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Abstract

In this paper, we consider the problem of estimating nonparametrically a mean pattern
intensity λ from the observation of n independent and non-homogeneous Poisson processes
N1, . . . , Nn on the interval [0, 1]. This problem arises when data (counts) are collected
independently from n individuals according to similar Poisson processes. We show that
estimating this intensity is a deconvolution problem for which the density of the random
shifts plays the role of the convolution operator. In an asymptotic setting where the number
n of observed trajectories tends to infinity, we derive upper and lower bounds for the minimax
quadratic risk over Besov balls. Non-linear thresholding in a Meyer wavelet basis is used to
derive an adaptive estimator of the intensity. The proposed estimator is shown to achieve
a near-minimax rate of convergence. This rate depends both on the smoothness of the
intensity function and the density of the random shifts, which makes a connection between
the classical deconvolution problem in nonparametric statistics and the estimation of a mean
intensity from the observations of independent Poisson processes.
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1 Introduction

Poisson processes became intensively studied in the statistical theory during the last decades.
Such processes are well suited to model a large amount of phenomena. In particular, they are
used in various applied fields including genomics, biology and imaging.

In the statistical literature, the estimation of the intensity of non-homogeneous Poisson pro-
cess has recently attracted a lot of attention. In particular the problem of estimating a Poisson
intensity from a single trajectory has been studied using model selection techniques [27] and non-
linear wavelet thresholding [12], [21], [28], [33]. Poisson noise removal has also been considered
by [13], [35] for image processing applications. Deriving optimal estimators of a Poisson intensity
using a minimax point of view has been considered in [9], [27], [28] [33]. In all these papers, the
intensity λ of the observed process is expressed as λ(t) = κλ0(t) where the function to estimate
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is the scaled intensity λ0 and κ is a positive real, representing an “observation time”, that is let
going to infinity to study asymptotic properties.

In this paper, we consider a slightly different framework. In many applications, data can
be modeled as independent Poisson processes with different non-homogeneous intensities having
nevertheless a similar shape. The simplest model which describes such situations is to assume
that the intensities λ1, . . . , λn of the Poisson processes N1, . . . , Nn are randomly shifted versions
λi(·) = λ(· − τ i) of an unknown intensity λ, where τ 1, . . . , τn are i.i.d. random variables. The
intensity λ that we want to estimate is thus the same for all the observed processes up to random
translations. Basically, such a model corresponds to the assumption that the recording of counts
does not start at the same time (or location) from one individual to another. Such situation ap-
pears in biology, in particular when reading DNA sequences from different subjects in genomics
[32].

Let us now describe more precisely our model. Let τ 1, . . . , τn be i.i.d. random variables
with known density g with respect to the Lebesgue measure on R. Let λ : [0, 1] → R+ a
real-valued function. Throughout the paper, it is assumed that λ can be extended outside
[0, 1] by 1-periodization. We suppose that, conditionally to τ 1, . . . , τn, the point processes
N1, . . . , Nn are independent Poisson processes on the measure space ([0, 1],B([0, 1]), dt) with
intensities λi(t) = λ(t−τ i) for t ∈ [0, 1], where dt is the Lebesgue measure. Hence, conditionally
to τ i, N

i is a random countable set of points in [0, 1], and we denote by dN i
t = dN i(t) the

discrete random measure
∑

T∈N i δT (t) for t ∈ [0, 1], where δT is the Dirac measure at point T .
For further details on non-homogeneous Poisson processes, we refer to [20]. The objective of this
paper is to study the estimation of λ from a minimax point of view as the number n of observed
Poisson processes tends to infinity. Since λ is 1-periodic, one may argue that the random shifts
τ i are only defined modulo one, and therefore, without loss of generality, we also assume that g
is restricted to have support in the interval [0, 1].

In this framework, our main result is that estimating λ corresponds to a deconvolution prob-
lem where the density g of the random shifts τ 1, . . . , τn is a convolution operator that has to be
inverted. Hence, estimating λ falls into the category of Poisson inverse problems. The presence
of the random shifts significantly complicates the construction of upper and lower bounds for the
minimax risk. In particular, to derive a lower bound, standard methods such as the Assouad’s
cube technique that is widely used for standard deconvolution problems in a white noise model
(see e.g. [26] and references therein) have to be carefully adapted to take into account the effect
of the random shifts. In this paper, our main tool is a likelihood ratio formula specific to Poisson
processes (see Lemma 9.1 below) that yields to major differences in the proof with respect to the
Gaussian case. In order to obtain an upper bound, we use Meyer wavelets which are well suited
to deconvolution problems [19]. We construct a non-linear wavelet-based estimator with level-
dependent and random thresholds that require the use of concentration inequalities for Poisson
processes and an accurate estimation of the L1-norm of the intensity λ. Note that estimating
the intensity function of an indirectly observed non-homogeneous Poisson process from a single
trajectory has been considered by [3], [9], [25], but adopting an inverse problem point of view
to estimate a mean pattern intensity from the observation of n Poisson processes has not been
proposed so far.

We point out that we assume throughout this paper that the density g of the random shifts is
known. This assumption relies on an a priori knowledge of the random phenomenon generating
the shifts. This hypothesis is realistic when dealing with Chip-Seq data for which the biologists
are able to describe and to quantify the law of small random deformations leading to a shifted
D.N.A. transcription. Note that a similar assumptions appears in [30] in the setting where the
shifts τi are given, but when one only observes the sum

∑n
i=1N

i of n Poisson processes N i with
randomly shifted intensities.

The rest of the paper is organized as follows. In Section 2, we discuss some limitations
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of existing approaches (e.g. in genomics and bioinformatics) to estimate the mean pattern λ
via an alignment step which consists in computing “estimators” τ̂1, . . . , τ̂n of the unobserved
shifts τ 1, . . . , τn. In Section 3, we describe the connection between estimating λ and standard
approaches in statistical deconvolution problems. We also discuss the construction of a linear
but nonadaptive estimator of the intensity λ. Section 4 is devoted to the computation of a lower
bound for the minimax risk over Besov balls which is the main contribution of the paper. In
Section 5, we construct an adaptive estimator using non-linear Meyer wavelet thresholding, that
is used to obtain an upper bound of the minimax risk over Besov balls. Section 6 contains a
conclusion and a discussion on some perspectives. The proofs of the main statements and of
some technical lemmas are gathered in Section 7, Section 8, Section 9 and Section 10.

2 The standard approach to estimate a mean intensity via an
alignment step

The motivation of our study comes from a practical problem encountered in DNA Chip-Seq
data processing which can be described as follows. Chip-Sequencing is a fast biological analysis
pipeline used to find and map genetic information along the genome. For any protein (tran-
scription factor) which can read and interpret information in the genome, Chip-Seq provides a
long sequence of tags (called reads) associated with specific genome locations where this tran-
scription factor binds specific DNA sequences. Moreover, the Chip-Seq data provides a higher
concentration of tags near transcription factor binding sites. We can number several goals for
such analysis. Biologists are interested in the identification of true binding sites (where the rate
is significantly high), as well as the estimation of the mean binding rate along the genome for
such protein or the clustering of two populations of experiments which behaves very differently
during such tag procedure.

From a statistical point of view, Chip-Seq data may be considered as repetitions of some
Poisson counting processes (see [31]) which is not of homogeneous intensity as pointed in [11].
The unknown intensity of the underlying Poisson process quantifies the rate of expected reads
for a specific choice of transcription factor. To obtain an estimator of this unknown intensity,
a simple procedure is to average all the observed experiments. However, there is an additional
difficulty in the analysis of such data which mainly relies on the acquisition method. The se-
quencing procedure puts some tags when reads occur along a very long DNA sequence. Then,
it splits this counting process in a large number of sequences with smaller sizes which (roughly
speaking) correspond to several chromosomes. But the demarcation of the beginning and ending
locations of the chromosomes depends on some a priori knowledge which may be inaccurate.
For each observed counting process, this generates some additional unknown random shifts of
the underlying intensity.

In order to overcome this additional source of randomness, various strategies have been
proposed to compute estimators τ̂1, . . . , τ̂n of the unobserved shifts τ 1, . . . , τn (see e.g. [34, 1, 2]).
An estimator of the intensity λ can then be computed by aligning and then averaging the observed
processes. More precisely, if λ̂i(·) denotes an estimator of the shifted intensity λ(·−τ i), obtained
by some smoothing procedure applied to the process N i, then an estimator of λ via an alignment
step is defined by

λ̂n(t) =
1

n

n∑

i=1

λ̂i(t+ τ̂i), t ∈ [0, 1].

However, as pointed by Theorem 2.1 and Theorem 2.2 below, we show that an estimation
of λ through an alignment step yields to non-consistent estimators. Indeed, a first result is
that, under mild assumptions on the intensity λ and the density g of the random shifts, it is
not possible to build consistent estimators of the random shifts τ 1, . . . , τn in the sense that

lim infn→+∞ E

(
1
n

∑n
i=1 (τ̂i − τ i)

2
)

6= 0 for any estimators (τ̂1, . . . , τ̂n) ∈ [0, 1]n .
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Theorem 2.1 Suppose that λ ∈ L2([0, 1]) is continuously differentiable and satisfies

λ0 := inf
t∈[0,1]

{λ(t)} > 0.

Assume that the density g of the random shifts has a compact support [τmin, τmax] ⊂ [0, 1] such
that limτ→τmin

g(τ) = limτ→τmax g(τ) = 0. Suppose that g is absolutely continuous and such that

∫ 1

0

(
∂

∂τ
log g(τ)

)2

g(τ)dτ < +∞.

Let (τ̂1, . . . , τ̂n) ∈ [0, 1]n denote any estimators of the true random shifts (τ 1, . . . , τn) (i.e. a
measurable mapping of the random processes N i, i = 1, . . . , n taking its value in [0, 1]n). Then,

E

(

1

n

n∑

i=1

(τ̂i − τ i)
2

)

≥ 1
∫ 1
0

∣
∣ ∂
∂tλ(t)

∣
∣
2
dt+

∫ 1
0

(
∂
∂τ log g(τ)

)2
g(τ)dτ

> 0. (2.1)

Inequality (2.1) shows that building consistent estimators of the random shifts τ 1, . . . , τn in the
asymptotic setting n → +∞ is not feasible. This inconsistency result on the estimation of the
shifts implies that a consistent estimation of λ via an alignment step is not possible. Indeed,
consider the case of an ideal smoothing of the data with λ̂i(t) = λ(t− τ i), t ∈ [0, 1] which would
lead to the ideal estimator

λ̄n(t) :=
1

n

n∑

i=1

λ(t− τ i + τ̂i), t ∈ [0, 1],

where (τ1, . . . , τn) ∈ [0, 1]n are estimators computed from the data N1, . . . , Nn. Then, the
following theorem shows that λ̄n is not a consistent estimator of λ as n→ +∞.

Theorem 2.2 Suppose that the assumptions of Theorem 2.1 still hold. Assume that λ ∈ L2([0, 1])
is such that

θ1 :=

∫ 1

0
λ(t)e−i2πtdt 6= 0.

Let (τ̂1, . . . , τ̂n) ∈ [0, 1]n denote any estimators of the true random shifts (τ 1, . . . , τn) satisfying
the constraints

∑n
i=1 τ̂i = 0 and τmin ≤ τ̂i ≤ τmax for all i = 1, . . . , n. Suppose that the density

g has zero expectation and finite variance i.e.
∫ 1
0 τg(τ)dτ = 0 and

∫ 1
0 τ

2g(τ)dτ < +∞. Assume
that τmax − τmin := δ

4π for some 0 < δ < 3, and consider the ideal estimator

λ̄n(t) =
1

n

n∑

i=1

λ(t− τ i + τ̂i), t ∈ [0, 1].

Then,

lim inf
n→+∞

E

(∫ 1

0

∣
∣λ̄n(t)− λ(t)

∣
∣2 dt

)

≥
(

2
3π

2 (3− δ) |θ1|
∫ 1
0

∣
∣ ∂
∂tλ(t)

∣
∣
2
dt+

∫ 1
0

(
∂
∂τ log g(τ)

)2
g(τ)dτ

)2

> 0. (2.2)

In Theorem (2.2), we have added the assumption that the estimators of the random shifts satisfy
the constraint

∑n
i=1 τ̂i = 0 and that the density g has zero expectation. Such assumptions are

necessary when using an alignment procedure. Indeed, without such constraints, our model is
not identifiable since for any τ̃ ∈ R one may replace the unknown intensity λ(·) by λ̃(·) = λ(·− τ̃ )
and the random shifts by τ̃ i = τ i − τ̃ without changing the formulation of the problem. Under
such assumptions, inequality (2.2) shows that

lim inf
n→+∞

E

(∫ 1

0

∣
∣λ̄n(t)− λ(t)

∣
∣2 dt

)

6= 0,
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and thus λ̄n does not converge to λ as n → +∞ for the quadratic risk. Therefore, such a
result illustrates the fact that standard procedures based on an alignment step do not yield
consistent estimators of λ. In this paper, we therefore suggest an alternative method based
on a deconvolution step that yields a consistent and adaptive estimator that converges with a
(near-)optimal rate in the minimax sense.

3 A deconvolution problem formulation

3.1 A Fourier transformation of the data

For each observed counting process, the presence of a random shift complicates the estimation
of the intensity λ. Indeed, for all i ∈ {1, . . . , n} and any f ∈ L2([0, 1]) we have

E

[∫ 1

0
f(t)dN i

t

∣
∣
τ i

]

=

∫ 1

0
f(t)λ(t− τ i)dt, (3.1)

where E[.|τ i] denotes the conditional expectation with respect to the variable τ i. Thus

E

∫ 1

0
f(t)dN i

t =

∫ 1

0
f(t)

∫

R

λ(t− τ)g(τ)dτdt =

∫ 1

0
f(t)(λ ⋆ g)(t)dt.

Hence, the mean intensity of each randomly shifted process is the convolution λ⋆g between λ and
the density of the shifts g. This shows that a parallel can be made with the classical statistical
deconvolution problem which is known to be an inverse problem. This parallel is highlighted
by taking a Fourier expansion of the data. Let (eℓ)ℓ∈Z the complex Fourier basis on [0, 1], i.e.
eℓ(t) = ei2πℓt for all ℓ ∈ Z and t ∈ [0, 1]. For ℓ ∈ Z, define

θℓ =

∫ 1

0
λ(t)eℓ(t)dt and γℓ :=

∫ 1

0
g(t)eℓ(t)dt,

as the Fourier coefficients of the intensity λ and the density g of the shifts. Then, for ℓ ∈ Z,
define yℓ as

yℓ :=
1

n

n∑

i=1

∫ 1

0
eℓ(t)dN

i
t . (3.2)

Using (3.1) with f = eℓ, we obtain that

E
[
yℓ
∣
∣
τ 1, . . . , τn

]
=

1

n

n∑

i=1

∫ 1

0
eℓ(t)λ(t− τ i)dt =

1

n

n∑

i=1

e−i2πℓτ iθℓ = γ̃ℓθℓ,

where we have introduced the notation

γ̃ℓ :=
1

n

n∑

i=1

ei2πℓτ i , ∀ℓ ∈ Z. (3.3)

Hence, the estimation of the intensity λ ∈ L2([0, 1]) can be formulated as follows: we want to
estimate the sequence (θℓ)ℓ∈Z of Fourier coefficients of λ from the sequence space model

yℓ = γ̃ℓθℓ + ξℓ,n, (3.4)

where the ξℓ,n are centered random variables defined as

ξℓ,n :=
1

n

n∑

i=1

[∫ 1

0
eℓ(t)dN

i
t −

∫ 1

0
eℓ(t)λ(t− τ i)dt

]

for all ℓ ∈ Z.
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The model (3.4) is very close to the standard formulation of statistical linear inverse problems.
Indeed, using the singular value decomposition of the considered operator, the standard sequence
space model of an ill-posed statistical inverse problem is (see [8] and the references therein)

cℓ = θℓγℓ + zℓ, (3.5)

where the γℓ’s are eigenvalues of a known linear operator, and the zℓ’s represent an additive
random noise. The issue in model (3.5) is to recover the coefficients θℓ from the observations cℓ.
A large class of estimators in model (3.5) can be written as

θ̂ℓ = δℓ
cℓ
γℓ
,

where δ = (δℓ)ℓ∈Z is a sequence of reals with values in [0, 1] called filter (see [8] for further
details).

Equation (3.4) can be viewed as a linear inverse problem with a Poisson noise for which the
operator to invert is stochastic with eigenvalues γ̃ℓ (3.3) that are unobserved random variables.
Nevertheless, since the density g of the shifts is assumed to be known and Eγ̃ℓ = γℓ with γ̃ℓ ≈ γℓ
for n sufficiently large (in a sense which will be made precise later on), an estimation of the
Fourier coefficients of f could be obtained by a deconvolution step of the form

θ̂ℓ = δℓ
yℓ
γℓ
, (3.6)

where δ = (δℓ)ℓ∈Z is a filter whose choice has to be discussed.
In this paper, the following type of assumption on g is considered:

Assumption 3.1 The Fourier coefficients of g have a polynomial decay i.e. for some real ν > 0,
there exist two constants C ≥ C ′ > 0 such that C ′|ℓ|−ν ≤ |γℓ| ≤ C|ℓ|−ν for all ℓ ∈ Z.

In standard inverse problems such as deconvolution, the expected optimal rate of convergence
from an arbitrary estimator typically depends on such smoothness assumptions for g. The
parameter ν is usually referred to as the degree of ill-posedness of the inverse problem, which
quantifies the difficult of inverting the convolution operator.

3.2 A linear estimator by spectral cut-off

This part allows us to shed some light on the connexion that may exist between our model and a
deconvolution problem. For a given filter (δℓ)ℓ∈Z and using (3.6), a linear estimator of λ is given
by

λ̂δ(t) =
∑

ℓ∈Z

θ̂ℓeℓ(t) =
∑

ℓ∈Z

δℓγ
−1
ℓ yℓeℓ(t), t ∈ [0, 1], (3.7)

whose quadratic risk can be written in the Fourier domain as

R(λ̂δ , λ) := E

(
∑

ℓ∈Z

|θ̂ℓ − θℓ|2
)

.

The following proposition (whose proof can be found in Section 8) illustrates how the quality of
the estimator λ̂δ (in term of quadratic risk) is related to the choice of the filter δ.

Proposition 3.1 For any given non-random filter δ, the risk of λ̂δ can be decomposed as

R(λ̂δ, λ) =
∑

ℓ∈Z

|θℓ|2(δℓ − 1)2 +
∑

ℓ∈Z

δ2ℓ
n
|γℓ|−2‖λ‖1 +

∑

ℓ∈Z

δ2ℓ
n
|θℓ|2

(
|γℓ|−2 − 1

)
. (3.8)

where ‖λ‖1 =
∫ 1
0 λ(t)dt.
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Note that the quadratic risk of any linear estimator in model (3.4) is composed of three
terms. The two first terms in the risk decomposition (3.8) correspond to the classical bias and
variance in statistical inverse problems. The third term corresponds to the error related to the
fact that the inversion of the operator is performed using (γl)l∈Z instead of the (unobserved)
random eigenvalues (γ̃l)l∈Z. Consider now the following smoothness class of functions (a Sobolev
ball)

Hs(A) =

{

λ ∈ L2([0, 1]) ;
∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A and λ(t) ≥ 0 for all t ∈ [0, 1]

}

,

for some smoothness parameter s > 0, where θℓ =
∫ 1
0 e

−2iℓπtλ(t)dt.
For the sake of simplicity we only consider the family of projection (or spectral cut-off) filters

δM = (δℓ)ℓ∈Z =
(
11{|ℓ|≤M}

)

ℓ∈Z
for some M ∈ N. Using Proposition 3.1, it follows that

R(λ̂δ
M

, λ) =
∑

ℓ>M

|θℓ|2 +
1

n

∑

|ℓ|<M

(
|γℓ|−2‖λ‖1 + |θℓ|2

(
|γℓ|−2 − 1

))
. (3.9)

For an appropriate choice of the spectral cut-off parameter M , the following proposition gives
the asymptotic behavior of the risk of λ̂δ

M

, see equation (3.7).

Proposition 3.2 Assume that f belongs to Hs(A) with s > 1/2 and A > 0, and that g satisfies

Assumption (3.1). If M = Mn is chosen as the largest integer such Mn ≤ n
1

2s+2ν+1 , then as
n→ +∞

sup
λ∈Hs(A)

R(λ̂δ
M

, λ) = O
(

n−
2s

2s+2ν+1

)

.

The proof follows immediately from the decomposition (3.9), the definition of Hs(A) and As-
sumption (3.1). Remark that Proposition 3.2 shows that under Assumption 3.1 the quadratic

risk R(λ̂δ
M

, λ) is of polynomial order of the sample size n, and that this rate deteriorates as the
degree of ill-posedness ν increases. Such a behavior is a well known fact for standard deconvo-
lution problems, see e.g. [26], [19] and references therein. Proposition 3.2 shows that a similar

phenomenon holds for the linear estimator λ̂δ
M

. Hence, there may exist a connection between
estimating a mean pattern intensity from a set of non-homogeneous Poisson processes and the
statistical analysis of deconvolution problems.

However, the choice of M =Mn in Proposition 3.2 depends on the a priori unknown smooth-
ness s of the intensity λ. Such a spectral cut-off estimator is thus non-adaptive, of limited interest
for applications. Moreover, the result of Proposition 3.2 is only suited for smooth functions since
Sobolev balls Hs(A) for s > 1/2 are not well adapted to model intensities λ which may have
singularities. This corresponds to a classical limitation of deconvolution using the Fourier basis
which is not well suited to estimate an intensity λ with spikes for instance. In Section 5, we
will thus consider the problem of constructing an adaptive estimator using non-linear wavelet
decompositions, and we will derive an upper bound of the quadratic risk of such estimators over
Besov balls.

4 Lower bound of the minimax risk over Besov balls

Denote by ‖λ‖22 =
∫ 1
0 |λ(t)|2dt the squared norm of a function λ belonging to the space L2([0, 1]) of

squared integrable functions on [0, 1] with respect to the Lebesgue measure dt. Let Λ ⊂ L2([0, 1])
be some smoothness class of functions, and let λ̂n ∈ L2([0, 1]) denote an estimator of the intensity
function λ ∈ Λ, i.e. a measurable mapping of the random processes N i, i = 1, . . . , n taking its
value in L2([0, 1]). Define the quadratic risk of any estimator λ̂n as

R(λ̂n, λ) := E‖λ̂n − λ‖22,
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and introduce the following minimax risk

Rn(Λ) = inf
λ̂n

sup
λ∈Λ

R(λ̂n, λ),

where the above infimum is taken over the set of all possible estimators constructed from
N1, . . . , Nn. In order to investigate the optimality of an estimator, the main contributions of this
paper are deriving upper and lower bounds for Rn(Λ) when Λ is a Besov ball, and constructing
an adaptive estimator that achieves a near-minimax rate of convergence.

4.1 Meyer wavelets and Besov balls

Let us denote by ψ (resp. φ) the periodic mother Meyer wavelet (resp. scaling function) on the
interval [0, 1] (see e.g. [26, 19] for a precise definition). Any intensity λ ∈ L2([0, 1]) can then be
decomposed as follows

λ(t) =

2j0−1∑

k=0

cj0,kφj0,k(t) +

+∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(t),

where φj0,k(t) = 2j0/2φ(2j0t− k), ψj,k(t) = 2j/2ψ(2jt− k), j0 ≥ 0 denotes the usual coarse level
of resolution, and

cj0,k =

∫ 1

0
λ(t)φj0,k(t)dt, βj,k =

∫ 1

0
λ(t)ψj,k(t)dt,

are the scaling and wavelet coefficients of λ. It is well known that Besov spaces can be char-
acterized in terms of wavelet coefficients (see e.g [24]). Let s > 0 denote the usual smoothness
parameter, then for the Meyer wavelet basis and for a Besov ball Bs

p,q(A) of radius A > 0 with
1 ≤ p, q ≤ ∞, one has that

Bs
p,q(A) =







f ∈ L2([0, 1]) :





2j0−1∑

k=0

|cj0,k|p




1
p

+






+∞∑

j=j0

2j(s+1/2−1/p)q





2j−1∑

k=0

|βj,k|p




q

p






1
q

≤ A







with the respective above sums replaced by maximum if p = ∞ or q = ∞. The parameter s
is related to the smoothness of the function f . Note that if p = q = 2, then a Besov ball is
equivalent to a Sobolev ball if s is not an integer. For 1 ≤ p < 2, the space Bs

p,q(A) contains
functions with local irregularities.

4.2 A lower bound of the minimax risk

The following result provides a lower bound of reconstruction in Bs
p,q(A) over a large range of

values for s, p, q.

Theorem 4.1 Suppose that g satisfies Assumption 3.1. Introduce the class of functions

Λ0 =
{
λ ∈ L2([0, 1]); λ(t) ≥ 0 for all t ∈ [0, 1]

}
.

Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A > 0 and assume that s > 2ν + 1. Then, there exists a constant
C0 > 0 (independent of n) such that for all sufficiently large n

Rn(B
s
p,q(A) ∩ Λ0) = inf

λ̂n

sup
λ∈Bs

p,q(A)
⋂

Λ0

R(λ̂n, λ) ≥ C0n
− 2s

2s+2ν+1 ,

where the above infimum is taken over the set of all possible estimators λ̂n ∈ L2([0, 1]) of the
intensity λ (i.e the set of all measurable mapping of the random processes N i, i = 1, . . . , n taking
their value in L2([0, 1])).
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Hence, Theorem 4.1 shows that under Assumption 3.1 the minimax risk Rn

(
Λ0 ∩Bs

p,q(A)
)

is

lower bounded by the sequence n−
2s

2s+2ν+1 which goes to zero at a polynomial rate as the sample
size n goes to infinity, and that this rate deteriorates as the degree of ill-posedness ν increases.
Such a behavior is a well known fact for standard deconvolution problems, see e.g. [26], [19] and
references therein. The proof of this result is postponed to Section 9. The arguments to derive
this lower bound rely on a non-standard use of Assouad’s cube technique that is classically used
in statistical deconvolution problems to obtain minimax properties of an estimator (see e.g. [26]
and references therein).

5 Adaptive estimation in Besov spaces

In this section, we describe a statistical procedure to build an adaptive (to the unknown smooth-
ness s of λ) estimator using Meyer wavelets.

5.1 A deconvolution step to estimate scaling and wavelet coefficients

We use Meyer wavelets to build a non-linear and adaptive estimator as follows. Meyer wavelets
satisfy the fundamental property of being band-limited function in the Fourier domain which
make them well suited for deconvolution problems. More precisely, each φj,k and ψj,k has a
compact support in the Fourier domain in the sense that

φj0,k =
∑

ℓ∈Dj0

cℓ(φj0,k)eℓ, ψj,k =
∑

ℓ∈Ωj

cℓ(ψj,k)eℓ,

with

cℓ(φj0,k) :=

∫ 1

0
e−2iℓπtφj0,k(t)dt, cℓ(ψj,k) :=

∫ 1

0
e−2iℓπtψj,k(t)dt,

and where Dj0 and Ωj are finite subsets of integers such that #Dj0 ≤ C2j0 , #Ωj ≤ C2j for some
constant C > 0 independent of j and

Ωj ⊂ [−2j+2c0,−2jc0] ∪ [2jc0, 2
j+2c0] (5.1)

with c0 = 2π/3. Then, thanks to Dirichlet theorem, the scaling and wavelets coefficients of λ
satisfy

cj0,k =
∑

ℓ∈Dj0

cℓ(φj0,k)θℓ, βj,k =
∑

ℓ∈Ωj

cℓ(ψj,k)θℓ. (5.2)

Therefore, one can plug the estimator θ̂ℓ = γ−1
ℓ yℓ of each θℓ, see equation (3.4), in (5.2) to build

estimators of the scaling and wavelet coefficients by defining

ĉj0,k =
∑

ℓ∈Ωj0

cℓ(φj0,k)θ̂ℓ and β̂j,k =
∑

ℓ∈Ωj

cℓ(ψj,k)θ̂ℓ. (5.3)

5.2 Hard thresholding estimation

We propose to use a non-linear hard thresholding estimator defined by

λ̂hn =

2j0(n)−1∑

k=0

ĉj0,kφj0,k +

j1(n)∑

j=j0(n)

2j−1∑

k=0

β̂j,k11{|β̂j,k|>ŝj(n)}ψj,k. (5.4)

In the above formula, ŝj(n) refers to possibly random thresholds that depend on the resolution
j, while j0 = j0(n) and j1 = j1(n) are the usual coarsest and highest resolution levels whose
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dependency on n will be specified later on. Then, let us introduce some notations. For all j ∈ N,
define

σ2j = 2−j
∑

ℓ∈Ωj

|γℓ|−2 and ǫj = 2−j/2
∑

ℓ∈Ωj

|γℓ|−1, (5.5)

and for any γ > 0, let

K̃n(γ) =
1

n

n∑

i=1

Ki +
4γ log n

3n
+

√
√
√
√

2γ log n

n2

n∑

i=1

Ki +
5γ2(log n)2

3n2
, (5.6)

where Ki =
∫ 1
0 dN

i
t is the number of points of the counting process N i for i = 1, . . . , n. Introduce

also the class of bounded intensity functions

Λ∞ =
{
λ ∈ L2([0, 1]); ‖λ‖∞ < +∞ and λ(t) ≥ 0 for all t ∈ [0, 1]

}
,

where ‖λ‖∞ = supt∈[0,1]{|λ(t)|}.

Theorem 5.1 Suppose that g satisfies Assumption 3.1. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0.
Let p′ = min(2, p), and assume that s > 1/p′ and (s + 1/2 − 1/p′)p > ν(2 − p). Let δ > 0 and
suppose that the non-linear estimator λ̂hn (5.4) is computed using the random thresholds

ŝj(n) = 4

(√

σ2j
2γ log n

n

(

‖g‖∞K̃n(γ) + δ
)

+
γ log n

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n),

with γ ≥ 2, and where σ2j and ǫj are defined in (5.5). Define j0(n) as the largest integer such that

2j0(n) ≤ log n and j1(n) as the largest integer such that 2j1(n) ≤
(

n
logn

) 1
2ν+1

. Then, as n→ +∞,

sup
λ∈Bs

p,q(A)
⋂

Λ∞

R(λ̂hn, λ) = O
((

log n

n

) 2s
2s+2ν+1

)

.

The proof of Theorem 5.1 is postponed to Section 10. Hence, Theorem 5.1 shows that under
Assumption 3.1 the quadratic risk of the non-linear estimator λ̂hn is of polynomial order of the
sample size n, and that this rate deteriorates as ν increases. Again, this result illustrates the
connection between estimating a mean intensity from the observation of Poisson processes and
the analysis of inverse problems in nonparametric statistics. Note that the choices of the random
thresholds ŝj(n) and the highest resolution level j1 do not depend on the smoothness parameter s.

Hence, contrary to the linear estimator λ̂δ
M

studied in Proposition 3.2, the non-linear estimator
λ̂hn is said to be adaptive with respect to the unknown smoothness s. Moreover, the Besov spaces
Bs
p,q(A) may contain functions with local irregularities. The above described non-linear estimator

is thus suitable for the estimation of non-globally smooth functions.

In Section 4, we have shown that the rate n−
2s

2s+2ν+1 is a lower bound for the asymptotic
decay of the minimax risk over a large scale of Besov balls. Hence, the wavelet estimator that we
propose is almost optimal up to a logarithmic term. The presence of such a term is classical in
wavelet-based denoising. It corresponds to the price to pay for adaptation when using estimators
based on nonlinear thresholding in a wavelet basis.

6 Conclusion and perspectives

In this paper, we have considered the problem of adaptive estimation of a non-homogeneous
intensity function from the observation of n independent Poisson processes having a similar
intensity λ that is randomly shifted for each observed trajectory. It has been shown that this
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model turns out to be an inverse problem in which the density g of the random shifts plays
the role of a convolution operator. These results have been derived under the assumption that
the density g is known. It is a well-known fact (see e.g. [23]) that, in standard deconvolution
problems, if the convolution kernel g is unknown no satisfying rate of convergence can be obtained
after a regularization process. As explained in Section 2, instead of assuming the knowledge of g,
one could try to preliminary construct “estimators” of the unobserved random shifts τ 1, . . . , τn
and then to average the observed processes after an alignment step using these estimated shifts.
However, as shown by the results of Theorems 2.1 and 2.2, to obtain a consistent estimator of a
mean pattern intensity using estimated values of the shifts, it would be necessary to consider a
double asymptotic setting where both the number n of observed trajectories and an “observation
time” κ (such that λ(t) = κλ0(t) where λ0 is an unknown scaled intensity to be estimated) are
let going to infinity. Nevertheless, this double asymptotic setting is far beyond the scope of this
paper in which we have only considered the case where n tends to infinity. Another possibility to
treat the case of an unknown g would be to adopt the point of view of inverse problems with an
additive Gaussian noise in the setting of partially known (or noisy) operators as in [16] and [10].
However, the assumptions made in [16] and [10] to consistently estimate an unknown operator
cannot be easily adapted to our framework.

7 Proof of the results in Section 2

7.1 Proof of Theorem 2.1

Some parts of the proof of are inspired by general results on Van Trees inequalities established
in [14]. Consider first the case where the shifts τi, i = 1, . . . , n are non-random parameters to
be estimated, and let τn = (τ1, . . . , τn) ∈ [0, 1]n. Let N = (N 1, . . .N n), where N 1, . . .N n are n
independent Poisson processes whose intensities are specified below. Thanks to Lemma 9.1, for
any real-valued and bounded measurable function h of the random variable N , one has that

Eτ (h(N )) = E0 (h(N )p(N|τn))

with

p(N|τn) =
n∏

i=1

exp

[

λ0 −
∫ 1

0
λ(t− τi)dt+

∫ 1

0
log

(
λ(t− τi)

λ0

)

dN i
t

]

,

where Eτ denotes the expectation of the n Poisson counting processes in N under the assumption
that each intensity is given by λi(t) = λ(t− τi), t ∈ [0, 1], i = 1, . . . , n, (where τ1, . . . , τn are fixed
parameters) and E0 denotes the expectation of the n Poisson counting processes in N under the
assumption that each intensity is given by λi(t) = λ0, t ∈ [0, 1], i = 1, . . . , n. Since

∂

∂τi
log p(N|τn) =

∫ 1

0

∂

∂t
λ(t− τi)dt−

∫ 1

0

∂
∂tλ(t− τi)

λ(t− τi)
dN i

t

it follows from (3.1) that for i = 1, . . . , n

Eτ

(
∂

∂τi
log p(N|τn)

)

= 0. (7.1)

Then, for i1 6= i2 one has that Eτ

(
∂
∂τi1

log p(x|τn) ∂
∂τi2

log p(x|τn)
)

= 0, and for i1 = i2, using

Proposition 6 in [27] , one obtains that

Eτ

(
∂

∂τi1
log p(N|τn)

)2

= Var

(
∫ 1

0

∂
∂tλ(t− τi)

λ(t− τi)
dN i

t

)

=

∫ 1

0

∣
∣
∣
∣

∂

∂t
λ(t)

∣
∣
∣
∣

2

dt (7.2)
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Suppose now that the shifts are i.i.d. random variables with density g satisfying the assumptions
of Theorem 2.1. Let τ̂n = τ̂n(N ) ∈ [0, 1]n denote any estimator of the true random shifts
τ
n = (τ 1, . . . , τn). Define the following random vectors U and V = (V1, . . . , Vn)

′ in R
n as

U := τ̂n − τ
n and Vi :=

∂

∂τi
[p(N|τn)gn(τn)]

1

p(N|τn)gn(τn)
for i = 1, . . . , n,

where gn(τ
n) =

∏n
i=1 g(τ i). Remark first that

E
(
U ′V

)
=

∫

[0,1]n
Eτ

(
n∑

i=1

(τ̂i − τi)
∂

∂τi
[p(N|τn)gn(τn)]

1

p(N|τn)gn(τn)

)

gn(τ
n)dτn

=

∫

[0,1]n
E0

(
n∑

i=1

(τ̂i − τi)
∂

∂τi
[p(N|τn)gn(τn)]

)

dτn

= E0

(
n∑

i=1

τ̂i

∫

[0,1]n

∂

∂τi
[p(N|τn)gn(τn)]dτn

)

−E0

(
n∑

i=1

∫

[0,1]n
τi
∂

∂τi
[p(N|τn)gn(τn)]dτn

)

Thanks to the assumption that g is absolutely continuous with a compact support [τmin, τmax] ⊂
[0, 1] such that limτ→τmin

g(τ) = limτ→τmax g(τ) = 0, it follows that

∀i ∈ {1 . . . n}
∫

[0,1]n

∂

∂τi
[p(N|τn)gn(τn)]dτn = 0.

Moreover, an integration by part implies that
∫

[0,1]n
τi
∂

∂τi
[p(N|τn)gn(τn)]dτn = −

∫

[0,1]n
p(N|τn)gn(τn)dτn.

Therefore E (U ′V ) = E0

(
∑n

i=1

∫

[0,1]n p(N|τn)gn(τn)dτn
)

= n and by Cauchy-Schwarz’s inequal-

ity, it follows that n2 = (E (U ′V ))2 ≤ E (U ′U)E (V ′V ) . Then, note that

E
(
U ′U

)
= E

(
n∑

i=1

(τ̂i − τ i)
2

)

= E0

(
∫

[0,1]n
(τ̂i − τi)

2p(N|τn)gn(τn)dτn
)

,

and

E
(
V ′V

)
= E

(
n∑

i=1

(
∂

∂τi
[log p(N|τn) + log gn(τ

n)]

)2
)

= E

(
n∑

i=1

(
∂

∂τi
log p(N|τn)

)2
)

+ E

(
n∑

i=1

(
∂

∂τi
log gn(τ

n)

)2
)

,

since by using (7.1) it follows that

E

(
n∑

i=1

∂

∂τi
log p(N|τn) ∂

∂τi
log gn(τ

n)

)

=

n∑

i=1

∫

[0,1]n
Eτ

(
∂

∂τi
log p(N|τn)

)
∂

∂τi
log gn(τ

n)gn(τ
n)dτn = 0.

Therefore by (7.2),

E
(
V ′V

)
=

n∑

i=1

∫

[0,1]n
Var

(
∂

∂τi
log p(N|τn)

)

gn(τ
n)dτn + E

n∑

i=1

(
∂

∂τi
log g(τi)

)2

= n

∫ 1

0

∣
∣
∣
∣

∂

∂t
λ(t)

∣
∣
∣
∣

2

dt+ n

∫ 1

0

(
∂

∂τ
log g(τ)

)2

g(τ)dτ.

12



Since we have shown that n2 ≤ E (U ′U)E (V ′V ), one finally obtains the following lower bound

E

(

1

n

n∑

i=1

(τ̂i − τ i)
2

)

=
1

n
E
(
U ′U

)
≥ 1
∫ 1
0

∣
∣ ∂
∂tλ(t)

∣
∣
2
dt+

∫ 1
0

(
∂
∂τ log g(τ)

)2
g(τ)dτ

, (7.3)

which completes the proof. �

7.2 Proof of Theorem 2.2

A part of the proof is inspired by a similar result in [4]. Suppose that (τ̂1, . . . , τ̂n) ∈ [0, 1]n

are estimators of the true random shifts (τ 1, . . . , τn) satisfying the constraints
∑n

i=1 τ̂i = 0 and
τmin ≤ τ̂i ≤ τmax for all i = 1, . . . , n. Let τ̄ = 1

n

∑n
i=1 τ i and define λ⋆(t) = λ(t− τ̄ ) for t ∈ [0, 1].

Note that applying Jensen’s inequality and then Minkowski’s inequality implies that

(

E

(∫ 1

0

∣
∣λ̄n(t)− λ(t)

∣
∣2 dt

))1/2

≥ E

(∫ 1

0

∣
∣λ̄n(t)− λ(t)

∣
∣2 dt

)1/2

≥ |EI1 − EI2| . (7.4)

where I1 :=
(∫ 1

0

∣
∣λ̄n(t)− λ⋆(t)

∣
∣2 dt

)1/2
and I2 :=

(∫ 1
0 |λ⋆(t)− λ(t)|2 dt

)1/2
. Below, we derive an

asymptotic lower bound (as n→ +∞) of |EI1 − EI2|.

Control of the term EI1 : remind that we note θ1 =
∫ 1
0 λ(t)e

−i2πtdt. The Bessel’s inequality
restricted to the first Fourier term implies that

I1 ≥ |θ1|
∣
∣
∣
∣
∣

1

n

n∑

i=1

(

ei2π(τ̂i−τ i+τ̄ ) − 1
)
∣
∣
∣
∣
∣
. (7.5)

Let ui = 2π(τ̂i − τ i + τ̄ ), i = 1, . . . , n. Note that, given our assumptions, |ui| ≤ 4π(τmax −
τmin) = δ < 3. Let F (u1, . . . , un) = 1

n

∑n
i=1 e

iui . A Taylor expansion implies that for all
(a1, . . . , an) ∈ [−δ, δ]n, there exist some (ti)1≤i≤n ∈ [−δ, δ]n such that

F (a1, . . . , an) = 1 +
i

n

n∑

i=1

ai −
1

2n

n∑

i=1

a2i −
i

6n

n∑

i=1

a3i e
iti .

Given that
∑n

i=1 τ̂i = 0, one has that
∑n

i=1 ui = 0, and thus, using the above Taylor expansion
with a1 = u1, . . . , an = un, it follows that

∣
∣
∣
∣
∣

1

n

n∑

i=1

eiui − 1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
− 1

2n

n∑

i=1

u2i −
i

6n

n∑

i=1

u3i e
iti

∣
∣
∣
∣
∣
≥ 1

2n

∣
∣
∣
∣
∣

n∑

i=1

u2i −
∣
∣
∣
∣

i

3

n∑

i=1

u3i e
iti

∣
∣
∣
∣

∣
∣
∣
∣
∣
.

Since |ui| ≤ δ for all i = 1, . . . , n, we have that
∣
∣ i
3

∑n
i=1 u

3
i e

iti
∣
∣ ≤ δ

3

∑n
i=1 |ui|2 which finally

implies that
∣
∣ 1
n

∑n
i=1 e

iui − 1
∣
∣ ≥ 3−δ

6
1
n

∑n
i=1 u

2
i . Combined with (7.5), it proves that

I1 ≥ C(δ)|θ1|
1

n

n∑

i=1

(τ̂i − τ i + τ̄ )2 ≥ C(δ)|θ1| (I1,1 − I1,2)

with C(δ) = 4π2 3−δ
6 > 0, and where

I1,1 :=
1

n

n∑

i=1

(τ̂i − τ i)
2 and I1,2 := 2|τ̄ |

(

1

n

n∑

i=1

|τ̂i − τ i|
)

.

Given our assumptions on τ̂i and τ i, it follows that I1,2 ≤ 4(τmax−τmin)|τ̄ |. Then, the assumption

that
∫ 1
0 τg(τ)dτ = 0 implies that E|τ̄ |2 = 1

nE|τ 1|2, and thus

EI1,2 ≤ 4(τmax − τmin)
√

E|τ̄ |2 → 0 as n→ +∞.
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Therefore, by Theorem 2.1

lim inf
n→+∞

EI1 ≥
C(δ)|θ1|

∫ 1
0

∣
∣ ∂
∂tλ(t)

∣
∣
2
dt+

∫ 1
0

(
∂
∂τ log g(τ)

)2
g(τ)dτ

(7.6)

Control of the term EI2 : using again the fact that E|τ̄ |2 = 1
nE|τ 1|2, and the inequality

I2 ≤ |τ̄ | × supt∈[0,1]
{∣
∣ ∂
∂tλ(t)

∣
∣
}
|τ̄ |, one obtains that

EI2 ≤ sup
t∈[0,1]

{∣
∣
∣
∣

∂

∂t
λ(t)

∣
∣
∣
∣

}
√

E|τ̄ |2 → 0, as n→ +∞. (7.7)

Therefore, by combining (7.6) and (7.7), it follows that

lim inf
n→+∞

|EI1 − EI2| ≥
4π2

(
3−δ
6

)
|θ1|

∫ 1
0

∣
∣ ∂
∂tλ(t)

∣
∣
2
dt+

∫ 1
0

(
∂
∂τ log g(τ)

)2
g(τ)dτ

which completes the proof. �

8 Proof of Proposition 3.1

Remark that for all ℓ ∈ Z

θ̂ℓ − θℓ = θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i, (8.1)

where the ǫℓ,i are centered random variables defined as ǫℓ,i = γ−1
ℓ

∫ 1
0 eℓ(t)

(
dN i

t − λ(t− τ i)dt
)
.

Now, to compute E|θ̂ℓ − θℓ|2, remark first that

|θ̂ℓ − θℓ|2 =

[

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i

] [

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n∑

i=1

ǫℓ,i

]

=



|θℓ|2
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ 2ℜe
(

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]
δℓ
n

n∑

i=1

ǫℓ,i

)

+
δ2ℓ
n2

n∑

i,i′=1

ǫℓ,iǫℓ,i′



 .

Taking expectation in the above expression yields

E|θ̂ℓ − θℓ|2 = E

[

E|θ̂ℓ − θℓ|2
∣
∣
τ 1, . . . , τn

]

= E



|θℓ|2
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ 2ℜe



θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

E

[

δℓ
n

n∑

i=1

ǫℓ,i

]


∣
∣
τ 1, . . . , τn





+E




δ2ℓ
n2

n∑

i,i′=1

E
[
ǫℓ,iǫℓ,i′

∣
∣
τ 1, . . . , τn

]



 .

Now, remark that given two integers i 6= i′ and the two shifts τ i, τ i′ , ǫℓ,i and ǫℓ,i′ are independent
with zero mean. Therefore, using the equality

E

∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

= δ2ℓ |γℓ|−2
E|γ̃ℓ − γℓ|2 + (δℓ − 1)2 = (δℓ − 1)2 +

δ2ℓ
n
(|γℓ|−2 − 1),
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one finally obtains

E|θ̂ℓ − θℓ|2 = |θℓ|2E
∣
∣
∣
∣
δℓ
γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+ E

[

δ2ℓ
n2

n∑

i=1

E
[
|ǫℓ,i|2

∣
∣
τ 1, . . . , τn

]

]

= |θℓ|2(δℓ − 1)2 +
δ2ℓ
n

(
|θℓ|2

(
|γℓ|−2 − 1

)
+ E|ǫℓ,1|2

)
.

Using in what follows the equality E|a+ib|2 = E[|a|2+|b|2] with a =
∫ 1
0 cos(2πℓt)

(
dN1

t − λ(t− τ 1)dt
)

and b =
∫ 1
0 sin(2πℓt)

(
dN1

t − λ(t− τ 1)dt
)
, we obtain

E|ǫℓ,1|2 = |γℓ|−2
E

[

E

∣
∣
∣
∣

∫ 1

0
eℓ(t)

(
dN1

t − λ(t− τ 1)dt
)
∣
∣
∣
∣

2
∣
∣
τ 1

]

= |γℓ|−2
E

∫ 1

0

(
| cos(2πℓt)|2 + | sin(2πℓt)|2

)
λ(t− τ 1)dt = |γℓ|−2‖λ‖1,

where the last equality follows from the fact that λ has been extended outside [0, 1] by periodiza-
tion, which completes the proof of Proposition 3.1.

9 Proof of the lower bound (Theorem 4.1)

9.1 Some properties of Meyer wavelets

Meyer wavelet functions satisfies the following proposition which will be useful for the construc-
tion of a lower bound of the minimax risk.

Proposition 9.1 There exists a universal constant c(ψ) such that for any j ∈ N and for any
(ωk)0≤k≤2j−1 ∈ {0, 1}2j

sup
x∈[0,1]

∣
∣
∣
∣
∣
∣

2j−1∑

k=0

ωkψj,k(x)

∣
∣
∣
∣
∣
∣

≤ c(ψ)2j/2.

Proof : Recall that the periodic Meyer mother wavelet ψ (on the interval [0, 1]) has been obtained

from the periodization of a mother Meyer wavelet, say ψ̃ : R → R, that generates a wavelet basis
of L2(R) (see e.g. [26, 19]). The Meyer mother wavelet ψ̃ is not compactly supported, but it
satisfies the following inequality supx∈R

∑

ℓ∈Z |ψ̃(x − ℓ)| < ∞, which implies that there exists

some universal constant c = c(ψ̃) > 0 such that supx∈R

{
∑

k∈Z

∣
∣
∣ψ̃j,k(x)

∣
∣
∣

}

≤ c2j/2, for any j ≥ 0,

where ψ̃j,k(x) = 2j/2ψ̃(2jx− k). Hence, the proof follows using the fact that the periodic Meyer
wavelet ψj,k(x) =

∑

ℓ∈Z ψ̃j,k(x− ℓ) for x ∈ [0, 1] is the periodization of the (classical) Meyer basis

ψ̃j,k (with infinite support). �

9.2 Definitions and notations

Recall that τ 1, . . . , τn are i.i.d. random variables with density g, and that for λ ∈ Λ0 a given
intensity, we denote by N1, . . . , Nn the counting processes such that conditionally to τ 1, . . . , τn,
N1, . . . , Nn are independent Poisson processes with intensities λ(·−τ 1), . . . , λ(·−τn). Then, the
notation Eλ will be used to denote the expectation with respect to the distribution Pλ (tensorized
law) of the multivariate counting process N =

(
N1, . . . , Nn

)
with the coupled randomness on

the shifts and the counting processes. In the rest of the proof, we also assume that p, q denote
two integers such that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A is a positive constant, and that s is a positive
real such that s > 2ν + 1, where ν is the degree of ill-posedness defined in Assumption 3.1.

A key step in the proof is the use of the likelihood ratio Λ(H0,H1) between two measures
associated to two hypotheses H0 and H1 on the intensities of the Poisson processes we consider.

15



The following lemma, whose proof can be found in [6], is a Girsanov’s like formula for Poisson
processes when random shifts do not appear in the model (notation P̃ instead of P below).

Lemma 9.1 (Girsanov’s like formula) Let N0 (hypothesis H0) and N1 (hypothesis H1) two
Poisson processes having respectively intensity λ0(t) = ρ and λ1(t) = ρ + µ(t) for all t ∈ [0, 1],
where ρ > 0 is a positive constant and µ ∈ Λ0 is a positive function. Let P̃λ1 (resp. P̃λ0) be the
distribution of N1 (resp. N0). Then, the likelihood ratio between H0 and H1 is

Λ(H0,H1)(N ) :=
dP̃λ1
dP̃λ0

(N ) = exp

[

−
∫ 1

0
µ(t)dt+

∫ 1

0
log

(

1 +
µ(t)

ρ

)

dNt

]

, (9.1)

where N is a Poisson process with intensity belonging to Λ0.

The above lemma means that if F (N ) is a real-valued and bounded measurable function of the
counting process N = N1 (hypothesis H1), then

EH1 [F (N )] = EH0 [F (N )Λ(H0,H1)(N )]

where EH1 denotes the expectation with respect to P̃λ1 (hypothesis H1), and EH0 denotes the
expectation with respect to P̃λ0 (hypothesis H0).

Obviously, one can adapt Lemma 9.1 to the case of n independent Poisson processes N =
(N 1, . . .N n) with respective intensities λi(t) = ρ + µi(t), t ∈ [0, 1], i = 1, . . . , n under H1 and
λi(t) = ρ, t ∈ [0, 1], i = 1, . . . , n under H0, where µ1, . . . , µn are positive intensities in Λ0. In
such a case, the Girsanov’s like formula (9.1) becomes

Λ(H0,H1)(N ) =
n∏

i=1

exp

[

−
∫ 1

0
µi(t)dt+

∫ 1

0
log

(

1 +
µi(t)

ρ

)

dN i
t

]

. (9.2)

9.3 Minoration of the minimax risk using the Assouad’s cube technique

Let us first describe the main idea of the proof which expoits the Assouad’s cube approach (see
e.g. [7]).

- In Section 9.3.1, we build a set of test functions which are appropriate linear combinations
of Meyer wavelets. The construction of this set follows the idea of the Assouad’s cube
technique to derive lower bounds for minimax risks (see e.g. [15, 26]).

- In Section 9.3.2 we give a key result in Lemma 9.2 that relates a lower bound on the minimax
risk to a problem of statistical testing of different hypotheses. The first main step in the
proof of this lemma is the use of the likelihood ratio formula (9.2). The second main step
exploits the fact that, under the hypothesis that the intensity λ(t) = λ0(t) = ρ > 0 is a
constant function then the distribution of the data is invariant through the action of the
random shifts.

- In Section 9.3.3 we specify the size of the set of test functions used in the Assouad’s cube
approach.

- In Section 9.3.4 we give the proof of the technical Lemma 9.3 which controls the asymptotic
behavior of the likelihood ratio (9.5) defined in Lemma 9.2 under well-chosen hypotheses
H1 and H0.

The result of Theorem 4.1 then follows from the combination of the results of these four
sections.
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9.3.1 Assouad’s cube

Given an integer D ≥ 1, introduce

SD(A) = {f ∈ Λ0 ∩Bs
p,q(A) | 〈f, ψj,k〉 = 0 ∀j 6= D ∀k ∈ {0 . . . 2j − 1}}.

For any ω = (ωk)k=0,...,2D−1 ∈ {0, 1}2D and ℓ ∈ {0, . . . , 2D − 1}, we define ω̄ℓ ∈ {0, 1}2D as

ω̄ℓk = ωk,∀k 6= l and ω̄ℓℓ = 1− ωℓ. In what follows, we will use the likelihood ratio formula (9.2)
with the intensity

λ0(t) = ρ(A) =
A

2
,∀t ∈ [0, 1], (9.3)

which corresponds to the hypothesis H0 under which all the intensities of the observed counting
processes are constant and equal to A/2 where A is the radius of the Besov ball Bs

p,q(A). Next,

for any ω ∈ {0, 1}2D−1, we denote by λD,ω the intensity defined as

λD,ω = ρ(A) + ξD

2D−1∑

k=0

wkψD,k + ξD2
D/2c(ψ), with ξD = c2−D(s+1/2), (9.4)

for some constant 0 < c ≤ A/(2+c(ψ)), and where c(ψ) is the constant introduced in Proposition
9.1. For the sake of convenience, we omit in what follows the subscript D and write λω instead
of λD,ω. First, remark that each function λω can be written as λω = ρ(A) + µω where

µω = ξD

2D−1∑

k=0

wkψD,k + ξD2
D/2c(ψ),

is a positive intensity belonging to Λ0 by Proposition 9.1. Moreover, it can be checked that
the condition c ≤ A/(2 + c(ψ)) implies that λω ∈ Bs

p,q(A). Therefore, λω ∈ SD(A) for any

ω ∈ {0, 1}2D . The following lemma provides a lower bound on SD.

9.3.2 Lower bound on the minimax risk

Lemma 9.2 Using the notations defined in the Assouad’s cube paragraph, the following inequal-
ity holds

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥
ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω [1 ∧ Qk,ω(N)] ,

with N =
(
N1, . . . , Nn

)
and

Qk,ω(N) =

∫

Rn

∏n
i=1 exp

[

−
∫ 1
0 µω̄k(t− αi)dt+

∫ 1
0 log

(

1 +
µ
ω̄k (t−αi)

ρ(A)

)

dN i
t

]

g(αi)dαi
∫

Rn

∏n
i=1 exp

[

−
∫ 1
0 µω(t− αi)dt+

∫ 1
0 log

(

1 + µω(t−αi)
ρ(A)

)

dN i
t

]

g(αi)dαi
. (9.5)

Proof : Let λ̂n = λ̂n(N) ∈ L2([0, 1]) denote any estimator of λ ∈ SD(A) (a measurable function
of the process N). Note that, to simplify the notations, we will drop in the proof the dependency
of λ̂n(N) on N and n, and we write λ̂ instead of λ̂n(N). Then, define

R(λ̂) = sup
λ∈SD(A)

Eλ‖λ̂− λ‖22.

Since λω ∈ SD(A) for any ω ∈ {0, 1}2D , it follows from Parseval’s relation that

R(λ̂) ≥ sup
ω∈{0,1}2D

Eλω‖λ̂− λω‖22 ≥ sup
ω∈{0,1}2D

Eλω

2D−1∑

k=0

|βD,k(λ̂)− ωkξD|2,
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where we have used the notation βD,k(λ̂) = 〈λ̂, ψD,k〉. For all k ∈ {0, . . . , 2D − 1} define

ω̂k = ω̂k(N) := arg min
v∈{0,1}

|βD,k(λ̂(N))− vξD|.

Then, the triangular inequality and the definition of ω̂k imply that

ξD|ω̂k − ωk| ≤ |ω̂kξD − βD,k(λ̂)|+ |βD,k(λ̂)− ωkξD| ≤ 2|βD,k(λ̂)− ωkξD|.

Thus,

R(λ̂) ≥ ξ2D
4

sup
ω∈{0,1}2D

Eλω

2D−1∑

k=0

|ω̂k(N)− ωk|2,

≥ ξ2D
4

1

22D
∑

ω∈{0,1}2D

2D−1∑

k=0

Eλω |ω̂k(N)− ωk|2. (9.6)

Let k ∈ {0, . . . , 2D − 1} and ω ∈ {0, 1}2D be fixed parameters. Conditionally to the vector
τ = (τ 1, . . . τn) ∈ R

n, we define the two hypothesis H0 and Hτ

ω as

H0: N
1, . . . , Nn are independent Poisson processes with intensities (λ0(· − τ 1), . . . , λ0(· − τn)) =

(λ0(·), . . . , λ0(·)), where λ0 is the constant intensity defined by (9.3),

Hτ

ω : N1, . . . , Nn are independent Poisson processes with intensities (λω(·−τ 1), . . . , λω(·−τn)).

In what follows, we use the notation EH0 (resp. EHτ

ω
) to denote the expectation under the

hypothesis H0 (resp. Hτ

ω ) conditionally to the shifts τ = (τ 1, . . . τn). The Girsanov formula
(9.2) yields

Eλω |ω̂k(N)− ωk|2 =

∫

Rn

EHτ
1
|ω̂k(N)− ωk|2g(τ1) . . . g(τn)dτ

=

∫

Rn

EH0

[
|ω̂k(N)− ωk|2Λ(H0,H

τ
ω)(N)

]
g(τ1) . . . g(τn)dτ,

with dτ = dτ1, . . . , dτn and

Λ(H0,H
τ
ω)(N) =

n∏

i=1

exp

[

−
∫ 1

0
µω(t− τi)dt+

∫ 1

0
log

(

1 +
µω(t− τi)

ρ(A)

)

dN i
t

]

,

for N = (N1, . . . , Nn). Now, remark that under the hypothesis H0, the law of the random
variable ω̂k(N) does not depend on the random shifts τ = (τ 1, . . . , τn) since λ0 is a constant
intensity. Thus, we obtain the following equality

Eλω |ω̂k(N)− ωk|2 = EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

. (9.7)

Using equality (9.7), we may re-write the lower bound (9.6) on R(λ̂) as

R(λ̂) ≥ ξ2D
4

1

22
D

∑

ω∈{0,1}2D

2D−1∑

k=0

EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

=
ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

(

EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

+ EH0

[

|ω̂k(N)− ω̄kk |2
∫

Rn

Λ(H0,H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

])

.
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The key inequality |1− v|2z+ |v|2z′ ≥ z ∧ z′ (true for all v ∈ {0, 1} and all reals z, z′ > 0) yields

R(λ̂) ≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

{∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ∧ ,

∫

Rn

Λ(H0,H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

}

≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

∫

Rn

Λ(H0,H
τ
ω)(N)g(τ1) . . . g(τn)dτ (1∧

∫

Rn Λ(H0,H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0,Hα
ω )(N)g(α1) . . . g(αn)dα

)

,

≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

∫

Rn

EH0 [Λ(H0,H
τ
ω)(N) (1 ∧ Qk,ω(N))] g(τ1) . . . g(τn)dτ,

where

Qk,ω(N) =

∫

Rn Λ(H0,H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0,Hα
ω )(N)g(α1) . . . g(αn)dα

,

and dα = dα1 . . . dαn. Then, using again the formula (9.2), we obtain the lower bound

R(λ̂) ≥ ξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω [1 ∧ Qk,ω] ,

which is independent of λ̂. This ends the proof of the lemma. �

We detail in the next paragraph how to use Lemma 9.2 with a suitable value for the parameter
D in order to obtain the desired lower bound on the minimax risk.

9.3.3 Quantitative settings

In the rest of the proof, we will suppose that D = Dn satisfies the asymptotic equivalence

2Dn ∼ n
1

2s+2ν+1 as n→ +∞. (9.8)

To simplify the notations we will drop the subscript n, and we write D = Dn. For two sequences
of reals (an)n≥1 and (bn)n≥1 we use the notation an ≍ bn if there exists two positive constants
C,C ′ > 0 such that C ≤ an

bn
≤ C ′ for all sufficiently large n. Then, define mDn = 2Dn/2ξDn .

Since ξDn = c2−Dn(s+1/2), it follows that

mDn ≍ n−s/(2s+2ν+1) → 0

as n→ ∞. Remark also that the condition s > 2ν + 1 implies that

nm3
Dn

≍ n−(s−2ν−1)/(2s+2ν+1) → 0

as n→ ∞.
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9.3.4 Lower bound of the likelihood ratio Qk,ω

The above quantitative settings combined with Lemma 9.2 will allow us to obtain a lower bound
of the minimax risk. For this purpose, let 0 < δ < 1, and remark that Lemma 9.2 and Markov
inequality imply that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂− λ‖22 ≥ δξ2D
4

1

22D

2D−1∑

k=0

∑

ω∈{0,1}2D |wk=1

Pλω (Qk,ω(N) ≥ δ) . (9.9)

The remainder of the proof is thus devoted to the construction of a lower bound in probability
for the random variable Qk,ω(N) := I1

I2
where

I1 = I1(N) =

∫

Rn

n∏

i=1

exp

[

−
∫ 1

0
µω̄k(t− αi)dt+

∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t

]

g(αi)dαi (9.10)

and

I2 = I2(N) =

∫

Rn

n∏

i=1

exp

[

−
∫ 1

0
µω(t− αi)dt+

∫ 1

0
log (1 + µω(t− αi)) dN

i
t

]

g(αi)dαi, (9.11)

where to simplify the presentation of the proof we have taken ρ(A) = 1 i.e. A = 2. Then, the
following lemma holds (which is also valid for ρ(A) 6= 1).

Lemma 9.3 There exists 0 < δ < 1 and a constant p0(δ) > 0 such that for any k ∈ {0 . . . 2Dn −
1}, any ω ∈ {0, 1}2Dn and all sufficiently large n

Pλω (Qk,ω(N) ≥ δ) ≥ p0(δ) > 0.

Proof :
Sketch of proof: we first give a brief summary of the main ideas of the proof. The arguments

that we use are not standard due to the structure of the likelihood ratio Qk,ω(N) which involves
a kind of mixture structure with respect to the law of the random shifts (integration over R

n

with respect to g(α1) . . . g(αn)dα).
In the first part of the proof, the main idea is to use several Taylor expansions to obtain

a tractable asymptotic approximation of Qk,ω(N). Note that due to our quantitative settings
stated in Section 9.3.3, we have to provide Taylor expansions up to the second or third order
(since nm2

Dn
does not converge to 0). In the second part of the proof, we use the minoration of

the log-likelihood given in equations (9.15)- (9.19), and then classical concentration inequalities
to obtain lower bound in probability of Qk,ω(N).

Note that, in the proof, we repeatedly use the following inequalities that hold for any ω ∈
{0, 1}2Dn

‖µω‖2 ≤ ‖µω‖∞ ≤ 2c(ψ)mDn → 0, (9.12)

‖λω‖2 ≤ ‖λω‖∞ ≤ ρ(A) + 2c(ψ)mDn → ρ(A) = 1,

as n → +∞. Recall that Qk,ω(N) := I1
I2

where I1 is given by (9.10) and I2 is given by (9.11).
Finally, and to be more precise, the proof is composed of the three following steps:

• Step 1: using a second order expansion of the logarithm in order to control I1 and I2, we
will first show that

Qk,ω(N) ≥ eOp(nm3
Dn

)

∏n
i=1

∫

R
g(αi) exp

[
∫ 1
0

{

µω̄k(t− αi)−
µ2
ω̄k

(t−αi)

2

}

dN i
t

]

dαi

∏n
i=1

∫

R
g(αi) exp

[∫ 1
0

{

µω(t− αi)− µ2ω(t−αi)
2

}

dN i
t

]

dαi
,

:= eOp(nm3
Dn

)J1
J2
. (9.13)
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• Step 2: using again a second order expansion of the exponential, we then show that

ln(Qk,ω(N)) ≥ ln(J1)− ln(J2) +Op(nm
3
Dn

) (9.14)

=

n∑

i=1

{

Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

+
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22 (9.15)

+

∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t − Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

(9.16)

+
1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t −

1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi (9.17)

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t (9.18)

−1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+
1

2
‖g ⋆ λω̄k‖22 +

1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

− 1

2
‖g ⋆ λω‖22

}

(9.19)

+Op(nm
3
Dn

).

• Step 3: it consists in controlling (9.15), (9.16), (9.17), (9.18) and (9.19), more precisely:

1. there exists a constant 0 < c0 < +∞ such that for all sufficiently large n the deter-
ministic term (9.15) satisfies

(9.15) =
n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

≥ −c0.

2. there exists a constant c1 > 0 such that for all sufficiently large n

P (|(9.16)| ≤ c1) = P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣
≤ c1

)

≥ 1/2. (9.20)

3. (9.17) + (9.18) converges to zero in probability as n→ +∞.

4. (9.19) converges to zero in probability as n→ +∞.

Putting together all these results Lemma 9.3 is finally proved.

• Proof of Step 1: since for any k, one has
∫ 1
0 ψD,k(t)dt = 0, it follows that for any ω and α,

∫ 1
0 µω(t− α)dt = c(ψ)ξDn2

Dn/2 = c(ψ)mDn . Therefore,

I1 =

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n∏

i=1

exp

[∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t

]

dα,

and

I2 =

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n∏

i=1

exp

[∫ 1

0
log (1 + µω(t− αi)) dN

i
t

]

dα.

Let z > 0 be a positive real, and consider the following second order expansion of the
logarithm

log(1 + z) = z − z2

2
+
z3

3
u−3 for some 1 ≤ u ≤ 1 + z. (9.21)

From (9.21) , we obtain
∫ 1

0
log (1 + µω(t− αi)) dN

i
t ≤

∫ 1

0

{

µω(t− αi)−
µ2ω(t− αi)

2

}

dN i
t +

∫ 1

0
µ3ω(t− αi)dN

i
t ,

(9.22)
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and that

∫ 1

0
log (1 + µω̄k(t− αi)) dN

i
t ≥

∫ 1

0

{

µω̄k((t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t . (9.23)

Then, remark that inequalities (9.12) imply that

Eλω

∫ 1

0
µ3ω(t− αi)dN

i
t =

∫ 1

0
µ3ω(t− αi)

∫

R

λω(t− τi)g(τi)dτidt

≤ ‖µω‖∞‖µω‖22‖λω‖∞ = O
(
m3
Dn

)
.

Therefore, by Markov’s inequality it follows that there exists a constant K > 0 such that

∀γ > 0, P

(∣
∣
∣
∣
∣

n∑

i=1

∫ 1

0
µ3ω(t− αi)dN

i
t

∣
∣
∣
∣
∣
≥ γ

)

≤ Kγ−1
E

n∑

i=1

∣
∣
∣
∣

∫ 1

0
µ3ω(t− αi)dN

i
t

∣
∣
∣
∣
≤ Kγ−1nm3

Dn
,

and thus
n∑

i=1

∫ 1

0
µ3ω(t− αi)dN

i
t = Op

(
nm3

Dn

)
. (9.24)

Hence, using inequality (9.22), one obtains that

I2 ≤ e−c(ψ)nmDn+Op(nm3
Dn

)
∫

Rn

g(α1) . . . g(αn)

n∏

i=1

exp

[∫ 1

0

{

µω(t− αi)−
µ2ω(t− αi)

2

}

dN i
t

]

dα,

and by inequality (9.23) it follows that

I1 ≥ e−c(ψ)nmDn

∫

Rn

g(α1) . . . g(αn)

n∏

i=1

exp

[
∫ 1

0

{

µω̄k(t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t

]

dα.

Combining the above inequalities and the Fubini’s relation we obtain that

Qk,ω(N) ≥ eOp(nm3
Dn

)

∏n
i=1

∫

R
g(αi) exp

[
∫ 1
0

{

µω̄k(t− αi)−
µ2
ω̄k

(t−αi)

2

}

dN i
t

]

dαi

∏n
i=1

∫

R
g(αi) exp

[∫ 1
0

{

µω(t− αi)− µ2ω(t−αi)
2

}

dN i
t

]

dαi
,

:= eOp(nm3
Dn

)J1
J2
. (9.25)

• Proof of Step 2: let z ∈ R and consider the following second order expansion of the expo-
nential

exp(z) = 1 + z +
z2

2
+
z3

6
exp(u) for some − |z| ≤ u ≤ |z|. (9.26)

Let us now use (9.26) with zi =
∫ 1
0

{
µω̄k(t− αi)− 1

2µ
2
ω̄k(t− αi)

}
dN i

t . By inequalities
(9.12), one has that

Eλω |zi| ≤
∫ 1

0

(

µω̄k(t− αi) +
1

2
µ2ω̄k(t− αi)

)∫

R

λω(t− τi)g(τi)dτidt,

≤ ‖λω‖∞
(

‖µω̄k‖2 +
1

2
‖µω̄k‖22

)

= O (mDn) .
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Since mDn → 0, we obtain by using (9.26) that for each i ∈ {1, . . . , n},

exp(zi)

= 1 +

∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

+
1

2

(∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

)2

+
z3i
6
eui , with− |zi| ≤ ui ≤ |zi|

= 1 +

∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t +

1

2

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

+
z3i
6
eui +Ri,

where

2Ri =

(∫ 1

0
µω̄k(t− αi)dN

i
t −

1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

)2

−
(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

.

By inequalities (9.12) one obtains that for any shift αi ∈ [0, 1]:

2Ri =

(

−1

2

∫ 1

0
µ2ω̄k(t− αi)dN

i
t

)

×
(∫ 1

0
2µω̄k(t− αi)−

1

2
µ2ω̄k(t− αi)dN

i
t

)

, (9.27)

and Cauchy-Schwarz’s inequality yields a bound uniform in αi:

Eλω(|Ri|) = O
(
m3
Dn

)
. (9.28)

From the definition of J1 in (9.25), we can use a stochastic version of the Fubini theorem
(see [17], Theorem 5.44) to obtain

J1 =

n∏

i=1

[

1 +

∫

R

∫ 1

0
g(αi)µω̄k(t− αi)dN

i
tdαi −

1

2

∫

R

∫ 1

0
g(αi)µ

2
ω̄k(t− αi)dN

i
tdαi

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +

∫ 1

0

(
z3i
6
eui +Ri

)

g(αi)dαi

]

,

=

n∏

i=1

[

1 +

∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +

∫ 1

0

(
z3i
6
eui +Ri

)

g(αi)dαi

]

.

At this step, it will be more convenient to work with the logarithm of the term J1. We
have

ln(J1) =
n∑

i=1

ln

[

1 +

∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi +

∫ 1

0

(
z3i
6
eui +Ri

)

g(αi)dαi

]

.

Using again the second order expansion of the logarithm (9.21), we obtain that

ln(J1) =

n∑

i=1

[∫ 1

0
g ⋆ µω̄k(t)dN i

t −
1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+

∫ 1

0

(
z3i
6
eui + R̃i

)

g(αi)dαi

]

,
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where R̃i is a remainder term that can be shown to satisfy E

(

|R̃i|
)

= O
(
m3
Dn

)
by using

the same arguments to derive (9.28). By a similar expansion of the term J2 defined in
(9.25), we obtain that

ln(J2) =

n∑

i=1

[∫ 1

0
g ⋆ µω(t)dN

i
t −

1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi −
1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

+

∫ 1

0

(
z3i
6
eui + R̄i

)

g(αi)dαi

]

,

for some remainder term R̄i satisfying also E
(
|R̄i|

)
= O

(
m3
Dn

)
. Then, by Markov’s in-

equality and using the same arguments that those used to derive (9.24) we obtain that

n∑

i=1

R̄i = Op(nm
3
Dn

) and

n∑

i=1

R̃i = Op(nm
3
Dn

). (9.29)

Now, let us study the term

∫ 1

0

n∑

i=1

z3i
6
euig(αi)dαi.

Remark that since |ui| ≤ |zi|, we have

∣
∣
∣
∣
∣

∫ 1

0

n∑

i=1

z3i
6
euig(αi)dαi

∣
∣
∣
∣
∣
≤

n∑

i=1

∑

k≥0

∫ 1

0

|zi|3+k
6k!

g(αi)dαi.

Hence, for any γ > 0 and by Markov’s inequality, one has

P

(∣
∣
∣
∣
∣

∫ 1

0

n∑

i=1

z3i
6
euig(αi)dαi

∣
∣
∣
∣
∣
≥ γ

)

≤ P





n∑

i=1

∑

k≥0

∫ 1

0

|zi|3+k
6k!

g(αi)dαi ≥ γ



 ,

≤ n

6γ

∑

k≥0

∫ 1

0
E

( |zi|3+k
k!

)

g(αi)dαi.

Moreover, by inequality (9.12) it follows that for any αi ∈ [0, 1]:

E

( |zi|3+k
k!

)

=
1

k!
E

(∣
∣
∣
∣

∫ 1

0

{

µω̄k(t− αi)−
1

2
µ2ω̄k(t− αi)

}

dN i
t

∣
∣
∣
∣

)3+k

≤ 1

k!
E

(∫ 1

0

(

2c(ψ)mDn +
1

2
(2c(ψ))2m2

Dn

)

dN i
t

)3+k

For n large enough, we have 2c(ψ)mDn +
1
2(2c(ψ))

2m2
Dn

≤ 4c(ψ)mDn . Then, using the fact
that if X is a Poisson random variable with intensity µ0, the p-th moment of X is bounded
by (p + µ0)µ

p−1
0 one obtains that

E

( |zi|3+k
k!

)

≤ 1

k!
(4c(ψ)mDn‖λ‖1)3+k +

4

(k − 1)!
(4c(ψ)mDn )

4‖λ‖31(4c(ψ)mDn‖λ‖1)3+k−1,

which implies that uniformly in αi:

∑

k≥0

E

( |zi|3+k
k!

)

≤ (4c(ψ))3m3
Dn

‖λ‖31 (1 + 1024c(ψ)mDn ) e
4c(ψ)mDn ‖λ‖1 .

Hence,

P

(∣
∣
∣
∣
∣

n∑

i=1

∫ 1

0

z3i
6
euig(αi)dαi

∣
∣
∣
∣
∣
≥ γ

)

≤
(4c(ψ))3nm3

Dn
‖λ‖31 (1 + 1024c(ψ)mDn ) e

4c(ψ)mDn ‖λ‖1

6γ
,

(9.30)

which proves that
∑n

i=1
z3i
6 e

ui = Op(nm
3
Dn

). Therefore, combing the above equalities for
ln J1 and ln J2 and (9.29), (9.30), we finally obtain the lower bound (9.14) for ln(Qk,ω(N)).
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• Proof of Step 3: in what follows, we will show that, for all sufficiently large n, the terms
(9.15)-(9.19) are bounded from below (in probability). Since nm3

Dn
→ 0, this will imply

that there exists c > 0 (not depending on λω) and a constant p(c) > 0 such that for all
sufficiently large n

Pλω (ln (Qk,ω(N)) ≥ −c) = Pλω (Qk,ω(N) ≥ exp(−c)) ≥ p(c) > 0

which is the result stated in Lemma 9.3.

Lower bound for (9.15): since for any 1 ≤ i ≤ n

Eλω

(∫ 1

0
g ⋆ {µω̄k(t)− µω(t)}dN i

t

)

=

∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}{g ⋆ λω(t)}dt.

We obtain that

n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

= −n
2
‖g ⋆ {µω − µω̄k}‖22.

Remark that µω − µω̄k = ±ξDψDk. In what follows we will repeatidely use the following
relation

‖ψDk ⋆ g‖22 =

∫ 1

0
(ψDk ⋆ g(t))

2 dt =
∑

ℓ∈ΩD

|cℓ(ψDk)|2|γℓ|2 ≍ 2−2Dν (9.31)

which follows from Parseval’s relation, from the fact that #ΩD ≍ 2D and that under
Assumption 3.1 |γℓ| ≍ 2−Dν for all ℓ ∈ ΩD. Therefore

‖g ⋆ {µω − µω̄k}‖22 = ξ2D

∫ 1

0
(ψDk ⋆ g(t))

2 dt ≍ ξ2D2
−2Dν ≍ n−1,

and

−
n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

≍ 1,

which implies that there exists a constant 0 < c0 < +∞ such that for all sufficiently large
n the deterministic term (9.15) satisfies

(9.15) =

n∑

i=1

[

Eλω

(∫ 1

0
g ⋆ {λω̄k(t)− λω(t)}dN i

t +
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

≥ −c0.

In the rest of the proof, we show that, for all sufficiently large n, the terms (9.16)-(9.19)
are bounded from below in probability. Without loss of generality, we consider only the
case µω − µω̄k = ξDψDk.

Lower bound for (9.16): rewrite first (9.16) as

(9.16) = −ξD
n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t ,

where dÑ i
t = dÑ i

t − λ(t− τi)dt. Then, using the fact that, conditonnaly to τ1, . . . , τn, the
counting process

∑n
i=1N

i is a Poisson process with intensity
∑n

i=1 λω(t − τi), it follows
from an analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in
[27]) that for any y > 0
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P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣

≤

√
√
√
√2yξ2D

∫ 1

0

n∑

i=1

|g ⋆ ψD,k(t)|2λω(t− τi)dt

+
1

3
yξD‖g ⋆ ψD,k‖∞

∣
∣τ1, . . . , τn

)

≥ 1− exp (−y)

Since
∫ 1
0

∑n
i=1 |g ⋆ ψD,k(t)|2λω(t − τi)dt ≤ n‖g ⋆ ψD,k‖22‖λω‖∞ for any τ1, . . . , τn, letting

y = log(2)

P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣

≤
√

2 log(2)ξ2Dn‖g ⋆ ψD,k(t)‖22‖λω‖∞ +
1

3
log(2)ξD‖g ⋆ ψD,k‖∞

)

≥ 1/2.

Now, using that ξ2Dn‖g ⋆ ψD,k(t)‖22‖λω‖∞ ≍ 1 and ξD‖g ⋆ ψD,k‖∞ ≤ ‖ψ‖∞2D/2ξD → 0, we
can deduce that there exists a constant c1 > 0 such that for all sufficiently large n

P (|(9.16)| ≤ c1) = P

(∣
∣
∣
∣
∣
ξD

n∑

i=1

∫ 1

0
g ⋆ ψD,k(t)dÑ

i
t

∣
∣
∣
∣
∣
≤ c1

)

≥ 1/2. (9.32)

Lower bound for (9.17) and (9.18): define

Xi =
1

2

∫ 1

0
g ⋆ µ2ω(t)dN

i
t −

1

2

∫ 1

0
g ⋆ µ2ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0
µω̄k(t− αi)dN

i
t

)2

dαi −
1

2

∫

R

g(αi)

(∫ 1

0
µω(t− αi)dN

i
t

)2

dαi,

and note that (9.17) + (9.18) =
∑n

i=1Xi. For any 1 ≤ i ≤ n

EλωXi =
1

2

∫

R

g(αi)

((∫ 1

0
µω̄k(t− αi)g ⋆ λω(t)dt

)2

−
(∫ 1

0
µω(t− αi)g ⋆ λω(t)dt

)2
)

dαi

=
1

2

∫

R

g(αi)

((∫ 1

0
−ξDψD,k(t− αi)g ⋆ λω(t)dt

)(∫ 1

0
(µω(t− αi)− µω̄k(t− αi)) g ⋆ λω(t)dt

))

=
1

2

∫

R

g(αi)

((∫ 1

0
−ξDψD,k(t− αi)g ⋆ µω(t)dt

)(∫ 1

0
(µω(t− αi)− µω̄k(t− αi)) g ⋆ µω(t)dt

))

which implies that

|EλωXi| ≤
1

2
ξD2

D/2‖ψ‖∞‖µω‖2∞ (‖µω‖∞ + ‖µω̄k‖∞) ≍ m4
Dn
.

Therefore
∑n

i=1 EλωXi → 0 as n → +∞, since nm4
Dn

→ 0. Now, remark that X1, . . . ,Xn

are i.i.d variables satisfying for all 1 ≤ i ≤ n

|Xi| ≤
1

2
(‖µω‖2∞ + ‖µω̄k‖2∞)(Ki +K2

i ) ≤ 2c2(ψ)m2
Dn

(Ki +K2
i ) (9.33)

where Ki =
∫ 1
0 dN

i
t . Conditionally to τi, Ki is a Poisson variable with intensity

∫ 1
0 λω(t−

τi)dt =
∫ 1
0 λω(t)dt = ‖λω‖1. Hence, the bound (9.12) for ‖λω‖∞ and inequality (9.33)

implies that there exists a constant C > 0 (not depending on λω) such that

EX2
1 ≤ Cm4

Dn
,

which implies that Var(
∑n

i=1Xi) = nVar(X1) ≤ nEX2
1 → 0 as n→ +∞ since nm4

Dn
→ 0.

Therefore, (9.17) + (9.18) =
∑n

i=1Xi converges to zero in probability as n → +∞ using
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Chebyshev’s inequality.

Lower bound for (9.19): we denote by Si the difference

Si := 2

(

−1

2

(∫ 1

0
g ⋆ µω̄k(t)dN i

t

)2

+
1

2
‖g ⋆ λω̄k‖22 +

1

2

(∫ 1

0
g ⋆ µω(t)dN

i
t

)2

− 1

2
‖g ⋆ λω‖22

)

,

and remark that (9.19) = 1
2

∑n
i=1 Si. First, we have

EλωSi = ‖g ⋆ λω̄k‖22 − ‖g ⋆ λω‖22 +
∫ 1

0
(g ⋆ µω)

2(t)g ⋆ λω(t)dt−
∫ 1

0
(g ⋆ µω̄k)2(t)g ⋆ λω(t)dt

+

∫

R

g(τi)

({∫ 1

0
(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0
(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi.

Since ‖g ⋆µω̄k‖22−‖g ⋆µω‖22 = ‖g ⋆λω̄k‖22 −‖g ⋆λω‖22 and g ⋆λω = 1+ g ⋆µω it follows that

EλωSi =

∫ 1

0
(g ⋆ µω)

2(t)g ⋆ µω(t)dt−
∫ 1

0
(g ⋆ µω̄k)2(t)g ⋆ µω(t)dt

︸ ︷︷ ︸

Si,1

+

∫

R

g(τi)

({∫ 1

0
(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0
(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi

︸ ︷︷ ︸

Si,2

.

One has that
|Si,1| ≤ ‖µω‖3∞ + ‖µω̄k‖2∞‖µω‖∞ ≤ 16c3(ψ)m3

Dn
,

and that

Si,2 = ξ2D

∫

R

g(τi)

((∫ 1

0
g ⋆ ψD,k(t)λω(t− τi)dt

)(∫ 1

0
g ⋆ (µω + µω̄k)(t)λω(t− τi)dt

))

dτi

Hence using (9.12) and (9.31) it follows that there exists a constant C > 0 such that for
all sufficiently large n

|Si,2| ≤ ξ2D‖g ⋆ ψD,k‖2 (‖µω‖∞ + ‖µω̄k‖∞) ≤ Cn−
3s+ν+1
2s+2ν+1

Then, since s > 2ν + 1 > ν it follows that

n∑

i=1

EλωSi = O
(

n−
(s−2ν−1)
2s+2ν+1 + n−

(s−ν)
2s+2ν+1

)

→ 0.

Now, note that Var(
∑n

i=1 Si) = nVar(Y1) where

Y1 =

(∫ 1

0
g ⋆ µω(t)dN

1
t

)2

−
(∫ 1

0
g ⋆ µω̄k(t)dN1

t

)2

.

Since |Y1| ≤
(
‖µω‖2∞ + ‖µω̄k‖2∞

)
K2

1 withK1 =
∫ 1
0 dN

1
t being, conditionally to τ1, a Poisson

variable with intensity
∫ 1
0 λω(t − τ1)dt =

∫ 1
0 λω(t)dt = ‖λω‖1. Therefore, (9.12) again

implies that there exists a constant C > 0 (not depending on λω) such that

Var(
n∑

i=1

Si) = nVar(Y1) ≤ nEY 2
1 ≤ Cnm4

Dn
→ 0.

Therefore, using Chebyshev’s inequality, we obtain that (9.19) = 1
2

∑n
i=1 Si converges to

zero in probability as n→ +∞. �
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9.4 Lower bound on B
p,q
s (A)

By applying inequality (9.9) and Lemma 9.3, we obtain that there exists 0 < δ < 1 such that for
all sufficiently large n

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ,

for some constant C > 0 that is independent of Dn. From the definition (9.4) of ξDn and using
the choice (9.8) for Dn, we obtain that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ≍ 2−2sDn ≍ n−

2s
2s+2ν+1 .

Now, since SD(A) ⊂ Bs
p,q(A) for any D ≥ 1 we obtain from the above inequalities that there

exists a constant C0 > 0 such that for all sufficiently large n

inf
λ̂n

sup
λ∈Bs

p,q(A)
⋂

Λ0

n
2s

2s+2ν+1Eλ‖λ̂n − λ‖22 ≥ inf
λ̂n

sup
λ∈SDn (A)

Eλ‖λ̂− λ‖22,

≥ C0n
− 2s

2s+2ν+1 ,

which concludes the proof of Theorem 4.1. �

10 Proof of the upper bound (Theorem 5.1)

Following standard arguments in wavelet thresholding (see e.g. [26]), one needs to bound the
centered moment of order 2 and 4 of ĉj0,k and β̂j,k (see Proposition 10.1), as well as the deviation

in probability between β̂j,k and βj,k (see Proposition 10.2). In the proof, C, C ′, C1, C2 denote
positive constants that are independent of λ and n, and whose value may change from line to
line. The proof requires technical results that are postponed and proved in Section 10.2. We will
use the following quantities

ψ̃j,k(t) =
∑

ℓ∈Ωj

γ−1
ℓ cℓ(ψj,k)eℓ(t), V 2

j = ‖g‖∞2−j
∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

, δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

,

and

∆n
jk(γ) =

√

‖ψ̃j,k‖22
(

‖g‖∞K̃n(γ)
2γ log n

n
+ un(γ)

)

+
γ log n

3n
‖ψ̃j,k‖∞, (10.1)

where K̃n(γ) is introduced in (5.6), un(γ) is a real sequence such that un(γ) = o
(
γ logn
n

)

as
n→ +∞.

10.1 Proof of Theorem 5.1

As classically done in wavelet thresholding, use the following risk decomposition

E‖λ̂hn − λ‖22 = R1 +R2 +R3 +R4,

where

R1 =

2j0−1∑

k=0

E(ĉj0,k − cj0,k)
2, R2 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|β̂j,k|≥ŝj(n)}

]

,

R3 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|β̂j,k|<ŝj(n)}

]

, R4 =

+∞∑

j=j1+1

2j−1∑

k=0

β2j,k.
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Bound on R4: first, recall that following our assumptions, Lemma 19.1 of [18] implies that

2j−1∑

k=0

β2jk ≤ C2−2js∗, with s∗ = s+ 1/2− 1/p′, (10.2)

where C is a constant depending only on p, q, s,A. Since by definition 2−j1 ≤ 2( log nn )−
1

2ν+1 ,

equation (10.2) implies that R4 = O
(
2−2j1s∗

)
= O

(

( lognn )−
2s∗

2ν+1

)

, as n → +∞. Note that

in the case p ≥ 2, then s∗ = s and thus 2s
2ν+1 > 2s

2s+2ν+1 . In the case 1 ≤ p < 2, then
s∗ = s + 1/2 − 1/p, and one can check that the conditions s > 1/p and s∗p > ν(2 − p) imply
that 2s∗

2ν+1 >
2s

2s+2ν+1 . Hence in both cases one has that

R4 = O
(

n−
2s

2s+2ν+1

)

, as n→ +∞. (10.3)

Bound on R1: using Proposition 10.1 and the inequality 2j0 ≤ log n it follows that

R1 ≤ C
2j0(2ν+1)

n
≤ C

(log n)2ν+1

n
= O

(

n−
2s

2s+2ν+1

)

. (10.4)

Bound on R2 and R3. remark that R2 ≤ R21 +R22 and R3 ≤ R31 +R32 with

R21 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|β̂j,k−βj,k|≥ŝj(n)/2}

]

, R22 =

j1∑

j=j0

2j−1∑

k=0

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

,

R31 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|β̂j,k−βj,k|≥ŝj(n)/2}

]

and R32 =

j1∑

j=j0

2j−1∑

k=0

E

[

β2j,k11{|βj,k|< 3
2
ŝj(n)}

]

.

Now, applying Cauchy-Schwarz’s inequality, we get that

R21 +R31 =

j1∑

j=j0

2j−1∑

k=0

E

[(

(β̂j,k − βj,k)
2 + β2j,k

)

11{|β̂j,k−βj,k|≥ŝj(n)/2}

]

≤
j1∑

j=j0

2j−1∑

k=0

((

E(β̂j,k − βj,k)
4
)1/2

+ β2j,k

)(

P(|β̂j,k − βj,k| ≥ ŝj(n)/2)
)1/2

Bound on P(|β̂j,k − βj,k| ≥ ŝj(n)/2): using that |cℓ(ψj,k)| ≤ 2−j/2 one has that ‖ψ̃j,k‖22 ≤ σ2j and

‖ψ̃j,k‖∞ ≤ ǫj . Thus, by definition of ŝj(n) it follows that

2∆n
jk(γ) ≤ ŝj(n)/2 (10.5)

for all sufficiently large n where ∆n
jk(γ) is defined in (10.1). Moreover, by (5.1) there exists two

constants C1, C2 such that for all ℓ ∈ Ωj, C12
j ≤ |ℓ| ≤ C22

j . Since lim|ℓ|→+∞ θℓ = 0 uniformly
for f ∈ Bs

p,q(A) it follows that as j → +∞

V 2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

= o



2−j
∑

ℓ∈Ωj

|γℓ|−2



 = o
(
σ2j
)

and δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

= o (ǫj) .

Now, define the non-random threshold

sj(n) = 4

(√

σ2j
2γ log n

n
(‖g‖∞‖λ‖1 + δ) +

γ log n

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n). (10.6)
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Using that V 2
j = o(σ2j ) and δj = o (ǫj) as j → +∞, and that j0(n) → +∞ as n→ +∞ it follows

that for all sufficiently large n and j0(n) ≤ j ≤ j1(n)

2





√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ sj(n)/2 (10.7)

From equation (10.27) (see below), one has that P

(

‖λ‖1 ≥ K̃n

)

≤ 2n−γ , which implies that

sj(n) ≤ ŝj(n) with probability larger than 1− 2n−γ . Hence, by inequalities (10.5) and (10.7), it
follows that for all sufficiently large n

2max



∆n
jk(γ),

√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ ŝj(n)/2 (10.8)

with probability larger than 1 − 2n−γ . Therefore, for all sufficiently large n, Proposition 10.2
and inequality (10.8) imply that

P

(

|β̂j,k − βj,k| > ŝj(n)/2
)

≤ Cn−γ , (10.9)

for all j0(n) ≤ j ≤ j1(n).

Bound on R21 +R31: Using the assumption that γ ≥ 2, inequality (10.2) and Proposition 10.1,
one has that for all sufficiently large n

R21 +R31 ≤ C
1

n





j1∑

j=j0

2j
(
24jν

n2

(

1 +
2j

n

))1/2

+

j1∑

j=j0

2−2js∗



 .

By definition of j1 one has that 2j

n ≤ C for all j ≤ j1, which implies that (since s∗ > 0)

R21 +R31 ≤ C
1

n





j1∑

j=j0

2j(2ν+1)

n
+

j1∑

j=j0

2−2js∗



 = O(n−
2s

2s+2ν+1 ), as n→ +∞, (10.10)

using the fact that 2j(2ν+1)

n ≤ C for all j ≤ j1(n) ≤ 1
2ν+1 log2 n.

Finally, it remains to bound the term T2 = R22 +R32. For this purpose, let j2 be the largest

integer such that 2j2 ≤ n
1

2s+2ν+1 (log n)β with β = − 1
2s+2ν+1 , and partition T2 as T2 = T21 + T22

where the first component T21 is calculated over the resolution levels j0 ≤ j ≤ j2 and the second
component T22 is calculated over the resolution levels j2 + 1 ≤ j ≤ j1 (note that given our
assumptions then j2 ≤ j1 for all sufficiently large n). Using the definition of the threshold ŝj(n)
it follows that

ŝj(n)
2 ≤ C

(

σ2j (‖g‖∞K̃n + δ)
log(n)

n
+

(log n)2

n2
ǫ2j

)

. (10.11)

From Assumption 3.1 on the γℓ’s and equation (5.1) for Ωj it follows that

σ2j ≤ C22jν and ǫj ≤ C2j(ν+1/2).

Since, for 2j lognn ≤
(
logn
n

)− 2ν
2ν+1

all j ≤ j1, it follows that (log n)2

n2 ǫ2j ≤ C22jν log(n)n and thus

ŝj(n)
2 ≤ C22jν(‖g‖∞K̃n + δ + 1)

log(n)

n
. (10.12)
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Using Proposition 10.1, the bound (10.12), the fact that

EK̃n ≤ ‖λ1‖1 +O
((

log n

n

)1/2
)

(10.13)

and the definition of j2 one obtains that

T21 ≤
j2∑

j=j0

2j−1∑

k=0

(

E(β̂j,k − βj,k)
2 +

9

4
Eŝj(n)

2

)

= O
(

2j2(2ν+1)

n
log(n)

)

= O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

, (10.14)

as n → +∞. Then, it remains to obtain a bound for T22. Recall that ŝj(n) ≥ sj(n) with
probability larger that 1 − 2n−γ , where sj(n) is defined in (10.6). Therefore, using Cauchy-
Schwarz’s inequality

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

≤ E(β̂j,k − βj,k)
211{|βj,k|≥sj(n)/2} +

(

E(β̂j,k − βj,k)
4
)1/2

(P(ŝj(n) ≤ sj(n)))
1/2 .

Then, by Assumption 3.1 one has that σ2j ≥ C22jν . Therefore, using Proposition 10.1 it follows

that E(β̂j,k − βj,k)
2 ≤ Cs2j(n) and that E(β̂j,k − βj,k)

4 ≤ C 24jν

n2 for all j ≤ j1. Finally, using that
γ ≥ 2 and the fact that P(ŝj(n) ≤ sj(n)) ≤ 2n−γ , one finally obtains that for any j ≤ j1

E

[

(β̂j,k − βj,k)
211{|βj,k|≥ŝj(n)/2}

]

≤ C

(

s2j(n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2

)

(10.15)

Let us first consider the case p ≥ 2. Using inequality (10.15) one has that

T22 ≤ C





j1∑

j=j2+1

2j−1∑

k=0

s2j (n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2
+ |βj,k|2





≤ C





j1∑

j=j2+1

2j−1∑

k=0

|βj,k|2 +
1

n

j1∑

j=j2+1

2j(2ν+1)

n



 .

Then (10.2), the definition of j2, j1 and the fact that s∗ = s imply that

T22 = O



2−2j2s +
1

n

j1∑

j=j2+1

2j(2ν+1)

n



 = O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

(10.16)

Now, consider the case 1 ≤ p < 2. Using again inequality (10.15) one obtains that

T22 ≤ C





j1∑

j=j2+1

2j−1∑

k=0

s2j(n)

4
11{|βj,k|≥sj(n)/2} +

22jν

n2
+ E|βj,k|211{|βj,k|< 3

2
ŝj(n)}





≤ C





j1∑

j=j2+1

2j−1∑

k=0

sj(n)
2−p|βj,k|p + |βj,k|pEŝj(n)2−p +

1

n

j1∑

j=j2+1

2j(2ν+1)

n



 (10.17)

By Holder inequality, it follows that for any α > 1, Eŝj(n)
2−p ≤

(
Eŝj(n)

α(2−p)
)1/α

. Hence, by

taking α = 2/(2−p), we get that Eŝj(n)
2−p ≤

(
Eŝj(n)

2
)(2−p)/2

. Then, using the following upper
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bounds (as a consequence of the definition of s2j(n) and the arguments used to derive inequalities
(10.12), (10.13))

s2j(n) ≤ C22jν
log(n)

n
and Eŝj(n)

2 ≤ C22jνEK̃n
log(n)

n
≤ C22jν

log(n)

n
,

it follows that inequality (10.17) and the fact that for λ ∈ Bs
p,q(A),

∑2j−1
k=0 |βj,k|p ≤ C2−jps

∗

(with ps∗ = ps+ p/2− 1) imply that

T22 ≤ C





j1∑

j=j2+1

22jν(1−p/2)
(
log(n)

n

)1−p/2

2−jps
∗

+
1

n

j1∑

j=j2+1

2j(2ν+1)

n





≤ C





(
log n

n

)1−p/2 j1∑

j=j2+1

2j(ν(2−p)−ps
∗) +

1

n

j1∑

j=j2+1

2j(2ν+1)

n





= O





(
log n

n

)1−p/2

2j2(ν(2−p)−ps
∗) +

1

n

j1∑

j=j2+1

2j(2ν+1)

n





= O
(

n−
2s

2s+2ν+1 (log n)
2s

2s+2ν+1

)

(10.18)

where we have used the assumption ν(2 − p) < ps∗ and the definition of j2, j1 for the last
inequalities. Finally, combining the bounds (10.3), (10.4), (10.10), (10.14), (10.16) and (10.18)
completes the proof of Theorem 5.1. �

10.2 Technical results

Arguing as in the proof of Proposition 3 in [5], one has the following lemma:

Lemma 10.1 Suppose that g satisfies Assumption 3.1. Then, there exists a constants C > 0
such that for any j ≥ 0 and 0 ≤ k ≤ 2j − 1

‖ψ̃j,k‖∞ ≤ C2j(ν+1/2), ‖ψ̃j,k‖22 ≤ C22jν and ‖ψ̃2
j,k‖22 ≤ C2j(4ν+1).

Proposition 10.1 There exists C > 0 such that for any j ≥ 0 and 0 ≤ k ≤ 2j − 1

E|ĉj,k − cj,k|2 ≤ C
22jν

n
(1 + ‖λ‖2‖g‖∞) , E|β̂j,k − βj,k|2 ≤ C

22jν

n
(1 + ‖λ‖2‖g‖∞) , (10.19)

and

E|β̂j,k − βj,k|4 ≤ C
24jν

n2

(

1 +
2j

n

)
(
1 + ‖λ‖22‖g‖2∞ + ‖λ‖2‖g‖∞ + ‖λ‖22‖g‖∞

)
. (10.20)

Proof : We only prove the proposition for the wavelet coefficients β̂j,k since the arguments are

the same for the scaling coefficients ĉj,k. Remark first that β̂j,k−βj,k =
∑

ℓ∈Ωj
cℓ(ψj,k)(θ̂ℓ−θℓ) =

Z1 + Z2, where Z1 and Z2 are the centered variables

Z1 :=
∑

ℓ∈Ωj

(γ̃ℓγ
−1
ℓ − 1)θℓcℓ(φj,k).

and

Z2 :=
1

n

n∑

i=1

∫ 1

0
ψ̃j,k(t)dÑ

i
t .

where dÑ i
t = dN i

t − λ(t− τ i)dt.
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Control of the moments of Z1: by arguing as in the proof of Proposition 3 in [5], one obtains
that there exists a universal constant C > 0 such that

E|Z1|2 ≤ C
22jν

n
and E|Z1|4 ≤ C

(

24jν

n2
+

2j(4ν+1)

n3

)

. (10.21)

The main arguments to obtain (10.21) rely on concentration inequalities on the variables τ i, i =
1, . . . , n.

Control of the moments of Z2: using Lemma 10.1 remark that

E|Z2|2 =
1

n2

n∑

i=1

E

∫ 1

0
ψ̃2
j,k(t)λ(t− τ i)dt =

1

n

∫ 1

0
ψ̃2
j,k(t)λ ⋆ g(t)dt,

≤ C
22jν

n
‖λ ⋆ g‖∞ ≤ C

22jν

n
‖λ‖2‖g‖∞.

Let us now bound E|Z2|4 by using Rosenthal’s inequality [29]

E

∣
∣
∣
∣
∣

n∑

i=1

Yi

∣
∣
∣
∣
∣

2p

≤
(

16p

log(2p)

)2p

max

{(
n∑

i=1

EY 2
i

)p

;
n∑

i=1

E|Yi|2p
}

,

which is valid for independent, centered and real-valued random variables (Yi)i=1...,n. We apply

this inequality to Yi =
∫ 1
0 ψ̃j,k(t)dÑ

i
t with p = 2. Conditionnaly to τ i, using Proposition 6 in

[27] and the Jensen’s inequality, it follows that

E
[
Y 4
i |τ i

]
=

∫ 1

0
ψ̃4
j,k(t)λ(t− τ i)dt+ 3

(∫ 1

0
ψ̃2
j,k(t)λ(t− τ i)dt

)2

,

≤
∫ 1

0
ψ̃4
j,k(t)

(
λ(t− τ i) + 3λ2(t− τ i)

)
dt.

Hence E
∑n

i=1 Y
4
i ≤ n

∫ 1
0 ψ̃

4
j,k(t)

(
λ ⋆ g(t) + 3λ2 ⋆ g(t)

)
dt. Then, using Lemma 10.1 E

∑n
i=1 Y

4
i ≤

Cn2j(4ν+1)
(
‖λ‖2 + ‖λ‖22

)
‖g‖∞. Using again Proposition 6 in [27] and Lemma 10.1 one obtains

that EY 2
i =

∫ 1
0 ψ̃

2
j,k(t)λ ⋆ g(t)dt ≤ C22jν‖λ‖2‖g‖∞ which ends the proof of the proposition. �

Proposition 10.2 Assume that λ ∈ Λ∞ and let γ > 0. Then, there exists a constant C > 0
such that for any j ≥ 0, k ∈ {0 . . . 2j − 1} and all sufficiently large n

P



|β̂j,k − βj,k| > 2max



∆n
jk(γ)),

√

2V 2
j γ log n

n
+ δj

γ log n

3n







 ≤ Cn−γ , (10.22)

where ∆n
jk(γ) is defined in (10.1).

Proof :

Using the notations introduced in the proof of Proposition 10.1, write β̂j,k − βj,k = Z1 + Z2

and remark that for any u > 0

P(|Z1 + Z2| > u) ≤ P(|Z1| > u/2) + P(|Z2| > u/2) (10.23)

Now, arguing as in Proposition 4 in [5] and using Bernstein’s inequality, one has immediately
that

P



|Z1| >

√

2V 2
j γ log n

n
+ δj

γ log n

3n



 ≤ 2n−γ . (10.24)
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Let us now control the deviation of Z2 = 1
n

∑n
i=1

∫ 1
0 ψ̃j,k(t)dÑ

i
t . First, remark that con-

ditionnaly to the shifts τ 1, . . . , τn, the process
∑n

i=1N
i is a Poisson process with intensity

∑n
i=1 λ(. − τ i). For the sake of convenience, we introduce some additionnal notations. For

n ≥ 1, j ≥ 0 and 0 ≤ k ≤ 2j − 1, define

Mn
jk =

1

n

n∑

i=1

∫ 1

0
ψ̃2
jk(t)λ(t− τ i)dt, and Mjk = EMn

jk =

∫ 1

0
ψ̃2
jk(t)λ ⋆ g(t)dt.

Using an analogue of Bennett’s inequality for Poisson processes (see e.g. Proposition 7 in
[27]), we get that for any s > 0

P

(

|Z2| >
√

2s

n
Mn
jk +

s

3n
‖ψ̃j,k‖∞

∣
∣
τ 1, . . . , τn

)

≤ 2 exp (−s) (10.25)

Remark that the quantity Mn
jk is not computable from the data as its depends on λ and the

unobserved shifts τ 1, . . . , τn. Nevertheless it is possible to compute a data-based upper bound
for Mn

jk. Indeed, note that Bernstein’s inequality (see e.g. Proposition 2.9 in [22]) implies that

P

(

Mn
jk > Mjk + M̃jk

(

γ log n

3n
+

√

2γ log n

n

))

≤ n−γ .

with M̃jk = ‖λ‖∞‖ψ̃j,k‖22. Obviously, M̃jk is unknown but for all sufficiently large n, one has
that

M̃jk = ‖λ‖∞‖ψ̃j,k‖22 ≤ log n‖ψ̃j,k‖22.
Moreover, remark that Mjk = ‖ψjk

√
λ ⋆ g‖22 ≤ ‖ψjk‖22‖g‖∞‖λ‖1. Hence,

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞‖λ‖1 +
(

γ(log n)2

3n
+

√

2γ(log n)3

n

)))

≤ n−γ . (10.26)

In order to obtain a data-based upper bound for Mn
jk, it remains to derive an upper bound for

‖λ‖1. Recall that we have denoted by Ki the number of points of the process N i. Conditionally
to τ i, Ki is real random variable that follows a Poisson distribution with intensity

∫ 1
0 λ(t −

τ i)dt. Since λ is assumed to be periodic with period 1, it follows that for any i = 1, . . . , n,
∫ 1
0 λ(t − τ i)dt =

∫ 1
0 λ(t)dt, and thus (Ki)i=1,...,n are i.i.d. random variables following a Poisson

distribution with intensity ‖λ‖1 =
∫ 1
0 λ(t)dt. Using standard arguments to derive concentration

inequalities one has that for any u > 0

P

(

‖λ‖1 ≥ 1

n

n∑

i=1

Ki +

√

2u‖λ‖1
n

+
u

3n

)

≤ 2 exp(−u).

Now, define the function h(y) = y2 −
√
2ay − a/3 for y ≥ 0 and with a = u/n. Then, the above

inequality can be written as

P

(

h
(√

‖λ‖1
)

≥ 1

n

n∑

i=1

Ki

)

≤ 2 exp(−u).

Since h restricted on [
√
a(
√
30 + 3

√
2)/6;+∞[ is invertible with h−1(y) =

√

y + 5a
6 +

√
a
2 it

follows that for u = γ log n and all sufficiently large n

P

(

‖λ‖1 ≥ K̄n +
4γ log n

3n
+

√

2γ log n

n
K̄n +

5γ2(log n)2

3n2

)

≤ 2n−γ , (10.27)
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where K̄n = 1
n

∑n
i=1Ki. Therefore, using (10.26) it follows that

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞K̃n(γ) +

(

γ(log n)2

3n
+

√

2γ(log n)3

n

)))

≤ 3n−γ , (10.28)

where K̃n(γ) is defined in (5.6). Hence, combining (10.25) with s = γ log n and (10.28) we obtain
that

P



|Z2| >

√
√
√
√2γ log n

n
‖ψ̃j,k‖22

(

‖g‖∞K̃n(γ) +

(

γ(log n)2

3n
+

√

2γ(log n)3

n

))

+
γ log n

3n
‖ψ̃j,k‖∞



 ≤ 5n−γ

(10.29)
Combining inequalities (10.23), (10.24) and (10.29) concludes the proof. �
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