Λr,t)r≥0,2r>t≥0.

We recall that
f(x) := η(x) + σζ(x), (3)

where ζ(x) is a white noise. In the sequel, we will suppose σ is unknown and we will provide a procedure
to estimate it.

Let us suppose that the design x and the set I are given. Let us denote by η̂x,I the least square
estimator of η with the linear model based on (Λ(r,t))(r,t)∈I and the observations (f(xi))xi∈x. One can
use a standard Integrated Mean Square Error (IMSE) and define

J(x, I) =

∫
E
E [η̂x,I(u)− η(u)]2 du. (4)

We also denote by f(x) the column vector of the function f observed at the points of the design x
and we use the notation Λ̄I(x) for the rectangular (p× n) matrix:

Λ̄I(x) =

Λ(r1,t1)(x1) . . . Λ(r1,t1)(xn)
... . . .

...
Λ(rp,tp)(x1) . . . Λ(rp,tp)(xn)

 . (5)

We can expand (4) as

J(x, I) =

∫
E

Var[η̂x,I(u)]du︸ ︷︷ ︸
:=Vx,I

+

∫
E

(E[η̂x,I(u)]− η(u))2 du︸ ︷︷ ︸
:=Bx,I

. (6)

With standard notations, Mx,I denotes the information matrix of the design x and functions Λ(r1,t1), . . .Λ(rp,tp),
i.e. Mx,I = Λ̄I(x)tΛ̄I(x). Let us denote by µ1,1(I) the integral

∫
E
tΛ̄I(u)Λ̄I(u)du. Some immediate com-

putation (see e.g. [F69] ) yields

Vx,I = σ2Tr
(
µ1,1(I)M−1

x,I

)
.

The effect of the design on the bias term is not explicit and thus it will not be possible to find analytic
criteria which describe precisely the influence of x on Bx,I . To overcome this difficulty, it is however
possible to adopt the minimax approach described for instance in [OW06]. Given a current set of pairs
I, let us denote by Ic {(r, t) | r ≥ 0, 0 ≤ t ≤ 2r − 1 , (r, t) /∈ I}. We can decompose η in ηI +ηIc where

ηI =
∑

(r,t)∈I

θr,tΛr,t and ηIc =
∑

(r,t)∈Ic
θr,tΛr,t.

Then, it is clear that ηIc will not be estimated by our estimator constructed only with the set I. If
(Λr,t)r≥0,2r>t≥0 is orthonormal, the bias can be decomposed as

Bx,I =

∫ 1

0

(
[Eη̂x,I(u)− ηI(u)]2 + ηIc(u)2

)
du.

Obviously, since ηIc is unknown, Bx,I remains untractable but it is possible to use a worst case approach
with the minimax design theory. We follow the notation used in [OW06]. To ensure an equilibrium
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between the contribution of the bias and the variance to the error, we can impose a bound on the
magnitude of the remainder ‖ηIc‖2 ≤ τ for a constant τ > 0. We denote the least favorable case B?

x,I,τ :

B?
x,I,τ = sup

‖ηIc‖2≤τ
Bx,I = sup

‖ηIc‖2≤τ

∫ 1

0

(
[Eη̂x,I(u)− ηI(u)]2 + ηIc(u)2

)
du.

Since, J(x, I) ≤ B?
x,I,τ + σ2Vx,I , our next algorithm will detail the choice of I and x. Its dependence on

the ratio ν = σ2/τ2 corresponds to a bias/variance tradeoff.

2.2 The adaptive algorithm

In our adaptive framework, we need to choose successively new points of the design x and we decide to
update the set I or to keep this set unchanged. As pointed in the introduction, we do not delete points
of the design x. Consequently, the algorithm will necessary be of the form:

1. Step 0

• Fix any initial set of functions I0. For instance in a one dimensional setting with E = [0; 1],
we choose I0 = {(0, 0); (1, 0); (1, 1)} as we do not have any prior on the support concerning η.

• For a given integer n0, compute the optimal design x0 of size n0 which minimizes the bound
of the IMSE:

x0 = arg min
x

{
B?

x,I0,τ + νTr
(
µ1,1(I0)M−1

x

}
, I0

)
. (7)

2. Step n

�MS� Model Selection step: update the set In to ”optimize” J(xn, .). Our strategy will build In+1

from In and will rely on a random choice of an element (r, t) ∈ In. We will decide if we delete
(r, t) or if we add an element that does not belong to In. We will explain the stochastic model
selection in section 4.

�OD� Optimal Design: choose xn+1 deduced from xn with the addition of one point xn+1

xn+1 = xn ∪ {xn+1},

using the former set In+1. This optimization is described in section 3 and mimic equation (7).

3 Optimization of the design (�OD� step)

In this part, we explain how to obtain the point xn+1 at step �OD� of the iteration n in the algorithm
above. We first provide some details when ν = +∞, the case where only the variance term is considered.
Next, we describe how we can deal with ν < +∞.

3.1 Generalities on �OD� step when ν = +∞

We will consider in this part two optimality criteria for the design based on the information matrix
Mx,I (for more general classical criteria, one may refer to [W92]). D-optimal designs are defined by
arg minx Φ0(Mx) where we denote Φ0(Mx) := detM−1

x although A-optimal designs are based on the
minimization of Φ1,C where Φ1,C(Mx) = Tr

(
CM−1

x

)
. In most cases, these two criteria (and many

others described in [W92]) do not yield equivalent designs but each of them aims to control the variance
of the linear model. We denote by Ṽ1(x, I) := Φ0(Mx) as well as Ṽ2(x, I) = Φ1,Id(Mx) = Tr(M−1

x ),
and Ṽ3(x, I) = Φ1,µ1,1(I)(Mx) = Tr(µ1,1(I)M−1

x ). In our work, we have mainly focused on the D-optimal
designs for multi-resolution bases except in a very special case where some link with A-optimal designs
is established.

Remark 1 Since we do not handle continuous measures, it is impossible to easily recover classical
results for D and A optimal designs using some equivalence theorems stated in [KW59, F69, KS66]. In
the sequel, we claim some properties for the location of optimal designs for the Schauder and Haar bases.
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Our adaptive strategy is based on solutions of

xn+1 ∈ arg min
x
Ṽi(x ∪ x, In+1), (8)

where Ṽi is defined by one of the previous criteria. Note that this step does not require any evaluation
of f and the simplest way to find xn+1 seems to use some standard optimization algorithm (gradient
descent or simulated annealing).

3.2 Optimal designs with Schauder/Haar basis when ν = +∞

In the sequel, the Haar mother function is H0,0(x) = 1x∈[0;1/2[ − 1x∈[1/2;1] and we define the Schauder
triangle mother function as S0,0(x) =

∫ x
0 H0,0(t)dt. These functions H0,0 and S0,0 are examples of

functions Λ0,0. For instance, Haar and Schauder bases are then uniquely defined by classical dilatations
and translations

Λr,t(x) = 2r/2Λ0,0(2rx− t).

Some elements of the Schauder basis can be seen on Figure 1.

Figure 1: Several functions Λr,t, here (r, t) belongs to {(1, 1)(3, 1)(4, 6)}.

A very important issue with Schauder basis is the fact that for every n, the argmin in (8) always occur
on dyadic points x = t

2r , whose resolutions r are bounded by the maximal resolution of the elements in
I. This fact clearly speeds up the numerical resolution of equation (8). We will give a theoretical proof
of this fact later. Figure 2 presents for instance the behaviour of Ṽ1.

Figure 2: Evolution with respect to x of the variance Ṽ1 when I = {(0, 0); (1, 0); (1, 1); (2, 3)} for the
Schauder triangle basis

Given any design x, we are searching the location of x ∈ E such that x ∪ {x} is D-optimal. Next
theorem shows that in fact, x is necessarily a dyadic point which is a singular point of functions described
by I. If Supp(Ψ) is the support of any function Ψ, we define S(I) as

S(I) =
⋃

(r,t)∈I

{
arg max

x∈E
Λr,t(x)

} ⋃
(r,t)∈I

{∂Supp(Λr,t)} .

We obtain the following result whose proof is deferred to the appendix.
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Theorem 1 Let x be any fixed design and (Λr,t)(r,t)∈I be any finite subset of functions of the Schauder
triangle basis, then

arg min
x
Ṽ1(x ∪ x, I) ∈ S(I).

This result is very useful for our adaptive strategy to build xn+1 from the design xn at step n. Indeed,
it is sufficient to explore the small finite number of dyadic points S(I), described above and to select
the point which minimizes the D-criterion. We also state a similar result for the case of ridge regession
estimators.

Theorem 2 Let x be any fixed design and (Λr,t)(r,t)∈I be any finite subset of functions of the Schauder
triangle basis, then for any θ > 0:

arg min
x

det (Mx∪x,I + θId)
−1 ∈ S(I).

Conjecture 1 We conjecture also that for any symmetric positive matrix C and for any t > 0, the

minima of det
(
tC +M−1

x∪x,I

)
remain in S(I).

Even if the proof of the conjecture is still open, it is supported by many numerical experiments.
Concerning the other criteria, given the last observations x, we search for the x which minimizes the
criteria Ṽ2 or Ṽ3 . One can re-write the A-optimal design criterium using the useful Schur factorization.
For the sake of simplicity, let µ := µ1,1(I). Then

Tr
(
µM−1

x∪x
)

= Tr

(
µM−1

x −
µM−1

x Λ̄tIΛ̄IM
−1
x

1 +t Λ̄IM
−1
x Λ̄I

)
= Tr

(
µM−1

x

)
−

tΛ̄IM
−1
x µM−1

x Λ̄I

1 +t Λ̄IM
−1
x Λ̄I

.

Thus, the location of the optimal x at the step n + 1 is deduced from the step n by maximizing the
second term of the last equation. This can be performed easily in view of next theorem.

Theorem 3 Let x be any fixed design and (Λr,t)(r,t)∈I be any finite subset of functions of the Schauder
triangle basis. Denote by C any symmetric non negative matrix, if the Conjecture 1 is true, then

arg min
x
Tr
(
CM−1

x∪x,I

)
⊂ S(I).

We can deduce the �OD� step at iteration n from the last theorems for the Schauder triangle basis
when the family of functions in In+1 and the current design xn are given:

• We consider the finite set S(In+1).

• Compute the criterion for each element in S(In+1) and choose xn+1 in arg min
x∈S(In+1)

Ṽi(xn∪x, In+1).

The study of Haar basis is much simple since the function x 7→ Ṽi(x∪x, I) is constant on the support
of the elements of I which are intervals. Hence, it is sufficient to compute Ṽi(x∪x, I) at the most 2×|I|
times to obtain its maximum value and then find an optimal point into this interval. From this simple
remark, one can deduce the �OD� step at iteration n for the Haar basis when the family of functions
In+1 and the current design xn are given:

• Rank by increasing order the elements of S(In+1) = {x̃1 < x̃2 · · · < x̃l}.

• Sample l + 1 elements (ξj)j=1...l+1 in each interval ]0; x̃1[, . . . ]x̃j , x̃j+1[, . . . ]x̃l; 1[ and choose xn+1

as a solution of the optimisation problem arg min
x∈{ξ1,...ξl+1}

Ṽi(xn ∪ x, In+1).
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3.3 Optimal designs with general multi-resolution bases when ν = +∞

In the general case of multi-resolution wavelet bases such as Meyer basis, our approach consists in
approximating solutions of several optimization problems. For D-optimal design, the algorithm uses the
formula (15) provided in the appendix. The sequential D-optimal design is then equivalent to find at
each step n the maximum of

x 7→t Λ̄In+1(x)Mxn,In+1Λ̄In+1(x).

For A-optimal design, we use the Schur factorization formula. Hence to find the sequential A-optimal
design is equivalent to find at each step n the maximum of the function

x 7→
1 +t Λ̄In+1(x)MxnIn+1Λ̄In+1(x)

tΛ̄In+1(x)M−1
xn,In+1

µM−1
xn,In+1

Λ̄In+1(x)
,

where µ is either Id or µ1,1(I). This can be done either by using gradient descent algorithm or an
exhaustive search when the set E is of small dimension (this will be the case in our simulations). Of
course, the �OD� step in this case is much longer than the one in the Haar or Schauder case.

3.4 �OD� step with other regressors when ν = +∞

One may naturally wonder what can be done with other regressor. Especially we think of penalized
regressors. Penalized methods can be viewed as the minimization of some penalized likelihood L

θ̂ := arg min
θ
{logL(xn, f(xn), θ)) + λN (θ)} ,

where N (θ) denotes the norm of penalization.
Ridge regression: For N = ‖.‖22, we obtain the ridge regressor. For a fixed λ, the covariance of the ridge

regression is
(
Mxn,In+1 + λId

)−1
. Theorem 2 yields that optimal designs for the Schauder basis are also

located in S(In). It is thus possible to infer some �OD� step for the Schauder basis using Ridge regression
at step n: for each x ∈ S(In), compute the covariance matrix and one of the associated criterion Ṽi where
Mxn,In+1 is replaced by Mxn,In+1 + λId. Then just pick the argmin x in S(In) and update the design
xn with it. Note that this method can be obviously extended to the simpler case of Haar basis. For
more general wavelet bases, the price to pay is an intensive use of optimisation algorithm to find in E
the argmin points.
Lasso regression: The choice of the penalization terms N = ‖.‖1 yields the lasso regressor. The effect of

such a penalization on the covariance of θ̂ is more complicated. Following the work [K01] on the soft
thresholding estimator, the estimate of the covariance is approached using a Delta method by the matrix

V ar(θ̂Gsoft) =
(
H(θ̂) + λΓG(θ̂, σ)

)−1
Σ(θ̂)

(
H(θ̂) + λΓG(θ̂, σ)

)−1
,

where H (resp. Σ) is the (resp. expected) Hessian matrix of the likelihood, where G is a gaussian
kernel smoothed with bandwith σ and where Γ is the diagonal matrix Γ = diag(I{θ < σ}/σ). Indeed,
V ar(θ̂Gsoft) depends on the observation xn+1 in the design which is unknown at the step n since the
thresholding matrix Γ depends on f(xn+1). It is thus to the best of our knowledge very complicated to
obtain this sequential design strategy.
Choice of λ: In the penalized approach (lasso, ridge, elastic net, . . . ), an efficient way to choose λ is to
use a data-driven calibration cross-validation. Indeed, such a choice increases V ar(θ̂Gsoft) which depends
on the x selected to update xn. Thus, we chose not to further investigate this question.

3.5 Minimax Optimal Design (ν <∞)

In the general case ν = σ2

τ2
< ∞, we take into account the effect of the least favourable bias to choose

our design. We have to find at step n the point xn that optimizes the criterion Φ

∀x ∈ E Φ(x) = B?
xn∪x,In,τ + σ2Tr

(
µ1,1(In)M−1

xn∪x,In

)
.

The optimization of Φ is a very difficult task since B?
xn∪x,In,τ is not explicit. We adopt a subop-

timal approach and deal with discrete designs located on dyadic points. Given a sufficiently large
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maximal resolution rmax ∈ N, we restrict our space of admissible x’s to the set of dyadic points
Emax = {k2−rmax , k = 0, . . . , 2rmax} and we denote by 0 := ξ1 < · · · < ξ2rmax+1 = 1 the points in
Emax. One can describe an approximation Φ̂(x) of Φ(x) using Emax instead of E as in [OW06]. For
the sake of simplicity, denote d = 2rmax + 1 and p = |In+1| the number of elements of In+1. Given any
dyadic design x = {x1, . . . , xm} of length m, let us denote by P (x) the diagonal matrix of occupation
measure of Emax among x:

∀(k, l) ∈ {1 . . . d} × {1 . . . d} Pk,l(x) =
|{j|xj = ξk}|

m
1k=l.

The application ηIc ∈ L2(E) is replaced by its approximation vector η̄Ic ∈ `2(Emax) = (ηIc(ξi))i=1...d

and we replace the constraint ‖ηIc‖2 ≤ 1 by ‖η̄Ic‖22 ≤ d. If we denote byQIn+1 =
(
ΛIn+1(ξ1), . . . ,ΛIn+1(ξd)

)
of size p× d, the Average Squared Bias (ASB) is then approximated by

ASB ' 1

d

[
‖QIn+1(QtIn+1

P (x)QIn+1)−1QtIn+1
P (x)η̄Ic‖22 + ‖η̄Ic‖22

]
.

We assume QIn+1 to have a full rank and we denote its the singular value decomposition by

QIn+1 = Ud×p(In+1)∆p×p(In+1) tVp×p(In+1),

where tU(In+1)U(In+1) =t V (In+1)V (In+1) = Ip (the identity matrix of size p). Let us define the matrix
Pj(x, In+1) =t U(In+1)P j(x)U(In+1), we know from [OW06] that the least favourable approximated bias
is the largest eigenvalue of P−1

1 (x, In+1)P2(x, In+1)P−1
1 (x, In+1) denoted by λ(x, In+1). The function Φ

is then approximated by

Φ̂xn,In+1(x) = τ2
[
λ(xn ∪ x, In+1) + νTr

(
µ1,1(In)M−1

xn∪x,In

)]
.

The above Φ̂ is used to select the optimal design at step n+ 1 via xn+1 = arg minx Φ̂xn,In+1(x).

4 Stochastic Model Selection (�MS� step)

In this section, a stochastic algorithm which updates In is described. We provide first a method to
estimate the ”importance” of each point of In with respect to the bias term in (6) and then we deduce
a ranking criterion. This ranking will be plugged into the acceptation/rejection step of a stochastic
Simulated Annealing (S.A.). In a sense, this strategy is a kind of forward/backward stepwise model
selection strategy. We try to add points which reduce the bias term but do not increase the variance
of the estimation. Thus, this idea is similar to the MARS approach in [F91], the adaptive strategy of
[CK03], or the algorithm of [BFI07].

4.1 Ranking criterion

Recall first that if η̂xn,In(x) denotes the estimation of η with model In and design xn, then B is given
by:

Bxn,In =

∫
E

(E[η̂xn,In(x)]− η(x))2 dx.

Let us recall that we can decompose Eη̂xn,In(x) in the basis

Eη̂xn,In(x) =
∑

(r,t)∈In

θr,tΛr,t.

Our idea is that the importance of each function Λr,t for the bias can be deduced from the sensitivity of
the bias to a small perturbation of the coefficient θr,t. This idea is comparable to the Recursive Feature
Elimination (RFE) algorithm of [GWBV02]: Λr,t is important when |∂Bxn,In/∂θr,t| is large.

Now, we can formally compute each partial derivative of Bxn,In with respect to θr,t to measure the
importance of each Λr,t as ∣∣∣∣∂Bxn,In

∂θr,t

∣∣∣∣ =

∣∣∣∣2 ∫
E

Λr,t(x) [Eη̂xn,In(x)− η(x)] dx

∣∣∣∣ .
8



As pointed above, the exact computation of this last term is impossible as it requires to know η.
Indeed, one can first estimate the bias pointwise Eη̂xn,In(ξ) − η(ξ) for each point of the design using a
standard ”leave one out” cross validation coupled with a bootstrap sampling strategy. Then we use a
classical method of interpolation to estimate the bias as a function on E. Let us denote ε := η̂xn,In − η.

1. Fix the number of bootstrap samplers b (for instance b = 10).

2. For each point of the design xk:

(a) Build b bootstrap samples without the observation xk: (D1, . . .Db).
(b) Compute for each bootstrap sample the estimators η̂D1,In

, . . . , η̂Db,In
.

(c) Compute the ”leave one out” bootstrap bias at xk by

ε̂(xk) =
1

b

b∑
m=1

η̂Dm,In
(xk)− η̂xn ,In(xk).

3. Estimate the bias with (ε̂(ξ), ξ ∈ xn) and a simple spline smoothing estimator using a Gaussian
kernel whose bandwith parameter is chosen by the Generalized Cross Validation criterion. For more
details, one may refer to [BT04] for instance. This step provides a bias interpolation ε defined on
E.

4. Estimate the derivative of the bias by a simple integration

∂̂(r,t)B :=

∣∣∣∣2 ∫
E

Λr,t(x)ε(x)dx

∣∣∣∣ .
4.2 Stochastic Learning of In with a Simulated Annealing dynamic

We propose a method to update In. This algorithm is largely inspired by Metropolis-Hastings methods.
The Simulated Annealing strategy is classically decomposed in a proposition step and an acceptation
rule.

4.2.1 Reversible Jump proposal

Recall formally some elements of the S.A. procedure. Let Ω be a measurable set with a measure m and
let µ be a measure on Ω with a density (also denoted by µ) with respect to m. We aim to minimize some
cost C. The S.A. involves a simulation of a non-homogeneous Markov chain whose invariant distribution
at iteration n is µn ∝ µ−C/Tn where (Tn)n≥0 is a temperature with Tn → 0. Under classical conditions
(see [H88, GG84] for instance), µ∞ concentrates on the set of minima of C. The S.A. method with
transition distribution q(I, I ′) works as follow:

• from state I ∈ Ω, first propose a state I ′ with probability q(I, I ′)

• then, accept the transition with a probability which is adjusted so that µ is invariant.

We assume the following reversible property

q(I, I ′) > 0⇐⇒ q(I ′, I) > 0.

The probability to accept the transition I to I ′ at iteration n is then defined as:

∀I ′ 6= I Qn(I, I ′) =
µn(I ′)q(I ′, I)

µn(I)q(I, I ′)
∧ 1. (9)

When µ corresponds to a Gibbs field associated to a cost function C (J defined in (6) in our case), this
ratio is in fact given by

∀I ′ 6= I Qn(I, I ′) =

{
e

C(I)−C(I′)
Tn

q(I ′, I)

q(I, I ′)

}
∧ 1. (10)

The main difficulty is to ensure the weak reversibility condition given in the former paragraph: q(I, I ′) >
0⇐⇒ q(I ′, I) > 0.

9



4.2.2 Birth and Deletion transition

In our framework, we start with {(0, 0); (1, 0); (1, 1)} and we decide to use the following dynamic for the
iteration In 7→ In+1:

B: Birth of any element i /∈ In associated to a son or a father already in In.

R: Rebirth of the element Λ0,0 if (0, 0) /∈ In.

D: Deletion of any element i ∈ In provided that one son or father is still in In.

Given any iteration n with a design xn and a basis In, we fix:

• pR the probability to add Λ0,0, if Λ0,0 ∈ In, we set pR = 0 otherwise pR = 0.1 .

• pB ∈]0; 1[ the probability to add a function to In.

• pD the probability to delete one element of In.

We state pB = 5pD and pB + pD + pR = 1.

• In the birth case, denote by IBn the set of elements in In such that one of their sons or father is not
in In. Then, propose the birth of the ascendant or descendant of some element Λi, i ∈ IBn where

we sample i with a discrete probability rB ∝ ∂̂Bi.

• In the deletion case, denote IDn the set of elements in In such that one of their descendants
or ascendant is in In and propose the deletion of one element of IDn following the distribution

rD ∝ ∂̂B
−1

i .

The resulting transition kernel of the simulated Markov chain is then a mixture of the different
transition kernels associated with the moves described above. We choose now classically Tn = C1

C2+log(n)
and this yields the transition kernel q.

Remark 2 Please remark that the reachable vertices in In are not a priori connected in the tree repre-
sentation space, it is a consequence of the reversibility condition. These moves are defined by heuristic
considerations, the only condition to be fulfilled is to maintain the correct invariant distribution defined
by (10).

These moves are not the classical dynamic of dyadic trees for sets In. The classical evolution would
generate connected trees but such trees are not sparse. At last, the necessary reversible jump condition
is fulfilled by the definition of B, R and D.

4.3 Variance estimate and summary of the �MS� step

In order to obtain the complete transition kernel defined in (10), it is now sufficient to estimate ∆C
which is the difference of the IMSE before and after the proposed transition. It is thus necessary to
estimate both the bias and the variance of the model. The quantity ∆Bxn,In can be estimated using a
bootstrap ”leave one out” procedure as described in the paragraph 4.1. To compute ∆Vxn,In , one just
need to have a good estimation σ̂ of σ defined in (1). This can be done using a maximum likelihood
estimator of σ as pointed in [BFI07]. Note that in the resulting algorithm, σ̂ is just needed to control the
acceptation / rejection rule. Thus, the practical transition rule is given by a slightly modified equation
(replace σ by its estimate σ̂ in the control term C).

To sum up, the �MS� step can be described as

1. Choose a jump B,D or R according to the distribution (pB, pD, pR).

2. Compute each ranking coefficient ∂̂B(i),∀i ∈ In.

3. Compute the sampling distribution rB or rD and propose a new state In+1 according to this discrete
distribution.

10



4. If xn = {x1, . . . xn} is the design, compute σ̂ with the M.L.E. of σ given by:

σ̂2
n =

1

|xn|

t (
f(xn)− (ΛIn(x1), . . . ,ΛIn(xn))θ̂n

)
M−1

xn,In

(
f(xn)− (ΛIn(x1), . . . ,ΛIn(xn))θ̂n

)
.

5. Compute the approximated differential cost ∆B(xn,In)−>(xn,In+1) + σ̂2
n∆V(xn,In)−>(xn,In+1) and ac-

cept the transition with the probability

Qn(I, I ′) =
{
e−[∆B+σ̂2∆V ]

}
∧ 1.

In the acceptation case, update In+1 with the proposed transition. Otherwise keep In unchanged:
In+1 = In.

Since f is decomposed on In at step n, the M.L.E. σ̂n is in general larger than the true σ. Hence, the
acceptation/rejection rule Qn prevents to overfit the models In.

5 Experimental results

In the sequel, we call a deterministic equispaced design a regular design whereas uniformly sampled de-
signs will denote random designs obtained with a random uniform sampling over E. For all experiments,
we set E = [0; 1] and we aim to compare:

1. Least square linear model with

• Optimal design coupled with model selection for the Schauder basis.

• Optimal design coupled with model selection for the Haar basis.

• Optimal design coupled with model selection for the Meyer basis.

• Optimal minimax design coupled with model selection for the Schauder basis.

• Optimal minimax design coupled with model selection for the Meyer basis.

2. Sparse Penalized regressor Adaptive Lasso (Ada-Lasso) [Z06] solved by the LARS implementation
[EJHT03] (Schauder, Haar or Meyer basis).

• Ada-Lasso regressor with design uniformly sampled in E.

• Ada-Lasso regressor with regular design.

3. Wavelet approach of [AAP06] (Daubechies (D6) and Symmlets (S6) basis):

• Kernel penalized estimation with uniformly sampled design.

• Kernel penalized estimation with regular sampled design .

This section presents three examples where the unknown signal η must be recovered from as few
observations as possible. The first synthetic example deals with the approximation of some unknown
function that does not belong to finite dimensional vector spaces spanned by the triangle Schauder basis.
The second example illustrates the database of Motorcycle impact experiment ([S85]). We provide also
few results in a 2-dimensional setting. We consider the evolution of the IMSE with respect to the number
of evaluations of the signal. Each implementation of [EJHT03] and [AAP06] will be used with uniformly
sampled design and regular design. Note that both the Adaptive Lasso implementation and the Wavelet
Penalized Kernel will be optimized using a cross-validation criterion. For the Adaptive Lasso, the bias of
the penalization is removed once the model is determined using a least square estimation procedure based
on the selected model. At last, the calibration of ν for minimax design is important. This parameter
must be chosen sufficiently large to include the effect of the variance in our model. We have set ν = 20
in our experiments, which seems a reasonnable value according to the size of the bias and variance in
our experiments.

5.1 Description of the data

We investigate first the efficiency of estimation of the methods described above. We initialize the multi-
resolution basis functions I0 as Λ̄I0 = {Λ0,0; Λ1,0; Λ1;1}.
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5.1.1 Definition of the synthetic η

The synthetic function η to recover is a mixture of localized Gaussian kernel with different scaling
parameters. For this, we set η to be localized around some values in E with different amplitudes and
frequencies:

∀x ∈ [0; 1] η(x) = 5e−1000(x−0.25)2 + 5e−100(x−0.75)2 + 20e−100(x−0.5)2 .

The signal f is thus given by f(x) = η(x) + σζ(x) and some realizations of f are shown on Figure 3.

Figure 3: Synthetic function η and some realizations of f(x) with σ = 0.5 (crossed points) or σ = 2
(dashed points).

5.1.2 Motorcycle impact experiment

In the Motorcycle Impact Experiment (see [S85] for a brief description of the data), the efficiency of
crash helmets it studied. In [S85], the author uses 133 observations and a spline smoothing approach to
estimate a curve deduced from the discrete observations. We scale the 133 observations between 0 and 1
and we compute a kernel smoothing interpolation described in [S85] to have a signal η to compare with
our estimator. At last, we randomize the kernel interpolation by the addition of a white noise which
yields an homoscedastic regression problem.

Remark 3 Indeed, the Motorcycle experiment belongs to the more general class of problems of het-
eroscedastic regressions. Note that we use this dataset as a benchmark to validate our algorithm.

5.2 Results

In order to obtain a reliable estimation of the IMSE for each algorithm, we repeat our experiments 50
times for each different method. Each experiment is reproduced also setting σ = 0.5 (low noise) and
then σ = 2 (high noise). The Figure 4 shows the performance of our non-minimax sequential algorithm
described in the beginning of this section on the synthetic dataset. One can see that in the low noise
setting, there is no clear advantage to use Meyer basis which performs as Haar and Schauder bases. In
contrast, in the high noise setting, the Meyer wavelet basis provides the best results. One can infer from
this simulation that the linear model built with the Meyer wavelets is much more stable than the other
ones. This is certainly due to the fact that Haar and Schauder mother functions are compactly supported
and the information matrix of the least square estimator is ”more singular” than the one constructed
with the Meyer basis.

Moreover, Figure 11 provides the detailed numerical list of IMSE performance for each of the methods
listed above in the case σ = 0.5 and Figure 12 provides the same results for the large noise case σ = 2 for
the synthetic dataset. Best results for each number of points in the designs are underlined in the tables.
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Figure 4: Integrated Mean Square Error for the synthetic example with low (dashed curves) and high
noise (continuous curves) for the Haar (red), Schauder (blue) and Meyer (green) multi-resolution families.
The x-axis represents the number of iterations of our method (number of points in the optimal designs).

These numerical results confirm that the use of the Meyer wavelet basis is always better than the
other multi-resolution setting in our sequential strategy and this phenomena is much more important
when the variance is important. The other striking fact is the poor performance of the Adaptive Lasso
with the several multi-resolution families we used. This point is mainly due to the limited size of the set
of experiments and the Adaptive Lasso is completely inapropriate in this framework. Moreover, in some
rare cases (depending on the basis used), some very conservative choice are made by Ada-Lasso (see for
instance the case of the Schauder basis in the high noise setting).

One can also remark the very good behaviour of the thresholding procedure as soon as there are
enough points in the design. Since such methods are specifically dedicated to the multi-resolution
framework, it is not surprising that they behave better than Adaptive Lasso in these cases. However,
note that in a very few cases of measurements, a simple linear model with the design learned by our
sequential method is more efficient than non-linear thresholding procedures.

At last, the minimax sequential design strategy performs the best. But the method is costly compared
to the non-minimax Schauder one and there is no clear advantage to use it for such small IMSE in the
small noise setting. For the large noise case, the minimax sequential design is justified since it improves
the IMSE of 50 % compared to the non-minimax Schauder sequential approach.

The Figure 8 shows the performance of the sequential algorithm for the Motorcycle dataset. We
display some estimation results obtained with the Schauder basis (Figure 9) and the Meyer wavelet basis
(Figure 10). Note that the conclusions for the synthetic data still hold for the Motorcycle dataset since
the Meyer basis is clearly better than the other ones as pointed in the Figure 8. For the sake of simplicity,
we have omitted the results of the Adaptive Lasso algorithm on Figures 11 and 12. One may remark
that with a very small number of points in the design, the sequential method always outperforms the
wavelet thresholding procedure. But for n = 50, thresholding with Daubechies or Symlets bases are
equivalent to our procedure with non-minimax design. One can remark that the minimax sequential
design achieves again the best performances. This is especially the case for a very small number of
experiments (n = 10): the minimax criterion tends to scatter the points of the design among E at the
beginning of our strategy. It is explained by the fact that the variance term is smaller than the worst
bias for small number of experiments and low resolution elements in In. This phenomenon is reversed
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Method IMSE (n=10) IMSE (n=30) IMSE (n=50)

Sequential Haar 10.1 3.4 1.7

Sequential Schauder 1.0 0.45 0.4

Sequential Meyer 0.9 0.4 0.38

Sequential minimax Schauder 0.7 0.4 0.4

Sequential minimax Meyer 0.65 0.35 0.3

Ada-Lasso Haar Random 70.8 75.7 56.2

Ada-Lasso Haar Regular 69 42.9 31

Ada-Lasso Schauder Random 50.2 20.8 14.3

Ada-Lasso Schauder Regular 13.6 13.9 12.3

Ada-Lasso Meyer Random 116.4 66.8 72.6

Ada-Lasso Meyer Regular 290 47.8 45.2

Wavelet Kernel Penalized D6 Random 8.2 10.3 1.8

Wavelet Kernel Penalized D6 Regular 4.9 1.0 0.9

Wavelet Kernel Penalized S6 Random 5.2 2.1 0.4

Wavelet Kernel Penalized S6 Regular 83.5 27.7 0.4

Figure 5: Integrated Mean Square Error for the synthetic data with low noise.

Method IMSE (n=10) IMSE (n=30) IMSE (n=50)

Sequential Haar 17.2 9.9 9.0

Sequential Schauder 5.6 5.9 5.6

Sequential Meyer 2.8 2.3 2.3

Sequential minimax Schauder 3.1 1.5 1.2

Sequential minimax Meyer 1.7 1.4 1.1

Ada-Lasso Haar Random 85 71.6 71.5

Ada-Lasso Haar Regular 71.1 50.6 43.1

Ada-Lasso Schauder Random 24.3 37.3 24.1

Ada-Lasso Schauder Regular 16.9 17.1 12.2

Ada-Lasso Meyer Random 155 195 301

Ada-Lasso Meyer Regular 282 49 43

Wavelet Kernel Penalized D6 Random 21.4 2.5 22.9

Wavelet Kernel Penalized D6 Regular 15.5 11.9 2.7

Wavelet Kernel Penalized S6 Random 8.5 4.1 2.4

Wavelet Kernel Penalized S6 Regular 4.0 3.9 2.2

Figure 6: Integrated Mean Square Error for the synthetic data with high noise.
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when the number of iterations is growing.
Figure 7 shows the good behaviour of our estimation of the bias as described in the paragraph 4.1

with a few number of functions in In. Note that this estimation deteriorates a little bit when the number
of functions in In is growing. This last point is not very important since we mainly use this estimation
as an indicator in the proposition step of our stochastic algorithm.

Figure 7: Estimation of the bias by our bootstraped procedure with 10 experiments and 5 functions in
the family I on the synthetic example.

5.3 Computation Time

At last, concerning the computational costs, since the sequential design for Meyer basis is obtained by
a simulated annealing algorithm, it may be interesting to switch to other multi resolution bases such as
the Schauder one. Indeed, an iteration n → n + 1 with the Schauder basis requires less than 5 seconds
although the same iteration with the Meyer wavelet basis needs for large n approximately 1 minute.

Although both the design and the model are estimated with our algorithm, it is as fast as the
penalized approach or a thresholding method. However, the application of our method with the Meyer
basis is much more costly. The minimax approach is obviously more costly than the non-minimax one
when the set of functions is the Schauder one. But the cost of the minimax approach is equivalent to
the one of the non-minimax approach with Meyer basis.

5.4 2-Dimensional experiments

We provide a short illustrating example in 2 dimensions with the Schauder triangle basis. Let us suppose

∀(x, y) ∈ [0; 1]2 η(x, y) = 10xy(x− 1)(y − 1)e5(x−3/4)2+(y−3/4)2−5(x−1/4)2+(y−1/4)2 . (11)

We present in Figure 13 the estimation of η with the tensorized Schauder basis with a small number of
iterations. Such basis are deduced from the bases in the 1 dimensional case as follows:

Fn = {(x, y) 7→ Λr1,t1(x); (x, y) 7→ Λr2,t2(y); (x, y) 7→ Λr1,t1(x)Λr2,t2(y)} ,

where (r1, t1) and (r2, t2) belong to a finite set In. Roughly speaking, one can adapt the conclusions of
Theorem 1 to obtain some properties for the location of the designs. The simple adaptation of the �OD�
step consists in:

1. Compute all singular points Sx(In) of elements in Λ(r,t) on the x-coordinate.

2. Compute all singular points Sy(In) of elements in Λ(r,t) on the y-coordinate.

3. Then S(In) = Sx(In)× Sy(In).
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Figure 8: Integrated Mean Square Error of our sequential methods for the Motorcycle example with
low (dashed curves) and high noise (continuous curves) for the Haar (red), Schauder (blue) and Meyer
(green) multi-resolution families. The x-axis represents the number of iterations of our method (number
of points in the optimal designs).

We show in Figure 13 some estimations obtained with a very small number of iterations of our
algorithms. The red surface is the true response and the meshed surface is our estimation. One can
remark that the algorithm still takes into account the singularities of the signal as it was the case in the
one dimensional examples. Moreover, the approximation of the extrema is pretty good and this example
shows that our method is promising for response surface applications.

6 Conclusion

The adaptive method developed in this paper is numerically competitive for synthetic and real examples
compared to thresholding wavelet or `1 penalized methods. The iterative scheme is fast and may be very
fast if it does not require any complicated optimization step as it is the case in the special case of the
Schauder basis. The approximation properties of both the global signal or its maxima are satisfying.
At last, the model selection ability could be of great interest for variable selection motivations and
are meaningful. High resolution functions are added when needed or not used when the signal is well
approximated.

But, on the theoretical side, many questions remain open. First, it would be very fruitful to generalize
the result that localizes the optimal designs on dyadic points for other multi-resolution sets of smooth
functions. But it is a difficult task owing to the underlying non-linear nature of the optimization problem
in the case of general wavelet bases.

Second, the proof of the convergence of the stochastic coupled algorithm on (In,xn) remains a difficult
task. To do so, it is necessary to fix a precise cooling strategy and to use the consistency result of theorem
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Figure 9: Estimations on the Motorcycle example with high noise (σ = 10) at iteration 0 (a), 10 (b), 20
(c), 30 (d), 40 (e), 50 (f). Continuous curve: true signal, Dashed curve: interpolation of our sequential
procedure with the Schauder wavelet basis.

4 provided in the appendix as a first step.
One may also consider a modified energy criterion based on a discrepancy term to bound the bias B

which is unknown in our sequential framework. This would certainly enable some theoretical extensions
of the consistency result (Theorem 4) in the fixed basis setting

At last, it would be very fruitful to infer a sequential optimal design approach for the `1 penalized
approaches. The optimization of the variance with respect to the design seems difficult, mostly because
the choice of the penalty parameter as discussed in paragraph 3.4 is not explicit.
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7 Appendix

7.1 Location properties of the design

We will denote by n the number of points in a fixed design x and by p the cardinal of I. Recall that Λ̄I
is the rectangular matrix defined by equation (5). Since I is fixed, we drop the indice I in this appendix
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Figure 10: Estimations on the Motorcycle example with high noise (σ = 10) at iteration 0 (a), 10 (b), 20
(c), 30 (d), 40 (e), 50 (f). Continuous curve: true signal, Dashed curve: interpolation of our sequential
procedure with the Meyer wavelet basis.

for the notation of Mx =t Λ̄IΛ̄I .
We suppose that n + 1 ≥ p (which is rather trivial in our context) and denote by F the map given

by F (x) = det (Mx∪x). We will show that F is a convex map on every interval where it is differentiable.
Assuming x to be suitably chosen among differentiable points of Λ̄I , we will note Λ̄′I(x) the vector
composed of the differentiable maps of Λ̄I computed at point x and the matrix

M ′x =
(
(Λ̄I1Λ̄′I2 + Λ̄′I1Λ̄I2)(x)

)
i1,i2∈I =

d

dx
(Mx∪x) .

Using the standard Euclidean scalar product on Rp, one can check immediately that

∀U ∈ Rp, M ′xU = 〈Λ̄I(x);U〉Λ′I(x) + 〈Λ̄′I(x);U〉Λ̄I(x).

First, we state some classical results on matrices whose proofs are based on standard arguments on
matrices of rank 1. Some details can be found in [MN95] and in chapter one of [F69].

Proposition 1 If M−1
x∪x and M−1

x are non-singular,

M−1
x = M−1

x∪x +
M−1

x∪xΛ̄I(x)tΛ̄I(x)M−1
x∪x

1−t Λ̄I(x)M−1
x∪xΛ̄I(x)

(12)

M−1
x∪x = M−1

x − M−1
x Λ̄I(x)tΛ̄I(x)M−1

x

1 +t Λ̄I(x)M−1
x Λ̄I(x)

. (13)
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Method IMSE (n=10) IMSE (n=30) IMSE (n=50)

Sequential Haar 296 91 50

Sequential Schauder 41.9 7.5 6.5

Sequential Meyer 19.7 7.4 6.0

Sequential minimax Schauder 23 9.5 5.5

Sequential minimax Meyer 15.7 5.2 5.1

Wavelet Kernel Penalized D6 Random 1549 26.4 9

Wavelet Kernel Penalized D6 Regular 458 15 12

Wavelet Kernel Penalized S6 Random 188 154 8.9

Wavelet Kernel Penalized S6 Regular 28.4 11.3 9.5

Figure 11: Integrated Mean Square Error for the Motorcycle experiment and low noise.

Method IMSE (n=10) IMSE (n=30) IMSE (n=50)

Sequential Haar 477 239 232

Sequential Schauder 171 153 152

Sequential Meyer 104 28.5 18.3

Sequential minimax Schauder 94 23 14

Sequential minimax Meyer 88 21 12

Wavelet Kernel Penalized D6 Random 1074 158 93

Wavelet Kernel Penalized D6 Regular 556 115.7 135

Wavelet Kernel Penalized S6 Random 180 129 30

Wavelet Kernel Penalized S6 Regular 122 59 18

Figure 12: Integrated Mean Square Error for the Motorcycle experiment and high noise.

Moreover,
detMx∪x
detMx

=
1

1−t Λ̄IMx∪xΛ̄I
, (14)

detMx

detMx∪x
=

1

1 +t Λ̄IMxΛ̄I
. (15)

We now establish two technical lemma useful for our location theorem.

Lemma 1 For any symmetric matrix S, we have the relation

Tr(M ′xS) = Tr(SM ′x) = 2〈SΛ̄I(x); Λ′I(x)〉. (16)

Proof: Consider first the case where ΛI(x),Λ′I(x) are linearly independent in Rp. One can show that

M ′xSΛ̄I(x) = 〈SΛ̄I(x); Λ̄I(x)〉Λ′I(x) + 〈SΛ′I(x); Λ̄I(x)〉Λ̄I(x),

and
M ′xSΛ′I(x) = 〈SΛ̄I(x); Λ′I(x)〉Λ′I(x) + 〈SΛ′I(x); Λ′I(x)〉Λ̄I(x).

Since the rank of M ′x is 2, we can find a basis adapted to the family (Λ̄I(x); Λ′I(x)) such that the
endomorphism described by M ′xS in the basis is

〈SΛ′I(x); Λ̄I(x)〉 〈SΛ̄I(x); Λ̄I(x)〉 0 . . . 0

〈SΛ′I(x); Λ′I(x)〉 〈SΛ̄I(x); Λ̄′I(x)〉 0
... 0

0 . . . 0 . . . 0
...

...
...

... 0
0 . . . 0 . . . 0

 .

Thus in this case
Tr(M ′xS) = 2〈SΛ̄I(x); Λ′I(x)〉.
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Suppose now that ΛI(x),Λ′I(x) are linearly dependent, we get

〈SΛ̄I(x); Λ̄I(x)〉Λ′I(x) = 〈SΛ′I(x); Λ̄I(x)〉Λ̄I(x),

and applying the same argument as above with the endomorphism M ′xS the rank of which is one in this
case, we also obtain

Tr(M ′xS) = 2〈SΛ̄I(x); Λ′I(x)〉. �

If we denote by Com(M) the matrix tcof(M), where cof(M) is the matrix of cofactors of A, we have
the following result.

Lemma 2 Assume x to be a regular point for the map Λ̄I , and that Mx, Mx∪x are non-singular, then

Tr
(
tCom(Mx∪x)M ′x

)
= Tr

(
tCom(Mx)M ′x

)
.

Proof: Apply lemma 1 first to S = M−1
x∪x, we get

Tr(M−1
x∪xM

′
x) = 2〈M−1

x∪xΛ̄I ; Λ̄′I〉. (17)

Moreover, lemma 1 applied now to S = M−1
x∪xΛ̄tIΛ̄IM

−1
x∪x yields

Tr
(
M−1

x∪xΛ̄tIΛ̄IM
−1
x∪xM

′
x

)
= 2〈M−1

x∪xΛ̄I
tΛ̄IM

−1
x∪xΛ̄I︸ ︷︷ ︸

=〈Λ̄I ;M−1
x∪xΛ̄I〉

; Λ̄′I〉.

Thus
Tr
(
M−1

x∪xΛ̄tIΛ̄IM
−1
x∪xM

′
x

)
= 2〈Λ̄I ;M−1

x∪xΛ̄I〉〈Λ′I ;M−1
x∪xΛ̄I〉. (18)

From (12),(17), and (18), we get

Tr(M−1
x M ′x) = 2〈M−1

x∪xΛ̄I ; Λ̄′I〉+
2〈Λ̄I ;M−1

x∪xΛ̄I〉〈Λ′I ;M
−1
x∪xΛ̄I〉

1−t Λ̄IM
−1
x∪xΛ̄I

= 2〈M−1
x∪xΛ̄I ; Λ̄′I〉 ×

(
1 +

〈Λ̄I ;M−1
x∪xΛ̄I〉

1−t Λ̄IM
−1
x∪xΛ̄I

)
Tr(M−1

x M ′x) =
Tr(M−1

x∪xM
′
x)

1−t Λ̄IM
−1
x∪xΛ̄I

.

Now, use (13) and the relation A−1 =
t(Com(A))

det(A) to reach the conclusion of the lemma:

Tr
(
tCom(Mx∪x)M ′x

)
= Tr

(
tCom(Mx)M ′x

)
. �

Proof of theorem 1: We will note F (x) = det (Mx∪x). Suppose first that Mx is non-singular and x
is not a dyadic point described by the set S . In this case, classical differentiation used with lemma 2
yields

F ′(x) = Tr
(
tCom(Mx∪x)M ′x

)
= Tr

(
tCom(Mx)M ′x

)
.

Finally, since Tr is a linear map, we immediately get

F”(x) = Tr
(
tCom(Mx)M”x

)
= Tr

(
tCom(Mx)Λ̄′I

tΛ̄′I
)

= tΛ̄′I
tCom(Mx)Λ̄′I ≥ 0.

Thus F is a convex function on each interval outside of S Consequently, its maximum are located on
some dyadic points of S. This is equivalent to the assertion of the proposition.

Suppose now Mx is singular, we can find a sequence Mx,εn = Mx + εnId which is non-singular such
that

lim
n7→+∞

Mx + εnId = Mx.

Consider now the function Fεn(x) defined as

Fεn(x) = det (Mx,εn∪x) .
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We can use the same arguments as before to conclude that arg maxFεn ⊂ S since these arguments only
rely on a slight modification of lemma 2 which becomes:

F ′εn(x) = Tr
(
tCom(Mx,εn∪x)M ′x

)
= Tr

(
tCom(Mx,εn)M ′x

)
.

Now, remark that E is a finite set which is not varying with εn and

∀x Fεn(x) ≤ max
x∈E

Fεn(x).

Taking the limit in the relation above yields the conclusion of the proof. �
Proof of theorem 3: Remark first that t 7→ det

(
tId+M−1

x∪x
)

is a polynomial function of t whose
degree p is the size of Λ̄I . This polynomial function is expanded in

det
(
tId+M−1

x∪x
)

= tp − Tr
(
M−1

x∪x1
)
tp−1 +Qx(t)

where deg(Qx) ≤ p− 2. Now for x1, x2 ∈ E such that

Tr
(
M−1

x∪x1
)
≥ Tr

(
M−1

x∪x2
)
,

we can immediately check that for sufficiently large t, we have

det
(
tId+M−1

x∪x1
)
≤ det

(
tId+M−1

x∪x2
)
.

Consequently, the solutions of the trace maximization problem are the same as the one deduced from
the determinant minimization problem and this remark ends the proof. �

Remark 4 To extend now the proof to dimensions d higher than one with some tensorized family of
Schauder functions, one just have to remark that both lemma 1 and 2 are still valid for x ∈ Rd. Then
a similar argument to the one used in the proof of theorem 1 shows the convexity of F except in the
neighbourhood of points of the form (2−j1k1, . . . , 2

−jdkd).

7.2 Convergence in the case of fixed basis

We detail here the convergence of the estimation of the parameter θ̂ with the strategy of sequential
optimal design when the basis I remains fixed . As both previous criteria yield the same optimal design,
we are only concerned with the study of the sequential strategy:

xn+1 = arg max
x

det(Mxn∪x)

and
xn+1 = xn ∪ xn+1,

while θ̂ is classically given by
θ̂n = M−1

xn
Λ̄I(xn)f(xn).

Theorem 4 Let f and η be defined by equations (2) and (3) with a fixed basis I, and suppose that
η ∈ Span(I). Then the sequential optimal design is consistent: θ̂n → θ a.s. Moreover, there exists a
positive constant C such that

‖θ̂n − θ‖∞ ≤ C
√

log n

n
.

Remark 5 The previous theorem ensures the consistency of θ̂n if the signal η is a linear combination of
the functions (Λi)i∈I . Note that when η /∈ Span((Λi)i∈I), the convergence to the orthogonal projection
of η into Span((Λi)i∈I) also holds.

Proof of theorem 4: This proof is inspired by [P00] which states the almost sure convergence of θ̂n to θ
provided the two conditions

C1 λmin [Mxn ]→∞ a.s.
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C2 log (λmax [Mxn ]) = o (λmin [Mxn ]) a.s.

where λmin(M) denotes the minimum eigenvalue of M and λmax(M) the maximum eigenvalue of M . We
establish first the condition C1. Remark that as the functions (Λi)i∈I are linearly independent, we can
find ρ > 0 such that

B(0, ρ) ⊂ Conv(Λ̄I(t), t ∈ E) ∪ −Conv(Λ̄I(t), t ∈ E),

where Conv denotes the convex hull of a set. Now, we have for any symmetric positive definite M

max
y∈B(0,ρ)

tyM−1y = λmin(M)−1ρ2,

and since y 7→ tyM−1y is convex, we can state that

max
x∈E

tΛ̄I(x)M−1Λ̄I(x) ≥ ρ2

λmin(M)
. (19)

Remark that all maps in Λ̄I are continuous and E is compact, thus

∃L > 0 ∀t ∈ E
∥∥tΛ̄I(t)Λ̄I(t)∥∥2

≤ L,

where ‖A‖2 := supx∈B(0,1) ‖Ax‖, where we take the Euclidean norm in the last definition. Now, the
spectral radius satisfies the triangular inequality and

λmax

(
Mxk

k

)
≤

k∑
i=1

λmax(Λ̄I(xi)
tΛ̄I(xi))

k
≤ L.

If Ik = Mxk
/k, the last inequality yields

λmax(Ik) ≤ L. (20)

Next define ρk = det(Ik) and dk(t) = tΛ̄I(t)I
−1
k Λ̄I(t), from Proposition 1 equation (15), we have

ρk+1 =

(
k

k + 1

)p(
1 +

dk(xk+1)

k

)
ρk ≥ ρk

(
k

k + 1

)p
.

Thus, for any ε > 0, we can find K1 ≥ 1 such that

∀k ≥ K1 ρk+1 ≥ (1− ε)ρk, (21)

and a simple induction shows that ρk ≥ (1 − ε)k−K1ρK1 . Let Ak = (1 − ε)k−K1ρK1 , since Ak → 0 as
k →∞, we can find K2 ≥ K1 such that ∀k ≥ K2

ρ2

A
1/p
k

> 2p and

(
k + 1

k

)p
≤ 1 +

2p

k
. (22)

We show now by induction that ρk is bounded from below by (1− ε)AK2 for sufficiently big k. This
is obviously true for k = K2 + 1.

Suppose now that ρk ≥ (1 − ε)AK2 . If ρk ≥ AK2 , in view of (21) we immediately obtain ρk+1 ≥
(1 − ε)AK2 . We must thus study the case AK2 > ρk ≥ (1 − ε)AK2 . From the definition of dk and (19),
we have

max
x∈E

dk(x) ≥ k ρ2

λmin(Mxk
)
≥ k ρ2

det(Mxk
)1/p
≥ ρ2

ρ
1/p
k

.

From equation (22) and our assumption on ρk, we obtain

max
x∈E

dk(x) ≥ ρ2

A
1/p
K2

> 2p.

Finally, the definition of xk+1 yields

ρk+1 = ρk

(
k

k + 1

)p(
1 +

dk(xk+1)

k

)
= ρk

(
k

k + 1

)p(
1 +

maxx∈E dk(x)

k

)
≥ ρk.
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This last inequality concludes the induction and ρk is bounded from below by a constant Γ. Now, remark
that

λmin(Ik)λmax(Ik)
p−1 ≥ det(Ik) ≥ Γ,

and we obtain from equation (20) as k → +∞:

λmin(Mxk
) ≥ k Γ

Lp−1
→ +∞.

This last equation proves condition (C1).
For (C2), simple algebra yields as k → +∞:

λmin(Mxk
)

log (λmax(Mxk
))
≥ kΓ

Lp−1 log (kL)
→∞,

and this last equation proves condition (C2).
With notation of theorem 1 of [LW82], take δ = 0 and apply now this theorem to conclude that

‖θ̂n − θ‖∞ = O

([
log (λmax(Mxk

))

λmin(Mxk
)

]1/2
)

= O

(√
log n

n

)
�
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Figure 13: Estimations of the 2 dimensional signal with our adaptive sequential design method for 1, 6
(left and right top), 12, 18 (left and right middle), 24 and 30 (left and right bottom) iterations.
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