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Chapitre 1

IntroductionIn this �rst hapter, I briey present several works onsidered after my PhD defense 6 yearsago. All these works are emphasized with respet to the literature. Among this themes, I willjust ite some of them and fous on some other ontributions with more details in hapters 2,3 and 4. I will also provide few perspetives for further works.
1.1 High dimensional statistical problemsThe study of large dimensional estimation problems is one of the main hallenging questionsof nowadays statistial works. Let be given labelled observations ppX1, Y1, . . . , pXn, Ynqq, one im-portant task wishes to predit these labels given a new observation Xnew without the knowledgeof the joint model pX, Yq. When X has a low dimensional struture, this question is now so-mewhat standard although in the opposite ase of large dimensional setting, this task is muhmore diÆult. This framework arises in a large number of pratial problems suh as signal andimage proessing for instane. They all present the similarity to fae the urse of dimensionalitywhih aims to learn the nature of an objet whih is desribed with a large number p of featureswhen only few samples n with n    p are available. I briey list the main ideas of methodshistorially proposed to overome the large dimensional diÆulty.
1.1.1 State of the artThis problemati has reeived a great interest during the twenty last years when one onsiderthat Y is a real random variable that must be predited using a linear ombination of featuresof X. Several approahes have been developed to answer the question of this predition when
p is larger than n. Eah of them usually aims to build an estimator f̂n,p that minimises a lossfuntion L whih is generally quadrati

Lpfq � ErfpXq � Ys2,where the former expetation is omputed with respet to the unknown joint law of pX, Yq.
Penalized Methods The �rst historial penalized methods enable to proeed the estimationof f without any real feature seletion step and only aim to kill the variane of estimation whenone faes a too large dimensional dataset. This is for instane the ase when f is estimated bya linear model fpXq � tθX penalized by the L2-norm of the regressor θ. These methods henesolve the minimization of

Ln,p � }tθX � Y}2n � pnpθq (1.1)1



where }}n stands for the empirial norm. When pnpθq � λn}θ}22, we obtain the Ridge re-gression introdued in [Hoerl and Kennard, 1975℄ that uses a Tikhonov approah (see e.g.[Tikhonov, 1943℄) and aims to regularize an ill-posed inverse problem, (whih is naturally thease when p ¡¡ n onsidering a linear model). This method has enabled to build more sophis-tiated L2-Hilbertian estimations using smoothing splines in Reproduing Kernel Hilbert Spaesfor instane desribed in [Wahba, 1990℄ for instane. The alibration of the penalization term isusually an important step and introdues a bias for small sample size but this bias disappearswhen n growths to �8, this is the ase when using the AIC or BIC riteria [Akaike, 1974℄ orthe so-alled model seletion approah of [Barron et al., 1999℄.
Algorithmic methods It is also natural to refer to methods whih limit the over�tting e�etin large dimensional setting and are usually inspired from algorithmi ideas suh as the CART orRandom Forests methods (see [Breiman et al., 1984℄ and [Breiman, 2001, Amit and Geman, 1997℄).In the CART method, the stopping riterion ats as a penalized term in regression or lassi�a-tion to limit the number of leaves built by the algorithm and allows to avoid some over�tting.With algorithms suh as Random Forests, it is the randomisation and averaging of unorre-lated preditors whih enable to remove over�tting and [Biau et al., 2008℄ prove that one anobtain onsistent proedures using suh approahes. This idea of agregating estimators has alsobeen exploited suessfully in reent works of Tsybakov when faing lassi�ation tasks ( see[Tsybakov, 2004℄ for instane).
Multi-resolution analysis When f is desribed with a ountable family of oeÆients, somemethods deal with the non parametri estimation of f assuming that the target belongs to afuntional spae that desribes some regularity properties (in general, some Sobolev ir Besovspaes are in fore) and use a multi-resolution analysis of the data. The pioneering works of[Donoho et al., 1995, Donoho and Johnstone, 1995℄ desribe some thresholding methods in wa-velet basis whih enable to limit the number of wavelet oeÆients and keep some statistialreonstrution ability that an be adaptive to the nature of the underlying funtional spaewhere f lives. Moreover, it is possible to onvert these proedures into minimax ones with res-pet to the quadrati loss (see [Donoho and Johnstone, 1998℄). In these approahes, it is thusthe assumption on the funtional spae whih permits to solve statistially the estimation of f.
Sparse methods During the last ten years, a large amount of works desribe the problemof estimating f with linear preditors omputed on observations X using new ideas introdu-ed by Non-Negative Garotte method of [Breiman, 1995℄. This method has suessively in-pired the Lasso approah [Efron et al., 2004℄ for whih the main idea is to use the geometristruture of the ℓ1 ball of dimension p. Indeed, the minimization of (1.1) when pnpθq9}θ}ℓ1will yield sparse solutions and obtain naturally feature seletion that enable to ontrol theover�tting of the estimation. Moreover, algorithms are available to �nd suh minimizers usingsome onvex analysis tool. Several works use these ideas and one may mention among themthe Elasti Net [Zou and Hastie, 2005℄ whih uses a penalization term as a sum of ℓ1 and ℓ2norm, the Dantzig seletor [Candes and Tao, 2007℄ and a lot of generalization of the Lasso ([van de Geer and B�uhlmann, 2009, van de Geer, 2008, Bikel et al., 2009℄ whih is a learly nonexhaustive list). The onsisteny of suh proedures is asserted provided that suh hypothesisare made on the struture of f. Generally, f is assumed to be s-sparse and even if this assump-tion is learly not equivalent to the funtional spae hypothesis of the former paragraph, it is astrutural assumption on the signal to be reovered. Furthermore, the sample size may not bearbitrarily small sine in general one may assume that log p � n, and one may draw a parallel2



with the thresholding methods of the former paragraph that usually keep a number of waveletoeÆients proportional to Cn.
Greedy algorithms At last, some algorithms [DeVore and Temlyakov, 1996℄ are originatedfrom the approximation theory and are known as Greedy Algorithms. These iterative me-thods in the deterministi ase use a general ditionary and build a sequene of approxi-mation of f whih are more and more aurate. In the statistial ommunity, these algo-rithms are alled Boosting although the approximation theory ommunity refers to MathingPursuit [Davis et al., 1994℄. Again, a large amount of reent works exist ([Binev et al., 2005,Donoho et al., 2006, Donoho et al., 2007℄) and desribe some orale properties of best approxi-mation using Lebesgue-type inequalities. The prinipal idea of these methods is to reursivelybuild estimations of the residual between f and its approximation using the best preditor in theditionnary. This idea has been used in a noisy setting in the works of [B�uhlmann and Yu, 2003℄and suh methods assoiated to a good stopping riterion enable to �nd a sparse representationof f, even if the ditionary possesses some orrelated preditors. At last, one should remarkthat indeed suh method has been also used in the learning theory for lassi�ation tasks (see[Freund and Shapire, 1997℄ for instane) where the original idea was to sequentially build esti-mations whih fous on the hardest samples to be predited, and then average all the estimationsusing a suitable stopping riterion.
1.1.2 PhD works on feature selection for supervised classificationIn my thesis[1℄ supervised by Laurent Younes, I worked on the problem of feature seletionfor supervised lassi�ation in a large dimensional setting. Let be given a n sample pX1, . . . , Xnqdesribed by a large number p of features, we aim to selet few meaningful ones. The goal istwofold : improve the ability of lassi�ation of the subset of features omparing to the wholeset of variables and also understand the meaning of important features. These two objetivesare important, one for a natural algorithmi eÆieny and the seond for the original framework(in geneti for instane, it may be important to understand what are the struturing genes of abiologial behaviour).Many works onern the problem of feature seletion for regression task but surprisingly,there exists sare reexion about the same goal dediated to a lassi�ation problem. Usually,one an split the existing algorithms in two lasses : the �rst are "�lter methods" and �̂s a pre-proessing step before the lassi�ation. They thus work with any method of disrimination andare generally using some heuristi riterion to fous on a subset of features. One should onsult[Guyon et al., 2006℄ for a large list of suh �lter approahes, most of them are not supported byany theoretial justi�ation sine they are deorrelated to any lassi�ation algorithm and fewresults are available onerning their onsisteny. The seond approahes are wrappers ones andare based on an optimisation step dediated to a lassi�ation algorithm A. One of the mainavailable algorithm is the so-alled Reursive Feature Elimination [Guyon et al., 2002℄ whihsequentially delete features with poor inuene of the margin of lassi�ation of a SVM using abakward strategy. One should also onsider some reent advanes based on a ℓ1 penalized SVM[Bi et al., 2003, Zhu et al., 2003℄ exploiting some Lasso ideas.The method developed in my thesis belongs to the seond family of wrapper methods but isslightly di�erent from a method suh as the RFE one sine the method works with any lassi�-ation algorithm A. More preisely, if one denote D the ditionnary of features available on the nsample X1, . . . Xn labelled by pY1, . . . Ynq, and if A is the supervised algorithm, we aim to mimi a! best subset " approah to �nd a good ω � D. Sine numbering all the subsets is numerially3



untratable, we have worked on designing a stohasti algorithm whih explore not exhausti-vely some subsets of D. Two theoretial papers have been written on this subjet. The �rst [6℄desribes the algorithm and provide a omplete numerial study in signal proessing when Ais a Support Vetor Mahine lassi�er. The algorithm works as a meta-method and aims toweight features of D in order to minimize a lassi�ation riterion. The method is sequentialand some ideas an be ompared to the Boosting methods (see [B�uhlmann and Yu, 2003℄ and[Freund and Shapire, 1997℄) sine the algorithm derease the weights of some variables propor-tionately to the lassi�ation error observed using a sampled subset of variables. Thus, it anbe onsidered as a boosting algorithm on the feature spae.The seond work [5℄ generalizes the method and proposes to build some tree-struturedfeatures with binary omposition of elements in D. He is largely inspired from the RandomForest algorithm [Breiman, 2001℄ and propose a stohasti reversible exploration of forests ofbinary trees.In this memory, I have hosen to shortly desribe the original feature seletion model (Op-timal Feature Weighting) as well as the stohasti algorithm developed to solve this model inparagraph 2.1 sine several developments have been motivated from this �rst work.
1.1.3 Biostatistic applicationsI have been naturally lead to work on real-data miroarrays lassi�ation problems after Iarrived in Toulouse sine some researhers of the Institut National de Reherhe Agronomiquewere looking for supervised lassi�ation method whih also yield dimensionality redution.With Kim-Anh Lê Cao, we aimed to extend the simulation on the OFW developed in my PhDusing di�erent algorithms A suh as CART [2℄. We then onsider a multi-lass framework [3℄ sineit was the natural framework for the INRA-datasets and onsider as well the numerial aurayas the stability results and the biologial interpretations of the feature seletion method. Evenif from a mathematial point of view, this ollaboration was restrited to numerial simulations,I onsider it fruitful for several reasons desribed in paragraphs 1.2.3, 1.3 and 1.4.
1.2 Large dimensional estimation problemsI briey present my works after my PhD on statistial estimation in a large dimensionalsetting. All these works are onerned with the inferene of some rare events omparing to thenumber of available experiments in the database. The several approahes are all algorithmi butsome of them provide also some theoretial developments (paragraphs 1.2.1 and 1.2.3), anotherone use an extended modelling step (paragraph 1.2.2) and �nally the last one is an industrialollaboration with some stohasti methods of rare events simulation (paragraph 1.2.4).
1.2.1 Sequential design of experimentsThis ollaboration with Serge Cohen and S�ebastie D�ejean deals with the framework of designof experiments for omplex omputer models. We an desribe the problem as follows : we aim toapproah a funtion f with as few measuring points as possible, to ompute an estimation f̂ sinein this framework, running the ode at a design point is generally ostly. When the estimationis linear, there exists some almost expliit riterion that quantify the supposed eÆieny ofthe design to ompute f̂ and these riterion are usually based on the variane of f̂. One ouldrefer to pioneering works of [Kiefer and Wolfowitz, 1959, Fedorov, 1972℄ whih provide severaloptimality riterion for linear models. In our work, we deided to build sequential estimators of f4



and we hoosed to �nd the k�1-th design point xk�1 after the omputation of a noisy realisationof fpxkq). Hene, this sequential approah is similar to the method used in [Pronzato, 2000℄ butwe leave open the possibility to ontrol the bias of the model using a minimax approah alreadygiven in [Oyet and Wiens, 2000℄. Moreover, we propose to use a exible family of features whihrandomly vary all along the iteration of the algorithms following a stohasti algorithm. Itintrodues an alternative approah to the work of [Biswas and Chaudhuri, 2002℄ whih onsidersa bakward testing strategy to obtain a model seletion algorithm.Using a similar strategy of tree exploration desribed in [5℄, we have developed in [4℄ a newstohasti algorithm on a multi-resolution analysis to reursively �x new optimal design pointsfor the estimation of f. Moreover, we have proved a loalisation theorem of optimal designs fora partiular ase of multi-resolution Shauder family whih yielded a very fast sequential algo-rithm. This theoretial result is not obvious sine there is from the wavelet nature of the family,no T -systems property is available (see [Dette and Studden, 1997℄) for suh multi-resolutionfamily. This work is detailed in paragraph refhd :statomp.
1.2.2 Community graph recoveringWith Nathalie Villa, we developed in [7℄ a graph-lustering algorithm in order to obtainan unsupervised lassi�ation method for verties in a ommunity graph. Usually, a graph Gis given through the de�nition of its adjaeny matrix W whih desribes the presene of oneoriented relation between two verties. Hene, lustering methods will generally depend only onthe struture of W (see for instane the spetral analysis of [Newman, 2006℄). However, somegeneral methods may not be adapter to the natural (or expeted) partition struture of thegraph. Our idea is to exploit some a priori empirial remarks of the ommunity graph struturesto build a orret model. Community graphs are known to be strutured around lusters wherethere exists a large number of links between eah vertex of the same luster and oppositely, thepresene of one link between two verties of two di�erent lusters is very unlikely.Let be given a non oriented symmetri adjaeny matrix W with a vanishing diagonal, thedegree of eah node i is the number of verties related to i. More preisely, Wi,j �Wj,i � 1 if iand j are linked although Wi,j � Wj,i � 0 in the opposite situation. Of ourse, the degree of isatis�es di � °

Wi,j. For any lassi�ation C1, . . . Ck of the set of verties, the Q-modularity isde�ned through
QpC1, . . . , Ckq � ķ

ℓ�1 ¸
i,jPCℓ

�
Wi,j � didj

2m

�
.We remark that a lustering C1, . . . Ck posses a large Q-modularity if one has a large numberof intra-luster links. For numerial reasons, the exhaustive searh of best partitions is intratablefor graphs with a large size. In [7℄, we designed a stohasti simulated annealing in order tomaximise Q. In this work, we also developed a visual representation algorithm to show theobtained partition after the simulated annealing proedure. This step is almost as importantas the lustering one in order to obtain a good visualisation of the results. Note that a morereent work [Rossi and Villa, 2010℄ also exploits the Q-modularity whih is maximised with adeterministi simulated annealing via a mean �eld approximation.

1.2.3 Sparse multivariate regression and gene network recoveryMy �rst works with researhers of the Institut National de Reherhe Agronomique andthe former study on graph lustering lead me to work on the problem of the estimation of anetwork of regulation genes and this �eld is important to obtain new lightning on biologial5



proesses of geneti diseases. The problem is as follows : two type of datas are omputed for asample of n subjets, the �rst one E orresponds to the expressions dataset and is a matrix ofsize n� p where p is the number of genes onsidered in the study. E quanti�es the amount ofexpression of eah gene on eah element of the dataset. The seond type of features are disretemarker variables of size n� p.An interation between two genes is then desribed by the fat that one protein ativated byone gene ats or inhibits another genes. We desribe this interation using a multivariate linearmodel
E � Eβ�Mα� ǫ, (1.2)where ǫ is the gap between the theoretial interation and the real proess, β is p � p matrixwith vanishing diagonal whih provides the struture of the gene network. One aim to reoverboth α and β and the main diÆulty in (1.2) is that the number n of samples is very smallomparing to the number of parameters 2p2 � p to predit .In [17℄, we �rst use some penalized regressions to infer α̂ and β̂ (Lasso, Elasti Net andDantzig seletor) and we �nally deided to use a multivariate Boosting approah. Suh me-thods was already proposed in [Lutz and B�uhlmann, 2006℄ for the multivariate setting but suhextension was mainly driven by theoretial proof onsiderations in order to adapt former resultsof [DeVore and Temlyakov, 1996℄ and [B�uhlmann, 2006℄ (for deterministi and noisy situations).Indeed, the method [Lutz and B�uhlmann, 2006℄ does not exploit all the multivariate nature ofthe data and does not spread in a natural way the e�ort of the boosting algorithm. In [17℄, wemodify the boosting algorithm in order to obtain a more natural adaptation to the multivariatesituation desribed in (1.2). Comparing to the �rst work [B�uhlmann and Yu, 2003℄, we intro-due a supplementary boosting step in order to hoose the oordinate to predit 1. Thus, we arelead to resume the study of this algorithm �rst in a deterministi ase and then extend it to thenoisy realisti situation. This work is desribed in paragraph 2.3.

1.2.4 Extreme Value Theory and EstimationAt last, I have worked on a very onrete industrial problem for Thales Alenia Spae andthe Cnes from 2009 to 2011 onerning an estimation for the Egnos-Galileo loalization system.The European Spatial Ageny requires that Egnos-Galileo provides a loalization in a givenon�dene region and in the opposite ase, returns a user alarm. Moreover, the probability thatthe system does not return an alarm although the objet is not in the on�dene region shouldbe less than p � 10�7 for any period of 150 seonds. Of ourse, the real historial position from2006 to 2009 are available as well as the loalization provided by Egnos-Galileo.Thus, the question whih may appear to be a rather trivial problem was to estimate theprobability of a true positive alarm in order to deide whether this probability is less than
p � 10�7 or not. Indeed, these events with suh weak probability are rarely observed, even ifone gets a dataset that furnishes real and loalized position during three years and one annotredue the estimation to a simple empirial mean.Our �rst work [25℄ uses the Extreme Value Theory desribed by the so-alled Fisher-Tippettlaw (1928) whih asserts that under tehnial independene onditions, the law of large valueof a n samples an be desribed and depends only on few parameters. More preisely, we haveused the Peak Over Threshold (POT) (see e.g. [Rassmussen, 1994, de Haan and Ferreira, 2006℄)approah to ompute an estimation of the true positive alarm for the Egnos-Galileo navigationsystem. This ollaboration with C�eile Meradier and Jean-Mar Aza��s yields a tehnial report[37℄ and a �rst software.1. That's why one an onsider this as a ! boost-boost "algorithm.6



A seond work has onsidered suh rare events estimation using another point of view whihonsists in the reinforement by splitting algorithms the ourenes of suh feared events (seethe stohasti methods desribed in [Lagnoux-Renaudie, 2009, Lagnoux, 2006℄). The prinipleof suh estimation is to use hierarhial dupliations of Monte-Carlo simulations in order togenerate more and more rare events. We have written a tehnial report [36℄ with Agn�es Lagnoux,C�eile Meradier and I and provided it to Thales Alenia Spae in order to draw fair omparisonswith their initial Petri network approah.A last work was onerned by the development of an algorithm whih yield automati pro-edures for the appliation of Extreme Value Theory approah desribed in [37℄. There weretwo main diÆulties : the �rst one dealt with the non-stationary nature of the hronologialseries and was got round by the use of a Portmanteau test. The seond diÆulty takled thequestion of the alibration of a threshold parameter whih quanti�es when one has a large valueof the sample or not. To answer this subtle problem, we have used several algorithms suh as[Drees and Kaufmann, 1998, Beirlant et al., 1999℄ but indeed we found that the more ompeti-tive one for this type of datasets were [de Sousa and Mihailidis, 2004℄ and exploits some resultson the law of umulative sums of large values of samples. From this last study, a tehnial note[35℄ and a �nal software has been written by Jean-Mar Aza��s and I, and Thales Alenia Spaeis urrently introduing these tool in the last upgrade of the Egnos-Galileo system.
1.3 Random deformation of signal processingMy initial work on miro-array datasets leads me to the onlusion that most of the time,a good modelling of the struture of the data may largely improves a pure strength algorithmto fae a statistial problem. During my PhD, I have worked on handwritten digits reognitionproblems with Mnist and US Postal database. These data may be onsidered as a typial exampleof problem that an be faed using a lassi�ation algorithm suh as SVM whih aims to predita good objet for data that are around a mean expeted value, but that an also be onsideredas a realization of a more omplex stohasti proess. In this part, we aim to model a stohastiversion of signal deformation in order to estimate generative parameters and then improve thesignal proessing task we an think of.
1.3.1 State of the art

Deformable models When I arrived in Toulouse, J�er�emie Bigot has just also omplete awork on a statistial method for landmarks registration between noisy images. We naturallystart a ollaboration around the framework of deformable models. We have tried to use thestu� already available in the deterministi setting and extend it to a noisy ase whih is a morenatural ase. We were inspired as well from the works of Alain Trouv�e and Laurent Younes ondi�eomorphisms built from vetor �elds and ordinary di�erential equation as the approah ofGrenander [Grenander, 1993a, Grenander and Miller, 2007℄.In a general way, the deformation model is desribed as follows : a mean referene pattern
fÆ is de�ned on Ω � R

d, and we observe some noisy realisations of
Yipxq � fipxq �Wipxq, �x P Ω, �i P t1 . . . nu. (1.3)The variables fi orrespond to a deformation of the referene form fÆ with a random deforma-tion although the Wi represent an additive measurement noise. Moreover, the deformations areassumed to belong to a group G of di�eomorphisms of Ω. Hene,�i P t1 . . . nu Dgi P G �x P Ω fipxq � fÆpgi.xq,7



where x ÞÑ gi.x refers to the ation of gi on Ω. One an then onsider two family of problems.The �rst one is onsidering the estimation of the deformation parameters gi and the seondorresponds to the estimation of fÆ itself. My works intensively study this last problem inseveral situations. Most of the time, G is a �nite dimensional Lie group (rigid deformations) orin�nite dimensional (elasti deformations). One an immediately remark that a simple empirialaveraging whih does not take into aount the deformation e�ets, and this annot reah asatisfatory result as pointed by Figure 1.1.
Figure 1.1 { Empirial ! na��ve " mean between 5 images of a fae taken into the Olivettidatabase [Samaria et al., 1994℄.This blurring phenomenon shown by Figure 1.1 reveals that the omputation of fÆ as ifobservations belong to a at eulidean spae is not possible. More preisely, let us de�ne anHilbert spae H whih ontains the realisations pYiqiP1...n, the empirial mean is de�ned throughthe solution of the optimisation problem�Yn � arg min

fPH ņ

i�1 }Yi � f}2H. (1.4)When H is desribed by a eulidean distane and when the random deformations g P G areoming from a law h, �Yn is estimating ~f de�ned by the onvolution~fpxq � EgPGfÆpg.xq � »
G

fÆpg.xqhpgqdg,and of ourse ~f � fÆ. One an then dedue the blurring e�et observed with the empirial mean.It is quite tempting to use some deformation-adapted metris on H to ompute an esti-mation with (1.4). This approah is proposed by [Joshi et al., 2004, Miller and Younes, 2001,Trouv�e and Younes, 2005℄ where H � L2pΩq and the distane is de�ned by�pf1, f2q P H2 dGpf1, f2q � inf
gPG"»Ωrf1pxq � f2pg.xqs2dx� λDpg, eq* , (1.5)where e is the identity of G, λ a regularizing parameter and D a distorsion measure between gand e whih quanti�es an amount of deformation for the element g.The use of a non eulidean metri suh as the one given by (1.5) to ompute fÆ leads tothe onept of intrinsi Fr�ehet mean [Fr�ehet, 1948℄ of the distribution as well as the intrinsiFr�ehet mean of the n samples. The behaviour of suh estimators based on (1.4) with observa-tions that belong to a �nite dimension Riemanian manifold are well known, see for instane aomplete study in [Bhattaharya and Patrangenaru, 2003, Bhattaharya and Patrangenaru, 2005℄for onsisteny results when n ÞÑ �8. These results are obtained with M-estimation strategy8



oupled with riemanian geometry and [Le, 1998, Le and Kume, 2000℄ have dedued some onsis-teny result for Frehet mean of planar urves dealing with the speial situation of the Kendallspae of forms [Kendall, 1984℄.All these works are largely following a geometri point of view, and does not takle thenatural extension to non parametri estimation for urves and images.
Non parametric statistical approach The estimation of fÆ in the model (1.3) has sur-prisingly reeived few attention from a non parametri point of view. Pioneering work of[Kneip and Gasser, 1988℄ introdues the shape invariant model and proposes to approah fÆwhen d � 1 : observations are urves whih are parametrized by a known �nite number ofoeÆients and g ats as a translation on Ω � R :�i P t1 . . . nu Dτi P G �x P Ω dYipxq � fÆpx� τiqdx� dWipxq.Some other works [Gasser and Kneip, 1992, Gasser and Kneip, 1995℄ study the semi-parametriase and exploit some ideas whih are onneted with Fr�ehet means. The obtained results de-pend both on the number of observed urves and on the sampling frequeny of eah observedurve. Methods proposed by[Wang and Gasser, 1997, Ramsay and Li, 2001, Liu and Muller, 2004℄onsider more general d�eformations whih are not neessarily restrited to translations and taklethe problem the parametrisation of non rigid di�eomorphisms instead of studying an asymptotireonstrution of fÆ when n ÞÑ �8.Regarding now the problem of the deformation parameters estimation, [Gamboa et al., 2007b℄and [Vimond, 2010℄ propose some semi-parametri approah to dedue from these estimations anestimator of fÆ when the sampling frequeny of eah urve (number of points observed for eahurve) is arbitrarily large. At last, [Bigot et al., 2010℄ generalizes this approah to a arbirarilyompat Lie groups whih model rigid deformations.A very di�erent approah of [Allassoni�ere et al., 2007℄ uses a Bayesian point of view to om-pute an estimation of fÆ from the observations pYiqi�1...n and [Allassoni�ere et al., 2009℄ developsa stohasti algorithm based on SAEM in order to �nd the pro�le likelihood maximiser.Most of the above ited works does not study the onvergene rates obtained by their pro-edures and sometimes, even the statistial onsisteny is unlear (espeially for the Bayesianestimators[Allassoni�ere et al., 2007, Allassoni�ere et al., 2009℄). It was thus quite natural to studythe onvergene rates of estimators of fÆ.
1.3.2 Randomly shifted curves modelThe simplest model of non parametri problem in deformable models is ertainly the follo-wing one : we observe a set of n urves pYiqiPr1;ns through a white noise model :�x P r0; 1s, �i � 1 . . . n dYipxq � fÆpx� τiqdx� σdWipxq, (1.6)where fÆ is the real funtion to reover whih is supposed 1-periodi. The noise level is given by
σ and pWiqiP1...n are n independent Brownian motions. At last, the random variables pτiqiP1...nare n translations independent and desribe the deformation proess. We assume pτiqiP1...n tobe i.i.d. and independent from the pWiqiP1...n and we aim to estimate fÆ and understand in whatsituation the problem is statistially easy or oppositely diÆult.
Asymptotic study (n ÞÑ �8) We �rst build an estimation of fÆ for the model (1.6) in anasymptoti setting in [9℄. We propose an estimation of fÆ using a hard thresholding proedure9



in Meyer wavelet basis. The onsisteny and the onvergene rates obtained are rather similarto some phenomenon enountered in statistial inverse problems obtained in deonvolutionmodels[Johnstone et al., 2004, Carroll and Hall, 1988℄. Some additional tehnial diÆulties aredue to the supplemental random shift τi for the thresholding proedure.Moreover, it is possible to ompute the minimax rate of onvergene for the L2 normwhen fÆ belongs to a Besov ball Bsp,qpAq. The striking point is that the statistial diÆultyappears to be the same as the diret deonvolution inverse problem even if we do not ob-serve some realisations of a white noise model on fÆ Æ g but eah observations orrespondsto the same urve fÆ randomly shifted but not onvolved by g. The lower bound omputa-tion relies on a tehnial adaptation of the so-alled Assouad's Lemma desribed for instanein [Bretagnolle and Huber, 1979, Has 1minski�� and Ibragimov, 1990℄. Note also that the idea of[Birg�e, 1986℄ whih states that lower bound obtained through Assouad's Lemma an also bereovered by the use of Fano's Lemma seems also true here even if one should also onsidermodify Fano's Lemma (see for instane [Ibragimov and Has 1minski��, 1981℄), at last, it appearsthat similar tehnial diÆulties appears to operate the omputation of the lower bound usingFano's Lemma.
Oracle approach In [12℄, we provide a non asymptoti answer to estimate fÆ using the for-malism of orale inequalities. These work relies on the appliation of the Unbiased Risk Es-timation method already used in [Cavalier et al., 2002℄ for general inverse problems. In ourframework, the obtained additional term in the orale inequality depends on the σ2 (whih israther standard when one use a white noise model) and an additional term whih tradues theill posedness of the inverse problem when using a deonvolution in a Fourier basis. Remarkat last that in [12℄, very similar tools to those used for the study of statistial inverse pro-blems with partially observed operators desribed for instane in [Cavalier and Raimondo, 2007,Cavalier and Hengartner, 2005℄.All these works rely on a somewhat questionable assumption that the law of the random shiftspτiqiP1...n is known. It is of ourse possible to desribe an approah whih uses the Fr�ehet meanapproah (see [Bhattaharya and Patrangenaru, 2003℄ for instane), but the theoretial study ismuh more diÆult in the non parametri setting. These works are desribed in paragraph 3.2.1of hapter 3.
1.3.3 Estimation of randomly warped images with rigid or elastic deforma-

tionsWe an extend the model of randomly warped signals by enlarging the struture of defor-mation sets whih at on the unknown signal fÆ. It is quite tempting to onsider a group Glarger than pR{Z,�q whih is the situation desribed above, and when fÆ is not yet a urve butan image. G may ontent for instane translations and rotations. We develop in [8℄ a seondasymptoti study whih generalizes the model of randomly shifted urves to the ase of a generalompat Lie group G for rigid deformations. Our main tool are spetral analysis on Lie groupssuh as Peter-Weyl theorem and Fourier transform whih has been already used in the statisti-al deonvolution work of [Koo and Kim, 2008, Kim, 1998, Yazii, 2004℄. Again, our statistialproedure arry out an optimal minimax rate by studying arefully in Assouad's lemma thelikelihood ratios with respet to the size of the Lie group G.At last, it is also possible to model more omplex deformations handling in�nite dimensionalgroups suh as large di�eomorphisms group already desribed in the works of Trouv�e and Younes.We propose to generate elasti deformations using a parametrisation of vetor �elds and onsider10



the solution at time 1 of a di�erential ow using these vetor �elds. We then use standard M-estimation tehniques (see e.g. [Van der Waart, 1998℄) to asymptotially study the estimationof the mean pattern fÆ. Some results are provided in[11℄ as well as optimization methods toompute suh estimators. These works are desribed in paragraph 3.3.5 and 3.2.2.
1.3.4 Constrained regressionIn a seondary importane, one an also use the former approah to build monotoni realfuntions through the di�erential ows of vetor �elds in dimension 1. We use this simple remarkto build estimators in regression problems where the funtion is known to be monotone. This pro-blem has reeived a speial importane sine numerous pratial examples orrespond to this apriori information of isotoni regression. The work of [Hall and Huang, 2001, Dette et al., 2006,Dette and Pilz, 2006℄ onsider this problem using a standard kernel estimator projeted on thespae of monotone funtions.We hoose to avoid this projetion step sine it may introdue some arti�ial artefats andthe method presented in [10℄ uses the fat that all stritly non dereasing funtions of r0; 1s (forinstane) may be written as solution at time 1 of some di�erential equation governed by a timeaÆne vetor �eld. This method is desribed in 3.1.3.
1.3.5 Intensitu estimation of a randomly shifted counting processes : the case

of Poisson processesAfter my works on randomly shifted urves, I have been approahed by researhers of theInstitut National de la Sant�e Et de la Reherhe M�ediale in order to understand a speialproess of protein �xation along DNA. Datasets issued from Chip-Seq analysis ount the num-ber of ases whenever a protein is �xed at several plae of DNA on several hromosomes andbiologists have observed that in some ase, this �xation may not be so well loalized owing to abiologial perturbation at the initialization of the �xation proess. This yields the researher touse a onvolution by a Gaussian kernel to smooth the data and then a urve alignment to obtaina "mean" pro�le of the ounting proess. It would have been tempting to use our approah onrandomly shifted urves estimator desribed by (1.6) to deal with suh data. Nevertheless, thenature of the dataset is really di�erent from white noise model and we propose in [16℄ a modelof randomly shifted ounting model using Poisson proesses with inhomogeneous intensity λi.Eah λi are supposed to be equal to a ommon intensity λ up to a random shift and this mo-del is largely inspired from (1.6). Note that suh problemati appears also in the reent workof [Sansonnet, 2011℄ where in this situation shifts are observed as well as the mean empirialintensity and one aims to reover λ.Our approah use intensively onentration properties of [Reynaud-Bourret, 2003℄ for Pois-son proesses and our work belongs to the framework of Poissonian inverse problem also studiedfor instane in [Cavalier and Koo, 2002, Kolazyk, 1999℄. Our estimation still relies on a multi-resolution analysis and we are able to build a minimax estimator using a suitable thresholdingproedure. Again, the main diÆulty already, enountered in [9℄, is to obtain a suitable lowerbound of estimation that makes appearing the inverse problem nature of the model. Moreover,the theoretial adaptivity to the funtional spae where λ lives requires non trivial extension ofthe thresholding proedures used in [9℄. This works is briey desribed in paragraph3.5.3.11



1.4 Irreversible optimisation algorithmsThe motivation of these works ome from a (strange ?) modi�ation of standard stohastigradient algorithm by Kim-Anh Lê Cao during the numerial studies desribed in [2℄ and [3℄.The original stohastique gradient algorithm an be written as follows :�k ¥ 0 Xk�1 � Xk � γkdk �?
γkζk, (1.7)where Xk stands for the position of the algorithm at iteration k, γk is the algorithm stepand dk is the random diretion of desent. These algorithms are ommonly used in stohastiontrol, signal and image proessing, game theory or Bayesian estimation . . . Under tehnialonditions on dk and γk whih should be suÆiently slowly dereasing, one may show thefollowing (informal) properties.{ If ζk � 0, lassial martingale tools (see e.g. [Duo, 1997, Kushner and Yin, 2003℄) showthat the behaviour of pXkqk¥0 is similar to the disretisation of the ordinary di�erentialequation (up to a suitable time modi�ation) :

dXt � �∇UpXtqdt.{ When ζk is a random Gaussian perturbation, the former result is no longer true andthe algorithm is a di�usion approximation due to the presene of ?γkζk and as soon as
Erdk|Fks � �∇UpXkq, pXkqk¥0 is a disretisation of the stohasti di�erential equation :

dXt � �∇UpXtqdt� dBt.A non exhaustive bibliography an be found in [Benveniste et al., 1990℄ or [Benaim, 1996℄for a more! dynamial "desription of this approximation.The numerial modi�ation used in [2℄ was to build a stohasti algorithm whih is notMarkov : �k ¥ 0 ~Xk�1 � ~Xk � γk°j¤k βjdj°
j¤k βj �?

γkζk. (1.8)Suh numerial sheme is strongly linked to9xptq � � » t
0

rps, tqDpxpsqqds.provided tehnial onditions on dk,D and γk. The following several studies has been motivatedby optimisation proedures based on this last di�erential equation, ordinary or stohasti ones.
1.4.1 Averaged memory differential equation

Past works My �rst work on this theme has onsidered the family of di�erential equationswhih should be the limit of (1.8). The limiting di�erential equation has then been written witha! memory gradient " : 9xptq � ��
1

kptq » t0 hpsq∇Upxpsqqds
 dt, (1.9)where U is a oerive potential de�ned on R
d. It is possible to rely this equation with seondorder di�erential equation with damping using a suitable time parametrization (detailed in[Cabot, 2009℄) : :yptq � aptq 9yptq �∇Upyptqq � 0, (1.10)12



where y � x � τ, and τ is solution of 9τ2 � kpτq{hpτq. The damping e�et is a � 9kh�k 9h
2k1{2h3{2 � τ.On the seond order form, (1.10) the di�erential equation generalizes several known equations.Among them, the �rst most famous one is the Bessel equation for the speial ase aptq � 1{tand Upxq � x2 whose solutions are proportional to J0 up to a suitable initialisation ondition.We then obtain the asymptoti behaviour xptq � Ct�1{4 osp2?t� π{4q.In the onvex optimization ommunity, speial ases of suh euqations was already knownand studied when a is a positive onstant. In suh ase, one reovers the Heavy Ball with Fri-tion system desribed in [Polyak, 1987℄ and [Antipin, 1994℄ whih already study the optimizingproperties of suh trajetories. This study has then been extended to a general framework ofdissipative equations by[Hale, 1988, Haraux, 1991℄ : they show that suh dynamial systemswith onstant damping onverge towards some ritial points of U under tehnial onditionssuh as analyti or onvex for very large x properties. At last, [Ben Hassen and Haraux, 2011℄and [Haraux, 2007℄ use some damping linked with :y in order to improve suh optimization pro-perties sine adapting this damping to the position and speed of the partile xptq may be ofinterest.

Contributions We desribe in [13℄ very preisely the behaviour of our damped seond orderequation when the time t beomes arbitrarily large for equations (1.9) or (1.10), as well as thebehaviour of Upxptqqt¥0. Our main assumptions is the onvexity of U for large x and the emptyinterior of the set of ritial points of U. Moreover, we prove some one-dimensional result whihare not easily transposable to larger dimensions. At last, we study in [14℄ some more pathologialsituation where U possesses some at part (non empty interior of the set of ritial points). Weprovide some details on this ! unordinary " di�erential equation in paragraph4.1.
1.4.2 Memory diffusion

Link with reinforced stochastic process The stohasti algorithm (1.8) when ζk is aGaussian random variable is a numeri approximation of the stohasti proess
dXt � ��

1

kptq » t0 9kpsq∇Upxpsqqds
 dt� σdBt. (1.11)sine the stohasti algorithm is orrupted by a Brownian inrement ?γkdζk. It is thus naturalto study suh stohasti di�erential equation (1.11).The main diÆulty in (1.11) omes from its non Markov nature sine the proess inter-ats with all its past through the time averaging of ∇Upxsq, 0 ¤ s ¤ t. Thus, suh pro-ess belongs to the large informal lass of self-interating di�usion. First historial examplewas introdued by [Coppersmith and Diaonis, 1987℄ for random walks and then extensivelystudied by[Pemantle, 1992℄ for the desription of the dynami of Brownian polymer, see also[Cranston and Le Jan, 1995℄ for a desription of suh type of ontinuous proesses.Among the ontinuous time proesses, self-interating ones are generally oming from aonvolution between a drift funtional and the oupation measure whih may be normalised(see for instane the work of [Bena��m et al., 2002℄) or not (see e.g.[Durrett and Rogers, 1992℄).The drift term at time t is usually an averaging proess whih is omputed from the seve-ral values of pXt � Xsq0¤s¤t. From a tehnial point of view, [Bena��m et al., 2002℄ makes anextensive use of asymptoti pseudo-trajetory of random dynamial system �rst introduedby[Bena��m and Hirsh, 1996℄. In some sense, suh study should have been possible in our frame-work even if the situation in[Bena��m et al., 2002℄ is ompat although the proess (1.11) mayexplore R
d. At last, we should also refer to reent works of [Kurtzman, 2009℄ that deal with non13



ompat manifolds by a supplementary addition of a on�ning non-interative potential in thedrift term.
Links with hypo-elliptic processes In[15℄, we propose to study the proess (1.11) by aspae enlargement method ot obtain a Markov proess. The prie to pay is then the neessity tohandle a strong degeneray of the random system on the "enlarged" oordinate. Let us denotepYtqt¥0 the proess given by the drift in (1.11) at time t, if we set r � 9k{k, we then obtain theequivalent oupled evolution : #

dXt � �Ytdt� σdBt.
dYt � rptqp∇UpXtq � Ytqdt. (1.12)Suh equations (1.12) then fall into the framework of hypo-ellipti proesses. A large num-ber of theoretial advanes ourred this last years, among them one should refer to those of[Hel�er and Nier, 2005℄ or [Villani, 2009℄ whih are interested into the evolution of suh evolu-tions for large time t.One of the main diÆulty for the study of onvergene to steady regimes of hypo-elliptievolutions is the lak of lassial funtional inequalities for instane assoiated to the Γ2 rite-rion [Bakry and �Emery, 1985℄. One famous example of suh situation is the evolution guided bythe Fokker-Plank kineti equations whih has reeived a large amount of interest as attestedby the large number of referenes on the subjet,e.g. [Risken, 1989, Ekmann and Hairer, 2003,H�erau and Nier, 2004℄) takle this problem by studying arefully the spetrum of the under-lying operator although other works ([Desvillettes and Villani, 2001, Dolbeault et al., 2009℄)build some oerive norms whih stand for Lyapunov funtion of the dynamial system inorder to use a Gronwall lemma. At last, note that Lyapunov funtions should be onsidered as apowerful 2 sine a strong link between the existene of suh funtions and funtional inequalitieshas been underlined in [Bakry et al., 2008℄ even if suh approah is just an intermediary stepto obtain onvergene to steady regimes for hypo-ellipti systems.At last, the hypo-ellipti framework introdues additional diÆulty whih mainly onernsthe existene and regularity of Ptpz0, .q where z0 is the initializing point of the proess attime t � 0. The answers are generally given by the use of Hormander works and his fa-mous sum of squares theorem. From the pioneering works of [H�ormander, 1967℄, we an �ndlots of theoretial advanes that ome from partial di�erential equation suh as the works of[Kohn, 1978, Tr�eves, 1980℄, or from Malliavin alulus (see e.g. [Kusuoka and Strook, 1987,Cattiaux, 1992, Hairer, 2011℄).In a similar way, under ontrollability results, it is possible to obtain some sharp estimationsof Ptpz0, .q using Malliavin alulus as pointed by [Delarue and Menozzi, 2010, Bally and Kohatsu-Higa, 2010℄or funtional Harnak inequalities (see e.g.[Pasui and Polidoro, 2006, Polidoro, 1997℄). Ofourse, these ontrollability assumptions are not so muh surprising sine they are alreadyneessary to obtain some positivity result for the semi-group using the Support theorem of[Strook and Varadhan, 1972℄. One should also refer to [Ben Arous and L�eandre, 1991℄ whihstates a neessarily and suÆient ondition under an assumption of boundedness of the driftoeÆients for suh positivity.

Contributions In our work [15℄, we provide some stability result for average gradient di�usionsystems whih are desribed by equations (1.12). Under rather tehnial assumptions on U (Ushould mainly be onvex for large |x| with a growing assumption Upxq{|x| Ñ �8), we show that2. The most one ? 14



the asymptoti behaviour of the proess de�ned through (1.12) relies prinipally on the longtime behaviour of rptq � 9kptq{kptq. In partiular, we prove the stability of suh proess whenthe memory of the proess is not too long, and oppositely that the proess should explode whenthe memory is too large.Main diÆulties onern �rst the hypo-elliptiity of (1.12) (thus its ontrollability), and alsoits stability whih relies on the onstrution of a non-trivial Lyapunov funtion that enable tobound the proessus both in position and speed. At last, it is possible to obtain onvergene ratesin total variation of the oupation measures invoking Lyapunov type argument assoiated toregularity estimates of the semi-group and using the approah developed by[Down et al., 1995℄.These rates are quite expliit thanks to the reent works of [Dou et al., 2009℄. I will detail in4.2 the study of equations (1.11)-(1.12).
1.4.3 Link with kinetic Fokker-Planck equationsThe averaged gradien di�usion written on the oupled form (1.12) is from an aestheti pointof view rather similar to the Fokker-Plank kineti equation#

dXt � Vtdt.
dVt � p�∇UpXtq � Vtqdt� σdBtdt. (1.13)There is yet a signi�ant di�erene between two suh proesses sine onerning Fokker-Plank kineti proesses (1.13), the stationary measure is expliitely known although no formulais available for the averaged gradient system (exept in que quadrati ase Upxq � a|x|2). In suhpartiular ase (1.12) is a Gaussian proess and one an easily identify its stationary measure.Nevertheless, equations (1.12) and (1.13) do not seem to be equivalent at one glane.Sine the deterministi proess (1.9) possesses interesting optimizing properties and that iswhy we were lead to study a noisy version by a Gaussian noise (whih will be arbitrarily small inthe sequel). More thant the stability of the averaged gradient system, the exat omputation ofthe  L2 norm an be very instrutive to understand whether if (1.12) an be ompared positivelyto other stohasti optimisation methods.

Contributions In [15℄, we were able to give only partial responses on the onvergene rate tosteady regime (only rate within total variation distane are obtained), thus we study in [19℄ theexat omputation of the L
2 norm and of the spetrum of the kineti Fokker-Plank operatorwhih desribes (1.13) sine these omputations are a little bit easier than those onerning(1.12). We �rst ompute exatly the L

2 norm in speial ase of potential U in the simplest ase
U � ax2{2, and U � 0 on the torus T � r0; 1s for proesses desribed by (1.13). Our approahis di�erent from the one used in [Dolbeault et al., 2009℄ or [Villani, 2009℄ whih use a di�erentdeomposition of the kineti Fokker-Plank operator Suh results are detailed in paragraph 4.3.
1.4.4 Averaged diffusion with small parameterThe exat omputation of L

2 norm in the above paragraph is not so innoent sine ourobjetive is indeed to develop an optimization algorithm based on the averaged gradient systemto optimise U. This optimisation ould be dedued from a simulated annealing using either(1.12) or (1.13) by letting σptq ÞÝÑ 0 as t ÞÝÑ �8. In the sequel, sine σ will beome small,we will hange our notation and denote him σ � ǫ to stress the small size of the di�usionparameter. 15



Simulated annealing algorithm Conerning the standard ellipti di�usion in R
n :

dXt �a
ǫptqdBt �∇UpXtqdt, (1.14)it is well known that suh proess an ahieve a global minimization of (see [Milo, 1992℄ forinstane) provided ǫptq ÞÝÑ 0 with a suitable rate. The eÆieny of suh algorithm dependsboth on1. the onvergene rate of Ptpz0, .q towards its steady regime µǫ when ǫ is onstant2. the onvergente rate of µǫ towards µ8 when ǫ ÞÑ 0.Espeially, this balane between these two onvergene rates enable to �nd an optimal dereasingrate for the simulated annealing proess (the more the proess onverges rapidly to its steadyregime when ǫ is onstant, the more we an fast derease ǫptq ÞÝÑ 0 and the best is thealgorithm).More preisely, when ǫ is onstant, one an expet in the di�usive ellipti ase that theproess onverges exponentially fast to the steady regime µǫ so that

VarµǫpPǫt pfq � µǫpfqq ¤ expp�ApǫqtqVarpµǫpfqq, (1.15)where Apǫq plays a key role in the alibration of the temperature sheme t ÞÑ ǫptq. Indeed,[Milo, 1992, Chiang et al., 1987, Royer, 1989℄ show that there exists an optimal d� ¡ 0 suhthat ǫptq � c{lnptq ensures the onvergene of the simulated annealing (1.14) when c ¡ d�towards the global minimum minRn U. This onstant d� orresponds to the elevation of U (see[Milo, 1992℄ for a preise de�nition of d�) but is not known during pratial simulations. Hene,it is neessary to obtain a estimation of d� for whih admissible temperature shemes will bebuit, thus the alibration of a suÆiently large Apǫq is important for the simulated annealingproedure.Considering now the approah of [Bakry et al., 2008℄, it is proved that as soon as someappropriate Lyapunov funtion exists, one an �nd a Poinar�e inequality with a onstant CPwhih is not optimal 3. Moreover, onvergene rates an bounbed by
VarµǫpPǫt pfq � µǫpfqq ¤ expp�2{CPtqVarpµǫpfqq.Suh approah an provide an admissible valule for the simulated annealing but this valueseems to be learly not optimal sine CP is too large. At last, it would be possible to diretlystudy the asymptoti behaviour of the spetrum of the Markov operator Lǫ that desribesthe evolution of (1.14) for small values of parameter ǫ (see for instane setion 7 of hapter6 in [Freidlin and Wentzell, 1984℄ for ompat manifolds that ontains a stable equilibrium ofthe dynamial system). Of ourse, when ǫ ÞÝÑ 0, the smallest eigenvalue of �Lǫ behaves asexpp�∆V{ǫ2q where ∆V is an expliit onstantthat depends on the quasi-potential deduedfrom the large deviations of (1.14). But again, this onstant is not aessible from a pratialpoint of view sine it requires the whole knowledge of U and the alibration of ǫptq annot bededued online from this approah.

Second order models Rather than try to estimate almost unsuessfully the former onstant
Apǫq (also denoted dÆ in some works) in inequality (1.15), it is possible to think about someother models instead of �rst order lassial ones suh as (1.14) and build another di�usion whihnaturally onverges to steady regime faster, and thus for whih the onstant ~Apǫq is ertainlygreater.3. in general, CP is too large 16



It is tempting to use seond oder models sine they may possess larger ability to explorethe state spae (ph�enomenon already observed in the deterministi setting for the dynamialsystme (1.9)). Moreover, [Diaonis et al., 2010b℄ have proved that one an reah with seondorder Markov hains better onvergene rates to steady regime using a non symetri evolution,whih is also the ase in Fokker-Plank equations and averaged gradient system. In [20℄, westudy the behaviour of averaged gradient di�usion with small parameter. The �rst step is toidentity a lear asymptoti of the invariant measure νǫ of (1.11) when ǫ beomes small sinethis behaviour guide the onvergene of the proess (1.11) to global minima of U. 4In[20℄, we study the ase of the seond order model (1.11) whih is restrited to be homoge-neous, whih is the simplest ase, with memory maps hptq � kptq � eλt and we obtain a LargeDeviation Priniple when ǫ Ñ 0 for pνǫqǫ¥0. Exept the quadrati ase Upxq � ax2{x, thereis no expliit formula of νǫ and thus the quasi-potential whih should derive from the LargeDeviation Priniple may be unlear. We provide in[20℄ suÆiant onditions on the potential U(and ertainly not optimal ones) for whih νǫ is onentrated on global minimum of U. Theseworks are desribed in paragraph 4.4.

4. In a sense, it would have been muh more simpler to study the kineti Fokker Plank equations sine thestationary measure assoiated to (1.13) is expliit mǫpx, vq9e�rUpxq�v2{2s{ǫ2 and when ǫ ÞÝÑ 0, the behaviour ofthe marginal on x is obvious using the Laplae. 17
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Chapitre 2

Statistical modelling and high
dimensional estimationIn this hapter, we desribe some advanes on estimation problems when samples pXi, Yiqi�1...nare available, where eah Xi is desribed by p features whih form a ditionnary D � pg1, . . . , gpq.Random variables Yi are either a label of the lass in whih Xi is living for lassi�ation task,or simply an element of Rd for regression problems. Our study will handle the ase p ¡¡ n forwhih standard estimation methods are not eÆient owing to the urse of dimensionality.
2.1 Stochastic algorithm for feature selectionsIn the supervised lassi�ation framework, we onsider any lassi�ation algorithm denoted
A in the sequel and we aim to �nd a best subset of features, i.e. G � D, suh that the preditivepower of A using features of G is ! optimal ".
2.1.1 Model descriptionWe will denote ÂG,n the lassi�ation produed by the algorithm A using samples pXi, Yiqi�1...nand ative variables G. The predition error of ÂG,n is

qpÂG,nq � PpX,YqrÂG,n � Ys,and an ideal approah would be to selet
GÆ � arg min

G�D
qpÂG,nq. (2.1)Of ourse, suh optimization (2.1) is numerially D. Moreover, the joint law pX, Yq is unknownand it is impossible to exatly reover q, only estimations using the training set are available andwe will denote suh estimationq̂ (see [6℄ for more details on the bootstrap strategy to omputesuh estimation).Our suboptimal approah to study (2.1) is to weight eah elements of D using a disreteprobability P whih will be the objet to reover. Let us denote an integer k smaller than n,for a given P we de�ne a mean energy that quanti�es the error of A when features are sampledaording to P :

EpPq � ¸
GPDk

q̂pÂG,nqPbkpGq. (2.2)When P is lose to minimizer of E , the disrete probability put large weights on features in
D whih enable A to perform well and thus these features are meaningful for the lassi�ation19



task. It is thus natural to attempt to minimize E with respet to P. Remark that indeed E is a
k-th order polynomial on variable P but its oeÆient are unknown.
2.1.2 Gradien descent algorithmWe propose in[6℄ to minimize E using a sequential strategy of gradient desent, whih maybe perturbed by a small di�usive term.The general sheme is desribed by Figure2.1.pXi, YiqiP1...n Ditionnary DSample de G P Dk following P

bkCompute q̂pÂG,nq Update weights P

Figure 2.1 { Iterative sheme to learn P.For any point P that belongs to the simplex SD of disrete probability measures on D, onean ompute the eulidean gradient of E :�g P D ∇EpPqpgq � ¸
GPFk

CpG, gqPbkpGq
Ppgq q̂pÂG,nq, (2.3)where CpG, gq is the number of ourrenes of g in G. If we denote πD the projetion on thesupporting hyperplane HD of SD, suh optimization algorithm E may be as follows :

dPt � �πD p∇EpPtqqdt. (2.4)The small parameter di�usion assoiated to this gradient desent would be de�ned as the follo-wing onstrained stohasti di�erential equation
dPt � �πD p∇EpPtqqdt� σDdBt � dZt. (2.5)We will denote πS the projetion on the simplex SD sine this projetion is neessary to buildour learning algorithm. In equation (2.5), pBtqt¥0 is a Brownian motion on R

p whose ova-riane matrix σD is de�ned through the projetion on HD and dZt is a jump proess whihonstrains the proess pPtqt¥0 to be a disrete probability distribution on D. We won't pro-vide enough tehnial details to properly state existene and uniqueness of solutions of (2.5).These results are given in [5℄ and intensively use the Skorokhod map desribed for instanein[Dupuis and Ramanan, 1999℄.
2.1.3 Stochastic gradient approximationOur idea is to use only one omputation of q̂pÂG,nq at eah step of the algorithm, this pointis not so obvious sine equation (2.3) shows that the exat omputation of ∇EpPq requires toexplore all subsets if size k in D. Indeed, by looking arefully to the nature of E and ∇E , it ispossible to observe that

πD p∇EpPqq � EP

�
πD

�
CpG, .qq̂pÂG,nq

Pp.q 
�
.20



It is then possible to produe two stohasti algorithms whih approah the behaviours of (2.4)and (2.5), and it makes possible to learn some optimal P. Let be given some positive stepspαjqjPN suh that pH0q �8̧
j�1 αj � �8 and Dν ¡ 0 �8̧

j�1α1�νj   �8,we an de�ne a learning algorithm of pPjqj¥0 (desribed by Algorithm (1)).
Algorithm 1 Feature seletion using a stohasti gradient algorithm (approximation of (2.4)).
Require: Ditionary D, Algorithm A, Dataset pXi, YiqiP1...n, integers k Ps0;nr and J.
Ensure: P minimiser of E

P0 � UD, uniform law on D.
j� 0

while j   J doSample Gj in Dk aording to P
bk
jCompute ÂGj,n as well as an estimation of the lassi�ation error q̂pÂGj,nqUpdate the weights Pj�1 as�g P D Pj�1pgq � πS � πD �

Pj � αj�CpGj, .qq̂pÂGj,nq
Pj

�� pgq
j� j� 1

end whileIf we onsider now the aÆne time interpolation pPinterpt qt¥0 of pPjqj¥0 at times
τj �

i̧¤jαi,it is possible to use standard results of Robbins-Monro method and show the following result(see e.g.[Kushner and Yin, 2003℄ or [Benaim, 1996℄) :
Theorem 2.1.1 (Convergence of OFW (Optimal Feature Weighting)) The interpola-ted proess pPinterpt qt¥0 is an asymptoti pseudo-trajetory of the di�erential equation (2.4).Moreover, the algorithm onverges to a loal minimum of E.It is also possible to obtain a similar result for the di�usion approximation of the stohastialgorithm (these results may be found in[5℄). This more exploratory algorithm is desribed byAlgorithme (2).Again, if we denote p�Pinterpt qt¥0 as the ontinuous time aÆne interpolation of p�Pjqj¥0 attimesτj, lassial methods of stohasti approximation of[Kushner and Yin, 2003℄ or [A. Benveniste and Priouret, 1987℄lead to a tightness result for p�Pinterpt qt¥0 and an identi�ation proedure shows the followingresult.
Theorem 2.1.2 (Convergence of the diffusive OFW) The stohasti proess p�Pinterpt qt¥0weakly onverges towards the unique invariant measure of (2.5). It is also the ase forp�PjqjPN.The main tehnial diÆulty of the proof relies on the underlying tightness result when aprojetion on the simplex SD ours.Figure2.2 represents as an example some subsets of features seleted by using OFW on afaes dataset whih is predited by a SVM algorithm.21



Algorithm 2 Feature seletion using the stohasti di�usive approximation of (2.5).
Require: Ditionary D, Algorithm A, Dataset pXi, YiqiP1...n, integers k Ps0;nr and J, variane
σ2.

Ensure: �P minimiser of E�P0 � UD, uniform law on D.
j� 0

while j   J doSample Gj in Dk aording to �PbkjCompute ÂGj,n as well as an estimation of the lassi�ation error q̂pÂGj,nqSample p independent random variables pξjpgqqgPD � N p0, 1qbpUpdate the weights Pj�1 as�g P D �Pj�1pgq � πS � πD ��Pj � αj�CpGj, .qq̂pÂGj,nq�Pj ��?
αjσξj

� pgq
j� j� 1

end while

Figure 2.2 { Main binary edge detetors seleted by OFW on a fae reognition problem.
2.2 Sequential stochastic algorithm for design of experimentsIn this paragraph, we desribe a new stohasti method for building optimal design of ex-periments in order to �nd ! good "adaptive designs for the statistial regression problem. Forsake of simpliity, we will only onsider the ase of an unknown funtion η whih is de�ned on
Ω � r0; 1sd and we aim to produe a sequential method that �nds a �nite number of pointssuitable to build a regression of η as good as possible on Ω. In the sequel, we desribe our ap-proah with d � 1 but this an be easily generalizes to larger dimension, as well as the assoiatedtheoretial results. 22



2.2.1 FrameworkWe assume that η belongs to an homogeneous Besov spae with unknown regularity s 1. Weaim to predit η as a �nite linear ombination of elements taken in the ditionary pΛj,kqjPN,k�0...2j�1 �
D. Here, D is a multi-resolution analysis expanded on a wavelet deomposition and we observeonly noisy version of the signal η through the omputation of f

fpxq � ηpxq � σξpxq, (2.6)where ξpxq is a normalized Gaussian noise and σ2 is the variane of this noise whih is unknown.We want to �nd optimal points of measurement in Ω (2.6) for whih the predition of η will beoptimal.Our method proposes to use iteratively some simple linear models omputed on a smallsubsets of elements in D and the main diÆulty at step n is to �nd an optimal design xnomputed with a sub-ditionary Dn. For some rather trivial reasons linked to the framework ofdesign of experiments, 2, we impose that
xn�1 � xn Y tζn�1u. (2.7)We assoiate to eah linear model η̂xn,Dn a riterion whih measures the quality of approximationand that orresponds to the mean integrated square error

Jpη̂xn,Dn , ηq � »
Ω

Erη̂xn,Dnpuq � ηpuqs2du.
η may be deomposed on Dn and its orthogonal and one an write the above riterion followinga bias variane tradeo� :

Jpη̂xn,Dn , ηq � }Eη̂xn,Dn � ηDn}2Ω � }ηDc
n
}2Ω � σ2Tr�µ1,1pDnqqM�1

xn,Dn

	
.Event if the bias term is intratable, it is possible to ompute a pessimisti estimation followinga minimax approah that depends on a parameter τ ¡ 0 whih quanti�es the size of the biasthat annot be ompressed using only elements of Dn}Eη̂xn,Dn � ηDn}2Ω � }ηDc

n
}2Ω ¤ sup}ν}2

Dc
n
¤τ }Eη̂xn,Dn � νDn}2Ω � }νDc

n
}2Ω :� BÆxn,Dn,τ.These simple fats yields onsidering the balaned minimax riterion

JÆpη̂xn,Dn , ηq :� BÆxn,Dn,1 � λTr�µ1,1pDnqqM�1
xn,Dn

	
, (2.8)where λ � σ2τ�2 is a parameter whih penalizes the variane of the estimation.

2.2.2 Algorithm of sequential design of experimentsIn [4℄, we propose to use a sequential algorithm that builds xn and upgrades Dn : xn aimsto ontrol the variane of estimation although Dn optimizes the bias of the linear model. Theomputation of ζn�1 (see equation (2.7) relies on the optimization of JÆpη̂xn,Dn , ηq and Dn�1 isobtained by the addition or deletion of one sons to Dn following a Metropolis-Hastings strategyso that |Dn�1∆Dn| � 1. This method is desribed in Algorithm 3.1. Remark that in our framework, the "adaptive" nature of the algorithm has no ommon point with thelassial sense of adaptive estimation in mathematial statistis.2. Eah measurement of η is onsidered as a ostly task and we do not want to throw out one measurementone it has been done 23



Algorithm 3 Sequential design of experiments algorithm.
Require: Ditionary D0, parameter λ P r0;�8s, number of available measures n.
Ensure: xn and DnInitialize x0 by minimizing (2.8).Compute f through measurements (2.6) and run a linear model η̂x0,D0

.
j� 0

while j   n doUpdate Dj�1 following the random hoie{ Addition of one son or parent of the most meaninful element of Dj{ Deletion of the less meaningful element in Dj{ Leave Dj unhangedCompute ζj�1 by the minimization of (2.8).Measure fpζj�1q through (2.6) and upgrade the linear model η̂xj�1,Dj�1
.

j� j� 1
end whileThe main idea is thus to ouple a forward/bakward stohasti feature seletion to an adap-tive hoie of design of experiments. The preise desription of the transition Dj ÞÑ Dj�1 is alittle bit bothersome and an be found in [4℄ where numerous details are given about this up-grade. Indeed, suh upgrade depends on the former measure and the performane of the linearmodel η̂xj�1,Dj�1

at step j.
2.2.3 ResultsIn the former algorithme, the optimization step to ompute ζj�1 is the main numerialdiÆulty. In general, no expliit loalization result is available to minimize (2.8), even in anadaptive sequential approah. In [4℄, we show a positive loalization result whih is almostexpliitto ompute ζj�1 in the restritive ase when only the variane term is present in theriterion (2.8), thus λ is equals to �8 and for the very speial ase of the triangle Shauderbasis. This result is desribed by the following theorem.
Theorem 2.2.1 For any sub ditionary ~D of D � pΛj,kqj�0����8,k�0...2j�1, let be given apreliminary design of experiment x, then the optimal design xY ζ for the riterion

Tr
�
µ1,1p ~DqM�1

xYζ, ~D	is obtained when ζ belongs to the set of ritial points of ~D, i.e.
ζÆ P YΛP ~D arg maxΛ.This theorem is very important from a numerial point of view sine it enables to build xj�1using at the most |Dj�1| omputations of the trae of the information matrix.Moreover, when Dj remains �xed all along the iteration of the algorithm, it is possible toshow a onsisteny result on the oeÆient of the linear model for any multi-resolution analysis.

Theorem 2.2.2 For any sub ditionary ~Dof D � pΛj,kqj�0����8,k�0...2j�1, if η � η ~D �pη� η ~Ddenotes the deomposition of η on ~D, when λ � �8, there exists C ¡ 0 suh that}η ~D � η̂xn, ~D} ¤ C logn
n
.24



Even if the loalization property (Theorem 2.2.1) onerns only a speial multi-resolutionanalysis, it is still possible to use other basis suh as Meyer wavelet basis. On a partiularexample, one should notie the striking good performanes of the algorithm as pointed inFigure (2.3) sine only about ten points are suÆient to ath the main information in η. In[4℄, we also provide a numerial omparisons with penalized methods (lasso) or thresholding inwavelet basis whih stand that our method behave well omparing to some other tehniques.

Figure 2.3 { Regression obtained by the sequential algorithm on the ! Motoryle " datasetwith 5 points (a), 15 points (b), 25 (), 35 (d), 45 (e), 55 (f). Continuous urve : true signal,Dashed urve : interpolation with linear model on sub ditionary of Meyer basis.
2.3 Multivariate boosting, application to gene network recoveryAs pointed in the introdutory paragraph, the gene network estimation an be modelled asa multivariate regression. Let be given an Hilbert spae H, we aim to approah f � pf1, . . . fmq P
Hbm :� Hm using a sequene pGkqk¥0. In this view, a ditionary of size p denoted D ontains ele-ments of H and satis�es SpanD � H. In order to be onsistent with real statistial appliations,25



the family D is assumed to be non orthogonal in H.
2.3.1 Brief description of Boosting algorithms

Deterministic setting L
2-Boosting deterministi algorithms work as follows : the sequene

Gk of approximation of f is initialized with G0 � 0 and Gk is dedued from Gk�1 by an improve-ment of predition using a suitable unique preditor of D. Of ourse, one needs to de�ne exatlya suitable riterion to selet the orret feature and the way the predition is improved. The
L
2-Boosting method is desribed in Algorithm 4 for the partiular ase of the Weak GreedyAlgorithm even if there exists a lot of variations around this boosting method.

Algorithm 4 Weak Greedy Algorithm (Cadre d�eterministe)[DeVore and Temlyakov, 1996℄
Require: Ditionary D, Funtion f P H to approah.
Ensure: Shrinkage parameter ν Ps0, 1s, Maximal iteration NPreditor G0 � 0H and Residual R0 � f.
k� 0

while k   N doChoose ϕk P D whih is suÆiently orrelated with Rk |xRk, ϕky| ¥ νmaxgPD |xRk, gy|Update the predition
Gk�1 � Gk � xRk, ϕkyϕkand the residuals

Rk�1 � f�Gk�1 � Rk � xRk, ϕkyϕk
k� k� 1

end whileOf ourse, the eÆieny of suh algorithms depends on the ! size " of f. We an �nd inthe works of [DeVore and Temlyakov, 1996℄ the onvergene rate of Gk towards f, the size offuntion f is given through the onstant B in the result below :
Theorem 2.3.1 ([DeVore and Temlyakov, 1996]) Let B ¡ 0 and assume that f P ApD, Bqwith

ApD, Bq � $&%f �
ģjPD ajgj suh that }a}1 ¤ B,.- .There exists CB that only depends on B for whih the residual Rk satis�es}Rk}H ¤ CBp1� ν2kq� ν

2p2�νq .The e�et of size of the shrinkage parameter ν is to slow down the onvergene rate whih isthus optimal when ν � 1 where one reovers an approximation rate of k�1{6. Event if ν   1seems useless in the deterministi framework, it is indeed an important feature of the algorithmfor its appliation in a noisy setting as pointed in the next paragraph.
Random framework The approah of [B�uhlmann, 2006℄ is to show the stability of the L

2-Boosting in a noisy setting when one observes a n-sample pX1, Y1q, . . . pXn, Ynq i.i.d. where�i P t1 . . . nu Yi � fpXiq � ǫi,26



with the assumption that f still may be deomposed in SpanD. If one denotes H the Hilbertspae L
2pPq where P is the unknown law of the design X, we annot aess with our n sampleto some empirial features of f. We de�ne the empirial salar produt and norm as�ph1, h2q P H2 xh1, h2ypnq � 1

n

ņ

i�1h1pXiqh2pXiq et }h1}2pnq � xh1, h1ypnq.The WGA may be extended to a noisy setting and is desribed by Algorithm5 3.
Algorithm 5 Weak Greedy Algorithm (Noisy setting)[B�uhlmann, 2006℄
Require: Ditionary D, pXi, YiqiPt1...nu
Ensure: Shrinkage parameter ν Ps0, 1s, Maximal iteration NnPreditor G0 � 0H and Residual R0 � f.
k� 0

while k   Nn doChoose ϕk P D whih is suÆiently orrelated with the ! observed "residual :��xY �Gk, ϕkypnq�� ¥ νmax
gPD ��xY �Gk, gypnq��Update the predition

Gk�1 � Gk � xY �Gk, ϕkyϕkand the theoretial unobserved residuals
Rk�1 � Rk � xRk, ϕkypnqϕk � xǫ,ϕkypnqϕk.

k� k� 1
end while

2.3.2 Boost-Boost Algorithm for multivariate regression (deterministic case)

Generalization of [Lutz and Bühlmann, 2006] In the multivariate setting, there are moordinatesf to predit and a natural extension of the former algorithm may onsider (for ins-tane in the deterministi ase) a new sequene of preditors/residuals initialized with G0 �
0Hm , R0 � f and whose iteration at step k aims to �nd ik P t1 . . . mu and ϕk P D suh that���xRikk , ϕky��� ¥ ν max

iPt1...mu,gPD ���xRik, gy��� .Suh hoie of oordinate and preditor has been onsidered in [Lutz and B�uhlmann, 2006℄ in anoisy setting. The main advantage of suh extension is that it shortens theoretial ompliationsonerning both deterministi and noisy ases whih are thus simple adaptations of the univa-riate boosting. Indeed, suh hoie for ik does not take into aount the size of the residuals oneah oordinate. This may a�et the eÆieny of the boosting algorithm in the noisy settingsine we annot use an in�nite redit of iterations to predit eah oordinate : the maximaliteration Nn theoretially depends on the size n and in pratial situations one stops the itera-tions following AIC. It is thus important to well hoose the oordinate to predit ik to obtainan eÆient algorithm.3. Let us stress a minor mistake in [B�uhlmann, 2006, Lutz and B�uhlmann, 2006℄ where theoretial residuals
Rk � f � Gk (whih are unobserved) are used to de�ne the sequential preditors ϕk instead of the empirialresiduals Y �Gk whih are only available to de�ne the algorithm.27



Boost-Boost algorithm for multivariate regressions We develop for multivariate regres-sion a booting algorithm whih spreads its e�ort on all the oordinates of Hm all along the itera-tions in order to avoid the lak desribed above onerning the approah of [Lutz and B�uhlmann, 2006℄.We propose to selet the oordinate ik with two di�erent methods whih are desribed in Algo-rithm 6.
Algorithm 6 Boost-Boost Algorithm (Deterministi ase)[17℄
Require: Ditionary D, funtion f P H to approah.
Ensure: Shrinkage parameters µ, γ and ν in s0, 1s, Maximal iteration NPreditor G0 � 0H and Residual R0 � f.
k� 0

while k   N doCoordinate ik to boost}Rkpfikq}2 ¥ µ max
1¤i¤m}Rkpfiq}2 [L2 norm of the residuals℄ (2.9)or

p̧

j�1xRkpfikq, gjy2 ¥ µ max
1¤i¤m p̧

j�1xRkpfiq, gjy2. [Sum of orrelations with D℄ (2.10)Choie ϕk P D suÆiently orrelated with the residual Rk : |xRk, ϕky| ¥ νmax
gPD |xRk, gy|Update

Gikk�1 � Gikk � γxRikk , ϕkyϕk and �i � ik Gik�1 � Gik.Update the residuals
R
ik
k�1 � Rikk � γxRikk , ϕkyϕk and �i � ik Rik�1 � Rik.

k� k� 1
end whileHene, these algorithms proeed as follows : we �rst seek the best oordinate ik (the one whihis the most informative for the predition) and then use the best preditor ϕk for this hoie ofoordinate. It is still possible to obain a onvergene result for the boost-boost algorithm basedon the L

2 norm of the residuals as de�ned by (2.9). Again, this rate depends on the size of fand of the shrinkage parameters µ, γ and ν introdued in Algorithm 6.
Theorem 2.3.2 (Boost-Boost Algorithm (deterministic case and L

2 norm of residuals))Let f � pf1, . . . fmq P Hm suh that all oordinates fj P ApD, Bq. Then, for all k ¥ m, Algo-rithm 6 whih uses (2.9) onverges : there exists CB ¡ 0 whih only depends on B suhthat�i P t1, . . . ,mu, }Rkpfiq} ¤ µ� 1
2ν

� νp2�γq
2�νp2�γq pγp2 � γqq� �νp2�γq

2p2�νp2�γqq CB� k
m


� νp2�γq
2p2�νp2�γqq

.The proof is a tehnial extension of the proof of [DeVore and Temlyakov, 1996℄, the ideais to remark with a large number of iterations, one oordinate is suÆiently hosen and thisseleted oordinate through (2.9) enable a global ontrol of the residuals.About the seond boost-boost algorithm that uses the sum of orrelations with D to �nd ik(equation (2.10)), it may also be analysed with an assumption on the oherene of the ditionary28



D de�ned as
ρ � sup

i�j,giPD,gjPD |xgi, gjy|,whih may be related to the S sparsity of eah fj :
fj � p̧

i�1ajigi with }aj.}0 ¤ S.It is then possible to obtain the following result.
Theorem 2.3.3 (Boost-Boost algorithm (deterministic case, sum of correlations with D))Let f � pf1, . . . fmq P Hm suh that eah oordinate fj P ApD, Bq is S sparse, we assume mo-reover that ρpp1 � ν�1qS � 1q   1. Then there exists Cρ,S,B whih depends only on the size
B and the oherene ρ suh that for all k ¥ 1,�i P t1, . . . ,mu, }Rkpfiq} ¤¤ µ� 1

2ν
�νp2�γq
2�νp2�γq pγp2� γqq �νp2�γq

2p2�νp2�γqq Cρ,S,B � k
m


� νp2�γq
2p2�νp2�γqq

.Some link between the oherene of D and the sparsity of f has already been pointed for theapproximation of f using Boosting algorithms by several works ([Temlyakov and Zheltov, 2011,Tropp, 2004℄ for instane). More preisely, the assumption ρp2δ� 1q   1 (obtained when ν � 1for instane) ensures that all along the iteration of the boosting algorithm, the residual Rk is atthe most S sparse. In fat, the sparsity of the residual is non inreasing all along the iterations ofthe boosting and the Boosting algorithm does not use some "wrong" elements of the ditionary.The importane of suh assumption here is thus not really surprising.
2.3.3 Boost-Boost Algorithm for multivariate noisy regressionsIt is still possible to adapt the former boost-boost methods desribed by Algorithm 6 in therealisti noisy setting. Using the notations introdued in paragraph 2.3.1 onerning empirialdata, the boost-boost method is developed by Algorithm7.One should remark that for the L

2 norm of residuals, no shrinkage an be used for µat leastfrom a theoretial point of view. It is still possible to show the statistial onsisteny followingthe ideas given in [B�uhlmann, 2006℄. The main idea is to onsider a ! phantom "algorithm whihwould work in a deterministi setting with the several seletions made by its stohasti version.Note that indeed, one may onsider a ditionary D whih is omposed of a set of variables pnwhih may inrease with the number of samples n in the dataset. Several assumption are neededto obtain statistial onsisteny.The �rst assumption is a tehnial hypothesis both on the struture of the design X andthe ditionary D. This tehnial ondition is neessary to obtain uniform Law of Large Numberresults.
Assumption 1 (HD) For any hoie of preditor g in the ditionary D, the random va-riable gpXq has a normalized seond order moment and is essentially bounded�j P t1 . . . pnu ErgjpXq2s � 1 and sup

1¤j¤pn,nPN}gjpXq}8   8.The next hypothesis de�nes the exat very large dimension setting where it is possible toestimate something in the model as soon as log p    n.29



Algorithm 7 Boost-Boost algorithm (random ase)[17℄
Require: Ditionary D, funtion f P H to estimate.
Ensure: Shrinkage parameters µ, γ and ν in p0, 1s, Maximal iteration NnPreditor Ĝ0 � 0H and Residual R0 � f.
k� 0

while k   N doChoie of the oordinate ik to boost}Y � Ĝikk }2pnq ¥ max
1¤i¤m}Y � Ĝik}2pnq [ L2 norm of the residuals℄ (2.11)or

p̧

j�1xY � Ĝikk , gjy2pnq ¥ µ max
1¤i¤m p̧

j�1xY � Ĝikk , gjy2pnq. [Sum of orrelations with D℄ (2.12)Choie of ϕk P D suÆiently orrelated with the empirial residual Yik � Ĝikk :���xYik � Ĝikk , ϕky���pnq ¥ νmax
gPD ���xYik � Ĝikk , gy���pnqUpdate the preditor

Ĝ
ik
k�1 � Ĝikk � γxRikk , ϕkyϕk et �i � ik Ĝik�1 � Ĝik.Update the unobserved residuals

R
ik
k�1 � Rikk � γxRikk , ϕkypnqϕk � xǫik , ϕkypnqϕk et �i � ik Rik�1 � Rik.

k� k� 1
end while

Assumption 2 (Hpn
) The number of regressors pn in D satis�es

pn � O
nÑ�8�exppCn1�ξq	 ,for some ξ Ps0, 1r and a onstant 0   C   8.The main assumption omes from a sparse struture of the signal f to reover. It is desribedby the next hypothesis and is obviously true as soon as the sparsity index remains �xed when

n is growing to �8.
Assumption 3 (Hf) The funtion f � pf1, . . . , fmq to predit is spanned in Hm�j P t1 . . . mu fj � pņ

i�1γpjqi gjand eah oordinate fj is S sparse with S independent from n, whih implies that thesequene pγpjqi qnPN,1¤j¤m,1¤i¤pn satis�es�1 ¤ j ¤ m sup
nPN pņ

i�1 |γpjqi |   8.30



At last, the next hypothesis is on the noise struture : we must have a suÆiently large orderbounded moment to use thresholding argument oupled with Bernstein's inequality to sharplyontrol the di�erene between x, y and x, ypnq.
Assumption 4 (Hǫ) The random variables whih model the noise pεℓqℓ�1...n are i.i.d. en-tered in R

m and of ovariane Idm, independent on the pXℓqℓ�1...n suh thatsup
1¤j¤m,nPNE|εpjq|s   8,for any s ¡ 2

ξ
where ξ is given in assumption 2.This assumption is satis�ed as soon as the tail of the noise distribution is of Gaussian or Laplaenature.At last, the next assumption is on the magnitude of the ative oeÆients in view to obtaina onsisteny result for the support reovery problem.

Assumption 5 (HS) The ative oeÆients in the S sparse representation of eah oor-dinate fi satisfy : |γpjqi | ¥ n�κξ,with κ   1{2.We now state the support reovery result of the Boost-Boost algorithms.
Theorem 2.3.4 (Boost-Boost support recovery) The next three points are satis�ed withlarge probability :

iq Suppose that assumptions 1-4 are ful�lled (pHDq, pHpn
q, pHf q, pHǫq) ,and that eahoordinate fj is S sparse with ρpp1 � ν�1qS � 1q   1. Then there exists a maximal expliitvalue γ� of the shrinkage parameter γ and a growing number of stopping iterations pknqnPNsuh that for any 0   γ   γ�, the Boost-Boost algorithm based on the L

2 norm of residualsonly selets "good" oeÆients.
iiq Assume moreover that the hypothesis (5) HS holds, then there exists a maximalvalue κ�pγ, Sq suh that if κ ¤ κ�pγ, Sq, Boost-Boost algorithm reovers the support of f.
iiiq If one supposes the strongest hypothesis that pn � o

nÑ�8 p?nq, the result still holdsfor the Boost-Boost algorithm based on the sum of orrelations with D (for a di�erentvalue of γ�).This last result were known for other kind of sparse reonstrution algorithm. The threshold
n�ξ{2 orresponds to the minimal value of the amplitude of ative variables. Below this threshold,it seems impossible to onsistently estimate the support of f. When suh hypothesis is notsatis�ed, it is however to show that only "good" variables are built by the Boost-Boost algorithm.This point is not true in general for other sparse algorithms and is provided here by the shrinkingparameter γ whih allows to obtain thus a slightly stronger result. Note that for the Boost-Boostalgorithm based on the L

2 norm of residuals, γ� � 13{18 for instane, and this value is lowerfor the other Boost-Boost algorithm owing to poorer onentration properties of the sum oforrelations with D of residuals.Suh result permits to obtain the next theorem, and we should note that the hypothesis (5)
HS is not yet neessary to obtain suh onsistenies.31



Theorem 2.3.5 (Boost-Boost consistency) Suppose that assumptions 1-4 are ful�lled (pHDq, pHpn
q, pHf q, pHǫq) ,and that eah oordinate fj is S sparse with ρpp1�ν�1qS� 1q   1,then there exists a suÆiently slow inreasing number of iteration pknqnPN whose limit is�8 suh that the Boost-Boost algorithm based on the L

2 norm of residuals satis�es�i P t1, . . . ,mnu, E}f� Ĝknpfq}2 � oP
nÑ�8p1qas soon as γ   γ�. If one suppose the strongest hypothesis that pn � o

nÑ�8 p?nq, the resultstill holds for the Boost-Boost algorithm based on the sum of orrelations with D :�i P t1, . . . ,mnu, E}f� Ĝknpfq}2 � oP
nÑ�8p1q.We should remark that the number of variables may growth exponentially fast with the numberof samples thanks to a uniform law of large numbers and the assumption pHǫq. However, notealso that the number of iterations kn is of a logarithmi order in n. Hene, this result (whihis omparable to the one of [B�uhlmann, 2006℄) is quite weak omparing to other results onpenalized regressions suh as the Lasso. We refer to[17℄ for some tehnial details on the proofof these last theorems.

2.3.4 Numerical resultsWe briey desribe in this paragraph numerial results obtained via boosting algorithmsand refer to [17℄ or [18℄ for further details.The �rst simulation study onerns a toy dataset already used in [Lutz and B�uhlmann, 2006℄.We observe a response matrix Y of size n � m and features are desribed in X whih is a
n � p matrix. The model used to generate data is Y � Xθ � ǫ where ǫ is a Gaussian noise
N p0, Inq. Moreover, some orrelations are introdued between eah pair of variables pgj, gkq(when 1 ¤ j, k ¤ pq so that ρpgj, gkq � 0.9|k�j|. Eah olumn of θ will be s-sparse.The seond simulation studies more preisely the ase of gene network inferene of size p�p(p genes in the network). Eah expression level of the genes is given for the n observationspEiq1¤i¤n P R

p�n. The network is assumed to be self-regulated so that the following model
E � Eθ � ǫ with θ the unknown matrix of regulation we aim to reover. Of ourse, we imposethat the diagonal of θ is null to avoid trivial regression. We also assume that ǫ is a Gaussiannoise N p0, Inq.The last simulation is similar to the �rst one but we use di�erent sparsity index for eahoordinate of θ. Moreover, we introdue signi�antly larger orrelations (�0.9) than the oneswhih are present on the �rst data.The preedent Figures show the evolution of the auray of the algorithms with respetto their power of reovery. Thus, on the absissa, one an see the rate of oeÆients whih arereovered by the methods as well as the ordinate is showing the rate of good preditions. Thus,they present performanes on the support reovery and do not provide any onlusion on the
L
2 error performed by the regressions. One should �nd in [17℄ omplementary results.The two �rst datasets show that in urrent situations, all boosting algorithms behave in asimilar way and their numerial performanes is at the least as good as the ones of lassialmethods suh as Random Forest or Bootstrap Lasso. Moreover, our numerial studies let usthink that Bayesian networks inferene are a little bit less eÆient than the methods used above(this is not shown in the last Figures but may be �nd in [17℄ or [18℄). At last, one should remarkthat the �rst toy dataset is not a large dimensional one sine the size of the feature spae is 40and we observe 50 samples. 32
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Figure 2.4 { Results of 5 methods of sparse regression on the toy dataset of[Lutz and B�uhlmann, 2006℄. We set p � 10, n � 50, m � 4 and the sparsity index s equalsto 2. On the absissa : the reall of reonstrution, in ordinate : the preision.
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Figure 2.5 { Results of 5 methods of sparse regression for the gene network inferene. We set
p � 10 and n � 50. On the absissa : the reall of reonstrution, in ordinate : the preision.In the more extreme ase where orrelations are � 9

10 in the last third dataset (Figure 2.6), weremark that the boost-boost sum of orrelations is quite more eÆient than the two other boos-33
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Figure 2.6 { Performanes of the 3 boosting methods on the third model of regression withhighly orrelated variables with m � 4. Here p � 250, n � 50 as well as m � 4 and s �p30, 100, 100, 100q. On the absissa : the reall of reonstrution, in ordinate : the preision.ting algorithms and spreads the stress of the �rst iterations well omparing to other methods.Moreover, we should note that to keep a satisfatory auray, the algorithm only obtain a reallof 5{100 ( !) but this kind of result is obtained in the framework of the very high dimensionsine n � 50 although the size of the feature spae is of the order of thousand.
2.3.5 Future worksEven though theoretial results seem satisfatory, the numerial abilities of the boostingmethods for very high dimensional setting are a little bit disapointing as soon as the sparsityindex S is not so small (this phenomenon is illustrated by Figure 2.6). This is slightly an expetedfeature of suh methods when we onsider the theoretial results of Theorem 2.3.4 sine weshould have a balane between S, p, n, γ and κ. It would be quite fair to use also some Bayesianinferene approahes to deal with suh problems. One should onsider for instane the reentworks of [Castillo and van der Vaart A., 2012℄ whih provides some interesting enlightenmentson how to use suh approahes for regression in large dimensional setting.
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Chapitre 3

Statistical deformable models and
signal processingIn this hapter, I will provide a strutured summary of the problems I studied and thesolutions I found in the �eld of deformable statistial models. We aim to propose new methodsof estimation in signal and image proessing studied in a funtional framework. Hene, theunknown objets to estimate belong to an abstrat spae H whih will beome more preiselatter.
3.1 Deformation modelThese problems are all onerned by observations whih are orrupted by twie soure ofnoise : the �rst one is a random deformation of a ! mean "shape fÆ and the seond noise is anadditive measurement noise. Eah one of the n observations is desribed through�i � 1 . . . n Yi � fi � εi, (3.1)where εi is the additive measurement noise, fi is the randomly warped shape whih belongs to
H and Yi are the �nal noisy observation. If H is a set of maps de�ned on Ω, eah fi are de�nedfollowing the ideas of [Grenander, 1993a℄ by the following equation :�x P Ω,�i � 1 . . . n fipxq � pfÆ � Ziqrgi.xs. (3.2)Here Zi is a photometri variation and gi is the ation of deformation on Ω. If Zi ats in a linearway, it is not the ase for the ation of gi whih is an injetion of Ω into Ω. In the sequel, I willrestrit the study to the ase Zi � 0 sine no amplitude variations have been onsidered in myworks.
3.1.1 Rigid deformationRoughly speaking, one an dissoiate two di�erent lasses of homeomorphi deformations of
Ω, rigid ones and elasti ones. Rigid deformations are the simplest ones and orrespond to a�nite dimensional Lie group whih ats on Ω. One typial example is the ase where Ω � R

dwhere we onsider a group of translations. In this simple ase, observations are then given by�x P Ω,�i � 1 . . . n fipxq � fÆpx� τiq,where τi are random parameters of eah translation to obtain fi. The ation of G an be sum-marized as g.x � x� g for all x in Ω. 35



Of ourse, suh situation may generalizes to more omplex models of deformation of Ω whenthe group G has a larger dimension to obtain both rotations, translations, homoth�eties, . . .
3.1.2 Elastic deformationThe seond lass of bijetive transformation is learly muh more omplex and enables tode�ne some ! elasti "deformations of Ω. These models are introdued via ows of di�erentialequations by[Miller and Younes, 2001, Trouv�e and Younes, 2005℄.In order to model suh bijetive deformations of Ω, the idea is as follows : let vi a ontinuousmap CpΩ,Ωq and ǫ a small non negative real, the appliation φ1 � Id � ǫvi is always anhomeomorphism as well as φp � φp�1 � � � � � φ1 whih also reminds bijetive. Finally, if oneremarks that

φp � φp�1
ǫ

� vppφp�1q,the natural generalization of small deformations Id� ǫv depends on a family pvtqtPr0;1s of onti-nuous maps in CpΩ,Ωq used to onsider�t P r0; 1s dφt

dt
� vtpφtq{ (3.3)Indeed, (3.3) admits a unique solution pφtqtPr0;1s given an initialization φ0 � IdΩ as soon as³1

0
}vs}ds   �8. Moreover, for all time t, φt is an homeomorphism from Ω to φtpΩq. In orderto keep the surjetivity of suh deformations of Ω, it is enough to impose φt to be the identityon BΩ. This last point is true as soon as �t P r0; 1s,�x P BΩvtpxq � 0.Hene, we have in our hands two very di�erent ways to model randomly warped observations

fi from an initial mean pattern fÆ. Of ourse, in some pratial ases, the seond model of elastideformation is more appropriate than the �rst one, and of ourse muh more theoretial diÆultto study.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1 { Example of one dimensional homeomorphims φ1 of r0; 1s (on the right) generatedby time homogeneous vetor �elds v (on the left).
3.1.3 Isotonic (constrained) regressionMy �rst statistial work on this �elds onerns a simple remark that ours in dimension 1.Indeed, a di�eomorphism of R is neessarily monotone. Thus, we use this last point to parame-trise any monotone funtions as the solution at time 1 of an O.D.E. and plug this parametrisationin a regression setting. This yields in [10℄ a new way to handle monotone regession.The link between monotone funtions and di�eomorphisms generated through O.D.E. isdetailed below. If one denotes I any interval of R, we de�ne HmpIq the Sobolev spae

HmpIq � tf : IÑ R, fpm�1q is ontinuous on I and »
I

|fpmqpxq|2dx   �8u,and one has the following parametrisation of monotone funtions for I � r0, 1s (for instane).36



Theorem 3.1.1 If ~H � Spant1, xu � HmpRq and m ¥ 2. For all non dereasing f P
Hmpr0, 1sq, de�ne the trajetory

φtpxq � tfpxq � p1� tqx,�t P r0, 1s.Then, there exists a vetor �eld pvftqtPr0,1s suh that vft P ~H,�t P r0; 1s and
f � φ1 � φ0 � » 1

0

vftpφtqdt.Moreover, for all t P r0, 1s,one has
vftpφtpxqq � fpxq � x for all x P r0, 1s. (3.4)Our idea is now to ompute an estimation of f (whih orresponds to φ1) by an estimation ofpvtqt¥0, and the use of (3.3) in order to obtain a naturally monotone estimate of φ1. For all

t P r0; 1s, Theorem 3.1.1 shows that vt ! maps " tfpxq � p1� tqx to fpxq � x.From a statistial point of view, we observe a sample of n datas px1, y1q, . . . pxn, ynq suhthat
yi � fpxiq � ǫi,and pǫiqiPt1...nu are entered random variables of variane σ2. We look for a monotone f̂n suhthat its quadrati risk de�ned by

Rpf̂n, fq � 1

n

ņ

i�1rf̂npxiq � fpxiqs2,is weak. Our strategy is to use a plug-in trik : we �rst ompute an unonstrained estimator f̂0nof f, and then we ! monotonise " to obtain f̂cn whih inherits of the same theoretial asymptotiproperties of f̂0n. This step replaes for us the ! projetion "step of lassial works on isotoniregression. In this view, we ompute an estimation vn,λ � pvn,λt qtPI of pvtqt¥0 suh that t P r0; 1s,
vn,λt belongs to ~H :�x P I vn,λt pxq � at1 � at2x� htpxq, where ht P H.If we onsider on ~H a Reproduing Kernel Hilbert Spae struture desribed through a kernel
K, a suitable way to �nd vn,λt is to solve the optimization problem

vn,λt � arg min
vP ~H 1

n

ņ

i�1rpf̂0npxiq � xiq � vptf̂0npxiq � p1� tqxiqs2 � λ}ht}2K. (3.5)It is then possible (see Theorem 5.1 in [10℄) to obtain under some tehnial assumptions on Kand the penalization oeÆient λn that with large probability :
Rpf̂cn, fq ¤ CpRpf̂n, fq � λnq.This result may also be extended to the quadrati risk on r0; 1s.

Theorem 3.1.2 If f P HmpIq satis�es f 1 ¡ 0 on I and if one hooses λn � 1{n, then f̂cn builtfrom the unonstrained f̂0n introdued in[Spekman, 1985℄, is monotone and asymptotiallyoptimal in the minimax sense :
Rnpf̂cn, fq � Opn�2m{p2m�1qq.37



Figures (3.2), (3.3) and (3.4) are used in the experimental study presented in [10℄ and they allshow the eÆieny of the monotonisation of the unonstrained estimator through the di�erentialow of vetor �elds. One should also remark that the works presented in [10℄ may also beextended to larger dimensions for landmarks mathing problems.
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(d)Figure 3.2 { Signal m1 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Unonstrainedestimator f̂0n, () Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
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(d)Figure 3.3 { Signal m2 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Unonstrainedestimator f̂0n, () Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
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(d)Figure 3.4 { Signal m3 : Dashed line unknown f, (a) Dataset with SNR � 3, (b) Unonstrainedestimator f̂0n, () Dette et al. estimator, (d) Monotonised estimator f̂cn from f̂0n.
3.2 Deformable model with known deformation lawIn this setion, I provide some details on the estimation of f in the random deformationmodel desribed by equation (3.1) when one uses a white noise Gaussian model and eah fi arede�ned by (3.2). We aim to preisely desribes what happens when the number of samples ngrowths to �8. We assume in this setion the deformation law g known. This assumption isthe most important one of the paragraphs below.38



3.2.1 Randomly shifted curvesThis model is of the ourse muh most simple from a tehnial point of view ompared toits generalizations (more omplex deformation, poissonian noise) but already presents the mainideas of the estimation onsidered also in[8℄ and [16℄.We assume fi to simply be a realization of a random translation applied to the unknown fwhih is assumed 1-periodi. Hene, we onsider the model�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx�τjqdx�ǫdWjpxq wherepτjqjPt1...nui.i.d. � g. (3.6)
Deconvolution Approach Model (3.6) may be studied by onsidering a Fourier basis pekqkPZon whih eah Brownian motion Wipxq may be deomposed using independent gaussian oeÆ-ients. More preisely�j P t1 . . . nu �k P Z θj,k :� xYj, eky � xf, ekye�i2πkτj � ǫǫj,k,where pǫj,kqj,k are i.i.d. N p0, 1q.The method to build an estimation of f is now lear when one knows Fourier oeÆientspγkqkPZ of g : we an approah Fourier oeÆients of f following the simple remark�k P Z ckpfq :� xf, eky � xf Æ g, ekyxg, eky � 1

n

°n
j�1 θj,k
γk

. (3.7)Suh equality is true as soon as γk � 0 and the Strong law of Large Number should permitto well approah f. Indeed, the inversion of γk may beome dangerous when k is large sineRiemann-Lebesgue Lemma would guaranties that γk ÞÑ 0 when k Ñ �8 and g is regular.We fae here a lassial phenomenon enountered in ill-posed inverse problems, whih is ratherlogial owing to our estimation method using a deonvolution approah : we aim to invert theonvolution operator for whih γk are eigenvalues.We should also remark that this inverse problem framework might not be the natural wayto study (3.6) sine we arti�ially expanded the problem in a Fourier analysis to obtain (3.7).We will show in the sequel that atually, the nature of estimation (3.6) as an inverse problemannot be avoided.
Thresholding estimation and reconstruction rates on Besov space In this model, weompute the onvergene rate for the mean quadrati risk : for any estimator f̂, we de�ne thisrisk as

Rpf̂, fq � E}f̂� f}22.It is possible to build an estimator f̂n from a multi-resolution analysis. More preisely, if pψj,kqj,kand pφj,kqj,k are the saling and mother funtions of Meyer wavelet deomposition at sale j andloation k, we will build f̂n aŝ
fn � 2

j
0�1
ķ�0 ĉj0,kφj0,k � j̧¥j0 2j�1̧j�0 β̂j,kψj,k,where ĉ and β̂ must be estimate from the observations. The omplete desription of suh estima-tion is rather tehnial and we will omit the details in this manusript (they an be found in[9℄).The main idea is to limit the size of j0 and j1 whih depends on n and ν the regularity index of

g. Then, we keep only oeÆients whose size is greater than a threshold whih is data-driven.We prove in [9℄ a onvergene rate of suh thresholding estimator. In a simpli�ed versionpresented here, this theorem is as follows. 39



Theorem 3.2.1 Let f P Bs2,2 unknown of regularity index s unknown too, and assume thatthe known Fourier oeÆients of g satisfyD pCmin, Cmaxq �k P Z Cmin|ℓ|�ν ¤ |γℓ| ¤ Cmax|ℓ|�ν. (3.8)The thresholding estimator f̂Hn desribed in[9℄ is onsistent andsup
fPPBs

2,2

Rpf̂Hn , fq � O

�
n

�2s
2s�2ν�1 log

2s
2s�2ν�1

	
.The former estimator is based on a Hard Thresholding tehnique and is adaptive to theunknown regularity s of f, this adaptivity is obtained by the use of wavelet deomposition.The main property of suh multi-resolution analysis is that Meyer wavelets are band limitedin Fourier analysis. Thus, our estimator is obtained through a preliminary estimation of allFourier oeÆients of f whih are next plugged into the Meyer basis, we then obtain a bestapproximation of f.At last, we also remark that the onvergene rate n �2s

2s�2ν�1 obtained in Theorem3.2.1 islassial in statistial deonvolution regression when the urves are the realisation of f Æ gorrupted by a white noise :�j P t1 . . . nu �x P r0; 1s dYjpxq � f Æ gpxqdx� ǫdWjpxq.It is quite natural to obtain similar onvergene rates sine we use the same inversion of onvo-lution operator in (3.7) as a preliminary estimation whih is plugged in the omputation of theMeyer wavelet oeÆients.
Minimax rate of convergence In non parametri statistis, a standard method to measurethe eÆieny of an estimation method is to ompute a lower bound of estimation and one expetsthat this lower bound mathes asymptotially the upper bound reahed by the estimator. Thislower bound is desribed through the Minimax rate of onvergene when one uses n observationsto ompute an estimation in a lass of funtion F . We then de�ne

RnpFq � inf
f̂n

sup
fPF Rpf̂n, fq,where f̂n explores all possible measurable funtions of the data. Hene, RnpFq represents thebest ahievable rate for the worst funtion to estimate in the lass F .Usually, the omputation of lower bounds is muh harder than the study of the upper boundof the risk with a suitable estimator. One is attempted to study a Likelihood ratio between twohypothesis whih must be far enough from a metri point of view (with L2 norm for instane)and rather near from a statistial point of view. One should refer to three lassial methods toobtain suh results. The most popular one is ertainly the use of Fano's Lemma (introduedin [Ibragimov and Has 1minski��, 1981℄), but sometimes other methods suh as Assouad's Lemmaor Le Cam's method are more tratable. In [9℄, we takle the problem of the lower bound for

RnpFq when F is Besov spaeBs2,2 using Assouad's Lemma whih is written below. One shouldrefer to [Tsybakov, 2003℄ for a large desription of several variations around this lemma.
Lemma 3.2.1 (Assouad’s Lemma ([Bretagnolle and Huber, 1979])) Let be given a setof funtions pfθqθPΘ whih forms a ube Θ �  

θ � pθ1, . . . θdq P t�1ud(. We denote Λpfθ 1 , fθqthe likelihood ratio for n observations. Assume that for any ouple of hypotheses pfθ, fθ 1qsuh that }θ� θ 1}0 � 1, the likelihood is bounded by
PY1,...Yn pΛpfθ 1 , fθq ¥ βq ¥ 1� α,40



for a suitable β ¡ 0 and α P p0, 1q, theninf
θ̂PΘ sup

θPΘ Rpfθ̂, fθq ¥ d

2
p1� αqpτ^ 1q.This lemma tradues the amount of diÆulty to �nd the good fθ when two hypotheses arestatistially losed eah others (greater than β ¡ 0) with a probability far enough from 0.If one expets a simple use of suh Lemma when observations are oming from a diretonvolution of f with g, there still exists a lot of work to extend the use of suh Lemma to themodel (3.6). We give in[9℄ a preise meaning to the likelihood ratio between two hypothesesfor the model (3.6) using a onditional argument oupled with the Girsanov formula/ For anymeasurable ψ of the data Y , we an write

EY�fθrψpYqs � » 1
0

gpαqEY�fθrψpYq|τ � αqsdα � » 1
0

EY�f0rψpYqexf�α
θ
,dYy�}f}2{2|τ � αqsgpαqdα.There exists an intriate way to simplify this expression : if one onsiders the null hypothesis f0(vanishing f), the law of Y under this null hypothesis does not depend on the random shifts αthus

EY�fθrψpYqs � EY�f0 �ψpYq » 1
0

exf�α
θ
,dYy�}fθ}2{2qgpαqdα� .The likelihood ratio between the two hypotheses pfθ, fθ 1q is thus de�ned as

EY�fθrψpYqs � EY�fθ 1 �������ψpYq ³1
0
exf�α

θ
,dYy�}fθ |2{2qgpαqdα³1

0
exf�α

θ 1 ,dYy�}fθ 1 }2{2qgpαqdαlooooooooooooooooomooooooooooooooooon
:�Λpfθ,fθ 1 q

������� . (3.9)We obtain in[9℄ a lower bound of Λpfθ, fθ 1q in probability for a partiular ase of ube whihbelongs to Bs2,2, and the following result holds.
Theorem 3.2.2 Let A ¡ 0 and Fourier oeÆients of g satisfy3.8). If ν ¡ 1{2 and s ¡
2ν� 1, there exists C that only depends on A and s suh that

RnpBs2,2pAqq ¥ Cn� 2s
2s�2ν�1 when nÑ �8.This result shows that the upper bound obtained using an inverse problem point of view isoptimal when nÑ �8 up to a logarithmi fator. Hene, the model (3.6) should be onsideredas an inverse problem with a known noisy operator (that omes from the random translationwhose law g is known). From a tehnial point of view, the lower bound is obtained using third'sorder Taylor expansion in the likelihood ratio and onentration results suh as Bernstein'sinequality.At last, remark that Fano's Lemma may also be used instead of Assoud's Lemma even if itsusage does not seem shorter to obtain a onvenient lower bound. Indeed, starting from (3.9),the Kullbak-Leibler divergene between fθ and fθ 1 may be written as

KLpfθ, fθ 1q � EY�fθ log rΛpfθ, fθ 1qs .In the diret onvolution situation, the simplest model is written as�i P t1 . . . nu �x P I d~Yipxq � f Æ gpxqdx� ǫdWipxq,41



and the Kullbak divergene may be simpli�ed as�KLpfθ, fθ 1q � EY�fθ log � ~Λpfθ, fθ 1q� ,where ~Λpfθ, fθ 1q � expfθ�fθ 1qÆg,dYy�}fθ 1Æg}2{2�}fθÆg}2{2.In our random shift framework (3.6), the algebrai simpli�ation ! Logarithmi - Exponential "is impossible owing to the likelihood ratio formula given by (3.9). It is yet possible to use Jensen'sinequality whih yields
KLpfθ, fθ 1q ¤ log �EY�fθ ³1

0
exf�α

θ
,dYy�}fθ|2{2qgpαqdα³1

0
exf�α

θ 1 ,dYy�}fθ 1 }2{2qgpαqdα� .But indeed, dealing with this last term is then equivalent to handle a modi�ation of Assouad'sLemma !
Remark 3.2.1 Even if our upper bound tehnique is rather lassial, this is not the asefor the result onerning the lower bound : the key argument is the identi�ation of someelements in F suh that the law of Y is independent from the hidden parameters (herethe random shifts). Suh a strategy should ertainly enable to fae some very di�erentproblems of lower bound omputation following the strategy of invariant hypothesis to thehidden parameters of the model.
3.2.2 Random deformation through Lie group actionIt is possible to desribe a natural generalization of the equation (3.6) when deformationsare muh omplex and model geometrial transformations suh as rotations, translations, . . . indimension larger thant 1. This framework an have an interest for biomedial imaging ensoredusing Radon transform, or in robotis when a robot take several photos of the same sene butwith small variations in the pose of the amera regarding its theoretial position.In [8℄, we propose a model whih desribes suh generalization : denote G a Lie group oftransformations, ompat and semi-simple. We are interested in the estimation of f P L

2pGqwhih denotes the Hilbert spae of omplex valued, square integrable funtions on the group Gwith respet to the Haar measure dg in the following deformable model�i P t1 . . . nu �g P G dYipgq � fpτ�1i .gqdg� ǫdWipgq o�u pτiqiPt1...nui.i.d. � h.(3.10)Again, h is the known law of deformations whih at on G. Indeed, one an use the sameformalism as above following a spetral analysis of the problem. Owing to the ompatnessof G Peter-Weyl produes for any element of L
2pGq a Fourier expansion parametrised by theirreduible representations of G whih are ountable. A Fourier reonstrution formula is thenstill valid L

2 �g P G fpgq �
π̧PĜdπTr pπpgqcπpfqq ,where Ĝ denotes the set of irreduible representations of G, dπ is the dimension of the repre-sentation π, and cπpfq is the squared matrix whih plays the same role as standard FourieroeÆients of f for the eigenvetor π of the Laplae Beltrami operator on G with eigenvalue λπ.As a onsequene, ompute an estimation of f is again equivalent to �nd a suitable way toapproah Fourier oeÆients on low frequeny of f, and threshold the largest ones. To obtain42



a suitable frequenies-thresholding , an assumption on the regularity ν of h is neessary whenthe asymptoti dereasing power s of Fourier oeÆients of f is known onnue. Let us denote�π P Ĝ pcπpfq � 1

n

ņ

j�1 cπpYjqcπphq�1,we build the following estimator f̂Tn with the thresholds that omit some large frequenies π :
f̂Tn � ¸

πPĜT

dπTr pπpgq pcπpfqq .Sine the frequeny is quantify by the eigenvalue of π, ĜT is naturally introdued as the setof representations whose eigenvalue λπ e is lower than T . Moreover, we an also use the gene-ralisation of Sobolev spaes using the above Harmoni analysis if we de�ne for any A ¡ 0 theset
HspAq � $&%f P L

2pGq | }f}22 �
π̧PĜ λsπdπ}cπpfq}2 ¤ A,.- .Standard methods of Fourier analysis enable to produe an eÆient way to threshold frequenieswhen s is known and f P HspAq. This yields the following theorem.

Theorem 3.2.3 Assume h known with regularityν and f P HspAq where s is known andsuh thats ¡ dimpGq{2. Then, for Tn � n 2
2s�2ν�dimG , there exists K1 ¥ 0 that satis�eslim sup

nÑ�8 sup
fPHspAqn 2s

2s�2ν�dimGRpf̂Tnn , fq ¤ K1.It is still possible to study the likelihood ratios in a similar way as it was already done in(3.9) and then obtain a lower bound for the minimax risk.
Theorem 3.2.4 Assume h with regularity ν and s ¡ 2ν � dimpGq, therefore there exists
K2 ¥ 0 suh that lim inf

nÑ�8 inf
f̂PL2pGq sup

fPHspAqn 2s
2s�2ν�dimGRpf̂Tnn , fq ¥ K2.

Remark 3.2.2 One should remark that Theorem 3.2.3 is weaker than the upper boundgiven by Theorem3.2.1. Indeed, we only obtain a non adaptive estimator in Theorem3.2.3 sine s is assumed to be known. This is due to the Fourier thresholding althoughwe reahed adaptivity in Theorem 3.2.1 using wavelet expansions. It would be possibleto obtain an adaptive estimator for the model (3.10) using the so-alled [Lepski, 1991℄method, whih possesses a very simple priniple but with an extensive omputational ostin pratie.
3.2.3 Finite horizon approachThe former mathematial studies only provide answers in an asymptoti setting for defor-mable models. It is however possible to give study this model when the number of urves nremains �xed. In[12℄, we still study the model :�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g, (3.11)43



and the quadrati risk keeping an extensive use of Fourier analysis. When k is �xed, we proeedto a preliminary estimation of ckpfq with simple empirial mean of pθj,kqj�1...n. We then usesome �ltering method through positive �lters pλkqkPZ in order to ompute θ̂pλq. More preisely,�k P Z θ̂pλqk � λk

γk

1

n

ņ

j�1θj,k.The quadrati risk of estimation may then be deomposed in
Rpfθ̂pλq, fq �

ķPZpλk � 1q2|ckpfq|2looooooooooomooooooooooon
Biais

� ǫ2
n
ķPZ λ2k|γk|2looooomooooon
V1

� 1

n
ķPZ �λ2k|ckpfq|2� 1|γk|2 � 1
�looooooooooooooooooomooooooooooooooooooon

V2

.The bias term is standard but the variane term not sine it is omposed of two terms : the�rst one omes from the white noise model in inverse problems and the seond tradues thee�et of the random translations : we divide (3.7) by γk instead of the theoretial unobserved~γk � 1
n

°n
j�1 e�i2πkτj to reover ckpfq whih yields an additional variane term.In fat, |ckpfq|2 is unknown an also R thus it is not possible to optimize the hoie of λ toobtain a orret inferene on f. However, it is possible to build an estimation |Θ̂k|2 of |ckpfq|2 andthen follow the Unbiased Risk Estimation) in our framework. We �rst de�ne for any α P r0; 1s

UαpY, λq �
ķPZpλ2k � 2λkq|γk|�2|Θ̂k|2 � ǫ2

n
ķPZ λ2k|γk|�2 � α log2 n

n
ķPZ λ2k|γk|�4|Θ̂k|2.If we onsider the restritive lass of symmetri and monotones in |k| �lters :

Λmon :� #
λ � pλkqkPZ : λk � λ�k,

ķPZ λ2k   �8, 1 ¥ λ0 ¥ . . . ¥ λm ¥ . . . ¥ 0+ ,it is possible to ompute the ! optimal " �lters
λ̂α � arg min

λPΛmon

UαpY, λq.This optimal �lter θ̂pλ̂αq then satis�es an orale inequality aording to the next Theorem.
Theorem 3.2.5 Assume that Fourier oeÆients of g satisfy the property (3.8), then thereexists γ1 P p0, 1q suh that for all γ P p0, γ1q,
Eθ}θ̂pλ̂αq � c.pfq}2 ¤ p1� hγ,nq inf

λPΛmon

�
Rpfθ̂pλq, fq � α log2 n

n
ķPZ λ2k|γk|�2|ckpfq|2�� Γγ,n,ǫ2pcpfq, αqwhere hγ,n Ñ 0 when γ Ñ 0 and n Ñ �8, and Γγ,n,ǫ2pcpfq, αq is an expliit funtion ofpγ,n, ǫ2q and pcpfq, αq.The desription of the map Γ is rather tehnial and we refer to [12℄ for more details. Thisfuntion Γ possesses essentially two kinds of terms : one term has a dereasing property of order

ǫ2{n and the other one of order log2 n{n. One sould also note that α tradues a balane in theSignal to Noise Ratio (see the numerial study in [12℄) and should be hosen near 0 for large ǫand in the opposite ase quite large when the SNR inreases.44



3.3 Deformable model with unknown deformation law

3.3.1 StatementsParagraphs of Setion 3.2 desribed some result on the estimation of f when the law ofdeformations is known for problems suh as (3.6) or (3.10) and onerning the asymptoti
nÑ �8 and when the noise level ǫ is a �xed parameter. In some ases, the knowledge of g maybe satisfatory sine in some image proessing problems, some alibration of ensor may be doneto estimate g before real measurements on the dataset. This may be the ase for instane if oneonsiders tomographi images obtained through Randon transform if one deides to estimate
g on preliminary patients. This may also be the ase for the alibration of a amera whih ismoving around a theoretial position. However, this framework may not be suitable for otherpratial examples when we do not have any ontrol on a preproessing step. Hene, some worksshould also be developed in the ase where g is unknown to estimate f.We an number at least two motivations for this study. We may be interested in the estima-tion of the way data are generated and thus we would make some desriptive statistis in suhmodels. We may also try to �nd the deformation parameters whih are unobserved and thenobtain an estimation of the signal f himself. Loosely speaking, if one observes�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g,the simplest method to ompute f should onsider an estimation proedure of the deformationparameters pτ̂jqjPt1...nu, and then invert these deformations τ̂j on eah signal Yj in order toestimate f by a simple empirial mean :

f̂np.q � 1

n

ņ

j�1Yjp.� τ̂jq. (3.12)In the sequel, we are interested by the two following questions :{ Is it possible to reover the deformation parameters ?{ Is it possible to reover f without any knowledge on g ?
Remark 3.3.1 One should preise that our asymptoti study is not onerned by thesemi-parametri problem when urves pYiqiPt1...nu are observed on a grid whih may moreand more aurate. One should refer to several reent works of [Gamboa et al., 2007b℄,[Bigot et al., 2009℄ and [Vimond, 2010℄) in this isssue. Remark that formally, make anasymptoti study when the sampling frequeny of the grid is growing is equivalent to anasymptoti study where ǫÑ 0 in model (3.6).
3.3.2 Frechet mean to estimate fOne may onsider a global non parametri estimation of f using Fr�ehet mean of randomvariables Z1, . . . , Zn whih do not belong to a vetorial spae V . This fat is onsistent with theremark that Z,Z 1 may be onsidered as idential in our model if one an �nd a transformationin a group H whih send exatly Z on Z 1. In [Frehet, 1948℄, the eulidean mean is extended togeneral metri spaes through an impliit riterion : onsider a distane d de�ned on a manifold
M, the Fr�ehet mean of n observations pZiqiPt1...nu of M is given by

ẐFn � arg min
ZPM 1

n

ņ

m�1d2pZ,Zmq.45



In our framework of randomly shifted urves, H � R is the group of translation ating on
f P L2pr0, 1sq by

τ � fpxq � fpx� τq, for x P r0, 1s and τ P H.Let be given n observations Y1, . . . , Yn through (3.6), the Fr�ehet mean under the ation of His then
f̂Fn � arg min

fPL2pr0,1sq 1n ņ

m�1 min
τmPR� » 10 |fpxq � Ympx� τmq|2dx.If one onsiders the Fourier oeÆients of the data (denoted θm,ℓ at frequene ℓ for observation

m), and if we use ℓ0 as a threshold frequeny, the estimation pθ̂kq�ℓ0¤k¤ℓ0 is thenpθ̂�ℓ0 , . . . , θ̂ℓ0q � arg minpθ�ℓ0
,...,θℓ0 qPR2ℓ0�1

1

n

ņ

m�1 min
τmPR ¸|ℓ|¤ℓ0 |θm,ℓe2iℓπτm � θℓ|2. (3.13)Thus, Fr�ehet mean is then obtained by Fourier reonstrution f̂Fn,ℓ0pxq � °|ℓ|¤ℓ0 θ̂ℓe�2iℓπx. Atlast, remark that (3.13) possesses an expliit solution θ̂ℓ � 1

n

°n
m�1 θm,ℓe2iℓπτ̂m , and thuspτ̂1, . . . , τ̂nq � arg minpτ1,...,τnqPRn

1

n

ņ

m�1 ¸|ℓ|¤ℓ0 �����θm,ℓe2iℓπτm � 1

n

ņ

q�1 θq,ℓe2iℓπτq �����2loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
:�Mnpτ1,...τnq . (3.14)To sum up, the Fr�ehet mean omputation is equivalent to the minimisation of the riterionde�ned in equation (3.14), whih may be solved by a gradient desent algorithm.

3.3.3 Estimation of the parameter of deformationsRemind that (3.6) is equivalent in the Fourier basis to
θm,ℓ � cℓpfqe�i2πℓτ�m � ǫzℓ,m, ℓ P Z for m � 1, . . . , n, (3.15)where zℓ,m are i.i.d. NC p0, 1q and τ�m,m � 1, . . . , n are the true translation parameters sampledwith the unknown law g. Problem (3.15) is learly not uniquely identi�able sine for any τ0 P R,one may onsider θℓei2πℓτ0 instead of θℓ and τ�m � τ0 instead of τ�m without any modi�ation ofthe data. We thus introdue the two following identi�ability onditions :

Assumption 6 (Hg) g is entered and ompatly supported by T � r� 1
4 ,
1
4 s.

Assumption 7 (Hf) f is suh that c1pfq � 0.From assumption pHgq, we restrit our estimations to a set of n empirially entered para-meters (τ̂1, . . . , τ̂nq. We thus introdue
T n � tpτ1, . . . , τnq P T n tels que ņ

m�1 τm � 0u,where the frequeny threshold ℓ0 remains �xed. We then look at τ � pτ1, . . . , τnq P T n whihoptimises Mnpτq sine this is the only requirement to build the Fr�ehet mean f̂Fn. One an thenexpet to reover the deformation parameters.46



Theorem 3.3.1 Assume that pHgq and pHfq are in fore, and de�ne
τ̂ � arg min

τPT n

Mnpτq.For any t ¡ 0, one has
P

�
1

n

ņ

m�2pτ̂m � τ�mq2 ¥ Cpf, ℓ0, ǫ, n, t, gq� ¤ 3 expp�tq, (3.16)where Cpf, ℓ0, ǫ, n, t, gq � 4max �C1pf, ℓ0q�aC2pǫ, n, ℓ0, tq � C2pǫ, n, ℓ0, tq	 , C3pt, n, gq�. Notethat C1pf, ℓ0q is a non negative onstant that only depends on f and the threshold ℓ0, while
C2pǫ, n, ℓ0, tq � ǫ2p2ℓ0 � 1q � 2ǫ22ℓ0 � 1

n
t� 2ǫ2

n
t,and

C3pt, n, gq � �
2ǫ2g

t

n
� t

12n

�2 o�u ǫ2g � »
T

τ2gpτqdτ.Theorem 3.3.1 provides then an upper bound in probability to the auray of the estimationof deformation parameters τ̂ omparing to the true ones τ�m,m � 2, . . . , n. The minimum of
Mnpτq is omputed on T n, thus τ̂1 � �°n

m�2 τ̂m. Hene, when n Ñ �8, Cpf, ℓ0, ǫ, n, t, gqwhih is used in (3.16) onverges towards 4C1pf, ℓ0q �ǫ2p2ℓ0 � 1q � ǫ?2ℓ0 � 1� and we annotobtain with this bound a onsistent estimation. Indeed limnÑ�8 1
n

°n
m�2pτ̂m � τ�mq2 � 0 inprobability seems impossible and (3.16) rather suggests that there exists C ¡ 0 suh that

1
n

°n
m�2pτ̂m � τ�mq2 ¡ Cǫ2p2ℓ0 � 1q with a positivie probability. Thus, the auray of τ̂ shoulddepend on the noise level ǫ2 and the threshold ℓ0.

3.3.4 Lower bound of reconstructionEn supposant que f est de lasse C1pr0, 1sq, il est possible de donner une borne inf�erieurede reonstrution des param�etres de d�eformation qui dit en substane que (3.16) est presqueoptimale et que si le niveau du bruit ǫ est maintenu onstant, alors il n'est pas possible d'estimerles pτ�mqm�1...n même en r�ep�etant les observations (n ÞÑ �8). Plus pr�eis�ement, on suppose
Assumption 8 (H̃g) The unknown law g is ompatly supported on T with lim

τÑinf T gpτq �lim
τÑsupT

gpτq � 0.
Assumption 9 (H̃f) f satis�es }f 1}22 � °

ℓPZp2πℓq2|cℓpfq|2   �8.It is then possible to show the following result.
Theorem 3.3.2 Let X � pθm,ℓqℓPZ,m�1,...,n be the set of Fourier oeÆients observed in
X � ℓ2pZqbn and denote τ̂n � τ̂npXq P X any measurable funtion of X. Assume that p~Hfqand p~Hgq hold, then we have

E

�
1

n

ņ

m�1pτ̂nm � τ�mq2� ¥ ǫ2}f 1}22 � ǫ2Ipgq ,where Ipgq is the Fisher information
Ipgq � »

T

� BBτ log gpτq
2 gpτqdτ.47



The proof of Theorem 3.3.2 uses a van Trees inequality whih an be viewed as a BayesianCramer-Rao inequality bay�esienne. When n Ñ �8, E
�
1
n

°n
m�1pτ̂nm � τ�mq2� annot onvergeto 0 and it explains the upper bound obtained by Theorem 3.3.1. Note also that it is possibleto weaken the assumption f P C1pr0, 1sq by onsidering estimators τ̂n,ℓ0 built from θm,ℓ for

m � 1, . . . , n et |ℓ| ¤ ℓ0 in model (3.15). In this ase, the lower bound is then
E

�
1

n

ņ

m�1pτ̂n,ℓ0m � τ�mq2� ¥ ǫ2°|ℓ|¤ℓ0p2πℓq2|θℓ|2 � ǫ2 ³T � BBτ log gpτq�2 gpτqdτ.
3.3.5 Mean pattern recognition with deformable modelsThe Fr�ehet mean approah desribed above may be extended to the ase of images whihare orrupted by general deformations that belong to a Lie group. We desribe in [11℄ a mo-del of elasti deformations whih are oming from ows of di�eomorphism desribed by (3.3).If we onsider the set of grey levelled images de�ned on Ω � R

2, a pattern I is just an ap-pliation I : Ω ÞÝÑ R. We aim to interpret our Fr�ehet mean as a simple M-estimator (seefor instane[Van der Waart, 1998℄ for further details on these estimators) based on a speialontrast.First, we propose to use a parametrisation of di�eomorphisms using the approah developedby [Trouv�e and Younes, 2005℄ for homogeneous vetor �elds in equation (3.3). Without lossof generality, we �x Ω � r0, 1s2 and impose a parametri struture on v : r0, 1s2 ÞÑ R
2 thatsatis�es vBr0,1s2 � 0. Hene, if pe1, . . . eKq is a �nite family of basis funtions from r0; 1s2 to R

2,vanishing on Br0, 1s2, we obtain a random vetor �eld va by a simple generation of 2K oeÆientspa11, . . . a1Kq � pa21, . . . a2Kq for whih #
v1a � °K

j�1 a1j e1k
v2a � °K

j�1 a2j e2kLet be given va, a random di�eomorphism is then obtained using simply solution at time 1of (3.3) whih will be denoted Φ1va . Suh onstrution an be extended to a random imagedeformable model. If PA is a ompatly supported law in r�A,As with A ¡ 0 and if K denotesany positive integer, we de�ne our model of randomly warped image as�p P r0, 1s2 Iǫ,a � I� �Φ1vappq � ǫppq, (3.17)where ǫ is an additive noise independent from the oeÆients a � Pb2KA . We onsider now
n realisations sampled independently of (3.17) whih are denoted Iǫi,ai . VA will be the set ofreahable vetor �elds with oeÆients that live in r�A,As2K . For a given image Z de�ned onr0, 1s2, the following ontrast funtion fpa, ǫ, Zq uses a pixel disretisation P of r0, 1s2 :

fpa, ǫ, Zq � min
vPVA |Iǫ,a � Z �Φ1v|2P .Hene, f orresponds to the minimal ℓ2pPq ost when Z is mathed on Iǫ,a using VA. The meanontrast funtion is then

FpZq � »
fpa, ǫ, ZqdbPpa, ǫq,and the Fr�ehet intrinse mean Iǫ,a is Q� � arg minZPZ FpZq. If Pn denotes the empirial measureof the data, it is also possible to de�ne the empirial ontrast by

FnpZq � »
fpa, ǫ, ZqdPnpa, ǫq � 1

n

ņ

j�1 min
vjPVA |Iǫj,aj � Z �Φ1vj |2P . (3.18)48



The Fr�ehet mean of the data as the minimizer Q̂n � arg minZPZ FnpZq. The main advantageis that one an ompute Q̂n although Q� is intratable sine the law of the deformation isunknown.Of ourse, some minimization proedure suh as equation (3.18) may yield very di�erentestimators from I� and the ontrast Fn should be regularized. In [11℄, we then add to Fn apenalisation term that aims to ontrol the smoothness of Z as well as the amount of deformationwhih is allowed to warp images. It is then possible to obtain a.s. onvergene properties of theseFr�ehet mean Q̂n towards Q�.One should remark that we do not know at one if I� belongs to Q�, thus our methodprovides only a very partial answer on this model.
3.4 Numerical results

3.4.1 Randomly shifted curve modelWe �rst provide few numerial experiments on the problem reovering f when data are issuedfrom the random shift model. Four test funtions f are studied ( see Figures 3.5(a)-3.8(a)) andwe observe n � 200 noisy and randomly shifted urves using a Laplae law whose density isgiven by gpxq � 1?
2σ

exp��?2 |x|
σ

	 with σ � 0.1. A sub-sample of 10 urves are given in Figures3.5(b)- 3.8(b) for eah mean pattern. At last, we provide a result of simple averaging for theestimation of f in Figures 3.5()- 3.8(). We immediately remark the poor performane whihbuild estimate the onvolution by g and is far from being satisfatory.Fourier oeÆients of g are given by γℓ � 1
1�2σ2π2ℓ2 , whih orresponds to an order ofinverse problem ν � 2. In Figures 3.5(d)(e) -3.8(d)(e), we provide the estimation of f using ourinverse problem point of view : two thresholding methods are tested f̂Hn and are desribed inparagraph 3.2.1 (these two methods are muh more detailed in [9℄). At last, the estimationsobtained without the knowledge of g are given in Figures 3.5(f) -3.8(f) using the Fr�ehet meandesribed in paragraph 3.3.2 (estimation f̂Fn). We immediately remark the eÆieny of the twolast methods, espeially the one even when g is unknown and when one should approah itsFourier oeÆient.
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(f)Figure 3.5 { Funtion "Wave". (a) True funtion f, (b) Sample of 10 urves among n � 200,() Empirial mean, Deonvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�ehet mean49
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(f)Figure 3.6 { Funtion HeaviSine. (a) True funtion f, (b) Sample of 10 urves among n � 200,() Empirial mean, Deonvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�ehet mean
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(f)Figure 3.7 { Funtion Bloks. (a) True funtion f, (b) Sample of 10 urves among n � 200, ()Empirial mean, Deonvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�ehet mean
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(f)Figure 3.8 { Funtion Bumps. (a) True funtion f, (b) Sample of 10 urves among n � 200,() Empirial mean, Deonvolution (d) f̂Hn,1 and (e) f̂Hn,2, (f) Fr�ehet mean
3.4.2 Fréchet mean of imagesWe provide now some numerial experiments on the approah desribed in paragraph 3.3.5.For the lassial Lena image, Figure 3.9 illustrates some deformations enabled by the model of50



di�erential ow of di�eomorphisms where ak are uniformly sampled on r�A,As. The amountof deformation is de�ned through the size of A and the use B-spline enables to loalise thedeformation e�ets.
Figure 3.9 { Random deformation of Lena with A � 0.1 et A � 0.5.At last, we show the warping result using Fr�ehet means oupled with the ation of di�eo-morphisms ows and ompare to the eulidean mean on two famous dataset : the Mnist oneof handwritten digits (see Figure 3.10 for the e�et of the algorithm [11℄ on digit "2") and theOlivetti faes one (see Figure 3.11 for some examples of faes warping).
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25Figure 3.10 { Empirial mean (bottom left), �rst iteration mean Zp1qÆ and third one Zp3q of thealgorithm desribed in [11℄.Our method also permits to develop a lustering algorithm for warped images. We refer to[11℄ for further details on these experiments.
3.5 Further developments

3.5.1 Shape constrained regressionThe estimator of onstrained monotone regression appears to be really eÆient regardingother estimators found on this topi. It would be useful to develop a software for a largerdi�usion.Moreover, one may wonder if a similar approah using di�eomorphisms derived from ve-tor �elds may be extended to the ase of onvex or onave regression whih is another shapeonstrained regression problem whih is ommonly enountered in some pratial problems.This may have some interests in �nane [Ait-Sahalia and Duarte, 2003℄ for stok-options pri-ing, in eonois [Allon et al., 2007℄ where the supply and demand are supposed onave fun-tions, or in biology [Ratkowsky, 1983℄, in respone surfae estimation for optimisation tasks51
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110Figure 3.11 { Examples of Fr�ehet mean obtained on 3 faes of the Olivetti database. Firstline : empirial mean, seond line : Fr�ehet mean.[Ho�mann et al., 2006℄ . . . If the estimation should be onsidered on R
d, it would be onvenientto onsider a time evolution initialized with φ0pxq � |x|2 and dφt

dt
� vtpφtq where vt wouldpreserve the onvexity all along the time evolution.At last, from a theoretial point of view, the onvergene obtained in Theorem 3.1.2 mayertainly re�ned. Indeed, we prove in [10℄ only a onvergene in probability of an estimator pvn,λt qto the optimal theoretial vetor �eld vt by M-estimation tehniques. We should onsider nowsome more preise results of M-estimation for in�nite dimensional objets following Donskerlasses results (see for instane[van der Vaart and Wellner, 1996℄). Their main interest wouldbe to obtain statistial testing proedures for shape hypothesis.

3.5.2 Bayesian estimation with unknown operatorIn order to simplify the problem, I will limit this paragraph to the randomly shifted urvesmodel given by (3.6) :�j P t1 . . . nu �x P r0; 1s dYjpxq � fpx� τjqdx� ǫdWjpxq o�upτjqjPt1...nui.i.d. � g,where g is unknown. We have seen in Theorem 3.3.2 that we annot reover the deformationparameters τj without any asymptoti assumption on the noise level ǫÑ 0, whih signi�antlyharms the hane of onsisteny proedures as Fr�ehet mean estimation of f desribed by (3.13)and (3.14). However, it does not seem impossible to approah f without any individual defor-mation parameter estimation, using in this view a Bayesian point of view.This is for instane the approah used in [Allassoni�ere et al., 2007℄ and [Allassoni�ere et al., 2009℄where the unknown law g is assumed desribed by several parameters whih are estimatedby Bayesian statistis. Note that their work does not assert the statistial onsisteny when
n Ñ �8 although it would be a very interesting and instrutive problem for a generalizationto non parametri family of law g.Indeed, if one refers to pioneered works of[Ibragimov and Has 1minski��, 1981, Le Cam, 1973℄on Bayesian onsisteny, there is some suÆient onditions to ensure suh asymptoti goodbehaviour. Roughly speaking, and in a parametri setting at start, assume pX1, . . . Xnq to be52



i.i.d. realisations of Pθ0 where θ0 P Θ � R
d is unknown, Bayesian estimator of θ0 depends on aprior q whih is a probabilisti distribution of Θ. Assume moreover that eah pPθqθPΘ possessessome density ppθqθPΘ with respet to a ommon referene measure on X (spae where eah Xiis living), Bayesian estimator is then de�ned as

θ̂Bn � arg min
θPΘ »

Θ

Lpu� θqpθpX1, . . . , Xnqqpuqdu,where L is a loss funtion, vanishing at 0Rd (indeed Lpxq � |x|p for any p ¡ 0 is the typial ase).The striking Theorem 5.2 of hapter 1 in [Ibragimov and Has 1minski��, 1981℄ asserts onsistenyprovided the likelihood ratios between two hypothesis is suÆiently regular when θ varies,beomes small when θ is far from θ0 and the prior q is a ontinuous stritly positive densityon Θ. Moreover, one should note that this is the smoothness of this likelihood ratio arount θ0whih desribes the onvergene rate of θ̂Bn : the more at is the likelihood ratio, the less rateare fasts. This smoothness on likelihood ratio may be desribed by separability onditions onHellinger distanes or Kullbak-Leibler divergenes 1. At last, this Bayesian estimator may beinterpreted as a speial ase of perturbed Laplae method for integrals where the main modeof integrands is onvergent and the posterior distribution of θ given pX1, . . . Xnq beomes aGaussian distribution whose variane depends on the Fisher information at θ0 divided by theonvergene rate (?n usually) : these results are desribed by Bernstein-von Mises Theorem(desribed in [Le Cam, 1973℄ or [Van der Waart, 1998℄).In a non parametri framework, the situation seems more intriate. Some reent advanesextend the parametri results of [Le Cam, 1973℄ and [Ibragimov and Has 1minski��, 1981℄ on pos-terior distributions using some overing arguments and uniform lower bound of Hellinger dis-tanes related to other distane intrinsi distane on Θ. We may ite, among a large amount oflitterature, the works of [Ghosal et al., 2008, Ghosal, 2000, Rousseau, 2010℄. The main idea isto onstrut growing sieves with n and entropy ontrols.Of ourse in our model (3.6), the additional problem already present in the frequentistapproah, is still here sine observations depend on the hidden parameters pτiqi�1...n sampledfollowing g. If one onsider the simplest ase of estimating only one Fourier oeÆient θ0 of f,the observations are given by �i P t1 . . . nu θi � e2iπτiθ0 � ǫi.If q denotes a prior on Θ and r a prior on the L1pS1q (spae of density on the one dimensionalsphere parametrised by e2iπτ), it is possible to model a Bayesian estimation problem for pθ0, gq :pθ̂Bn, ĝBnq � arg min
θPΘ,gPL1pS1q »Θ�L1pS1q Lpu� θ; v� gqpθ,gpX1, . . . XnqIu,vpX1, . . . , Xnqdqpuqdrpvqwhere Iu,vpX1, . . . , Xnq is the likelihood ratio with given priors q, r. Some method to fae thisin�nite mixture problem may adapt the approah of [Rousseau, 2010℄ (for instane).A �rst step to obtain good behaviour of the Bayesian posterior and estimators should beto establish suÆients ondition that ensure identi�ability of the model, both for the unknown

f and the unknown density g. Suh result ould be obtained using the link between the totalvariation distane between dVT pPf,g,P~f,~gq and the Laplae transform Lpg � ~gq and the Fourierexpansion of f and ~f. Next, it is neessary to bound from above the overing numbers of thelaw Pf,g with respet to the Hellinger distane (or Kullbak Leibler or total variation distane)but this may not be derived from a "standard" inequality between these distanes and somedistane on f, ~f, g, ~g. It is thus neessary to work on the in�nite mixture of Gaussian laws.1. Indeed, only Kullbak-Leibler divergene is neessary, whih is a slightly weaker ondition.53



3.5.3 Randomly shifted Poissonian noiseIn [16℄, we extend our asymptoti study on randomly shifted urves orrupted with a whitenoise to the ase where observations are issued from a ounting proess whih is modelledby a Poisson proess whose inhomogeneous intensity λ is unknown and should be estimated.Observations are then obtained with several ounting proesses de�ned on r0, 1s N1, . . . Nn withintensities λp. � τ1q, . . . , λp. � τnq. Of ourse, pτiqi�1...n are i.i.d. observations sampled with gwhih is assumed to be known at the moment. Suh model may desribe a random phenomenonobserved on Chip-Seq datasets. We prove in [16℄ that one may reover λ with some onvergenerate similar to the one obtained in the white noise model. More preisely, we obtain the followingtheorem.
Theorem 3.5.1 Assume g known and that satis�es the inverse problem order ν hypothesis(3.8), we de�ne moreover

Λ0 � !
λ P L2pr0, 1sq; λptq ¥ 0 pour tout t P r0, 1s) .Let A ¡ 0 and assume that λ has a smoothness parameter s suh that s ¡ 2ν � 1. Hene,there exists C0 ¡ 0 (independent of n) suh that for n suÆiently largeinf
λ̂n

sup
λPBs

2,2
pAq�Λ0

Rpλ̂n, λq ¥ C0n� 2s
2s�2ν�1 ,where the minimum is omputed over all estimators λ̂n P Λ0 (i.e. measurable funtions ofproesses Ni, i � 1, . . . , n with values in Λ0).The proof of this lower bound is again dependent on a preise ontrol of the likelihood ratiobetween hypothesis λ and λ � h oupled with an Assouad's like lemma. This likelihood ratiomay be written using a Girsanov formula for Poisson proesses using again a ! null "hypothesis,whih is an hypothesis invariant by any random shift. Here, the null hypothesis orresponds toa onstant intensity ρ de�ned on r0, 1s. If pλ1, λ2q are two intensities suh that λ1 ¥ ρ ¡ 0 and

λ2 ¥ ρ ¡ 0, and for an observed ounting proess N, the likelihood is
Λpλ1, λ2qpNq � » 1

0

exp �� » 1
0

µ1pt� αqdt� » 1
0

log�1� µ1pt� αq
ρ



dNt

�
gpαqdαq» 1

0

exp �� » 1
0

µ2pt� αqdt� » 1
0

log�1� µ2pt� αq
ρ



dNt

�
gpαqdαqwhere µ1 � λ1 � ρ and µ2 � λ2 � ρ.Finally, we propose an adaptive estimator λ̂hn based on hard thresholding methods whih isasymptotially optimal up to a logarithmi term O

�� logn
n

	 2s
2s�2ν�1


. This estimator is preiselydesribed in[16℄.At last, we should note that suh model seems to be the good statistial framework for Chip-Seq data whih are ounting proesses ensored with some rigid geographial deformation e�etson the DNA. Hene, experimenters atually use some warping proedures before analysing thedata. The kind of estimator we propose ould then deal automatially with suh problem.
3.5.4 Statistical testing problemsAt last, it would be of interest to extensively use the likelihood ratio struture presentedabove to build statistial tests on the hypothesis : two sampled urves follow the same randomly54



shifted white noise model or not. This may be possible following the last works on these models,and maybe ould be extended to a Poissonian noise instead of Gaussian one. A �rst suessfulapproah would ertainly exploits the work of [Fromont et al., 2011℄ whih studies an almostidential question in a simpler ase studied.
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Chapitre 4

Non reversible optimisation
algorithmsIn this hapter, I will detail my works derived from the following dynamial system9xt � �1

t

» t
0

∇Upxuqdu,where U is a real potential de�ned on R
d and oherive for large value of x : lim|x|ÞÑ�8Upxq ��8. Remind �rs that suh di�erential equation omes from a numerial modi�ation desribedin paragraph 1.4 where one aims to �nd minimum of U. Without loss of generality, we willassume that minRd U ¡ 0, and U is at least C2pRdq and onvex suÆiently far from ORd

1 :lim inf
xÑ8 xx,∇Upxqy ¡ 0.Moreover, the minimum of U is assumed to be loated at point 0 : Up0q � minU.

4.1 Gradient descent with memory model

4.1.1 Physical interpretationLet be given h and k two smooth non negative and inreasing funtions, we onsider theordinary di�erential equation on R
d9xt � � 1

kptq » t0 hpuq∇Upxuqdu. (4.1)A partiular natural ase will be k � ³
h for large times t. Using a simple hange of variables

t ÞÑ τptq, it is possible to onvert (4.1) to a seond order di�erential equation.
Proposition 4.1.1 Let τ solution of 9τ �a

kpτq{hpτq and x solution of the memory gradientdesent (4.1), then z � x � τ is solution of:zpsq � γpsq 9zpsq �∇Upzpsqq � 0, (4.2)where a is a damping funtion given by γpsq � � 9kh�k 9h
2h3{2k1{2	 � τpsq.1. We will desribe suh ondition as a mean-reverting property for the di�erential equation (4.1)57



Funtion γ desribes the amount of damping in a dynamial system of an heavy ball whih isrolling on a graph of potential U, and submitted to a frition additional fore. For some speialase of funtions h and k, we reover some partiular ase of the so-alled dynamial systemHeavy Ball with Frition and (4.1) is thus its natural generalization.From this short physial desription, we an expet the dynamial system (4.2) to reahstable ritial points of U and maybe the amount of inertia of the ball enables the trajetory toross some loal maxima, whih is impossible for standard gradient desent.First, it is possible to assert the stability of trajetories of o.d.e. (4.2) using quite standardLyapunov funtion E desribed below as soon as U satis�es an onvex-type at in�nity ondition.
4.1.2 Behaviour of the dynamical system (4.2), convex caseWe assume that U satis�es a generalization of onvexity desribed by the following ondition 2 :pH1Uq : Dθ ¡ 0 �x P R

d Upxq �Up0q ¤ θx∇Upxq, xy.
Influence of damping γ The damping e�et of γ is important and should be understoodas follows : if γ dereases fast to 0, the trajetory (4.2) then possesses an in�nite number ofosillations that annot be insigni�ant sine the dynamial system seems to be almost desribedby :x�ω2∇Ux � 0. This phenomenon is desribed by the next result.
Proposition 4.1.2 Let us denote Eptq � Upxptqq � 9xptq2

2 , then 9Eptq � �γptq| 9xptq|2 and solu-tions of (4.2) are de�ned and bounded on R�. Moreover,�t ¡ 0 Eptq �minU ¥ pEp0q �minpUqqe� ³t0 γpsqds.Hene, even if U is onvex, if γ P L
1pR�q the trajetory annot onverge.The last proposition yields us onsider some damping e�et γ R L

1pR�q and it is possible togive a suÆient ondition for onvergene of pUpxtqqt¥0.
Proposition 4.1.3 Assume that pH1Uq is true.

iq If γ is a smooth C1 and non inreasing funtion, then» �8
0

γpsqrEpsq �minUsds   �8.
iiq Moreover, if ³�8

0
γpsqds � �8 (slow vanishing damping ase), then lim Eptq � minU.

iiiq If there exists m ¡ 0 suh that γptq ¥ m{t for t large enough, then
Epsq �minpUq � o� 1

taptq
 .
ivq At last, assume arg minpUq � t0u, then the trajetory onverges.Remark that this last property does not provide some onvergene result of the trajetoryitself, this might not be the ase when arg minU is an open set of Rd. In suh situation, it ispossible to provide an almost minimal hypothesis.2. This ondition holds as soon as U is onvex with θ � 1 for instane.58



Theorem 4.1.1 Assume that d � 1 and U satis�es pH1Uq with rα,βs � arg minU. If γ issuh that Dk   1 » �8
0

e�k ³s0 γpuqduds   8,then the trajetory solution of (4.2) onverges. Oppositely, if γ satis�es» �8
0

e� ³s0 γpuqduds � 8,the trajetory does not onverge, exept in trivial ases of initialisation in arg minpUq.It is also possible to show a similar result for larger dimensions, suh details are omitted hereowing to their rather tehnial prerequisite desribed in [13℄. The key assumption to assertonvergene or not of the trajetory is the ondition ³�8
0

e� ³s0 γpuqduds � 8. At last, we shouldremark from a tehnial point of view that the proof depends on a Lyapunov funtion whihenables to ontrol both position and speed of the trajetory, suh ontrol is not possible withfuntion E as pointed by Proposition 4.1.2). This new Lyapunov funtion uses E and someadditional rossed term between position and speed. Suh use of rossing term is quite lassialwhen one onsiders dissipative system (see some results in [Haraux, 1991℄ for instane). Theseadditional terms have also been intensively used in works on hypooerive P.D.E. or probabilistimodels.
4.1.3 Behaviour of the dynamical system (4.2), non convex caseWe address the typial generi situation where U satis�es the following assumption.p~HUq : U possesses a �nite number of m ritial points suh that Upx1q   Upx2q � � �   UpxmqUnder this last hypothesis, when γ R L

1pR�q, it is possible to show a onvergene result onthe trajetory (whih is slightly weaker than a lassial onvergene) for the multi-dimensionalase.
Theorem 4.1.2 Assume that p~HUq holds, then there exists a unique xi suh that�ε ¡ 0 lim

TÑ�8 1T |tt ¤ T |xptq � xi| ¡ εu| � 0.This ergodi result may be written aslim
TÑ8 1T » T

0

xptqdt � xi.For the very speial ase of dimension 1, it is possible to reah a stronger result but its proof isvery spei� to the one dimensional ase (it onsists in onsidering the lengths of time invervalswhere | 9xptq| ¡ 0).
Theorem 4.1.3 Assume that all ritial points of U are non degenerated, i.e. U"pxiq � 0and suppose that γ is lower bounded as follows γptq ¥ c

1�t o�u c ¡ 0. Then
iq For any initialisation point, solutions of (4.2) satisfy limtÑ8 xptq � xÆ exists andbelongs to tx1, . . . xmu.
iiq If T denotes the set of time hanges of 9x, then|T | � �8 ðñ xÆis a loal minimum of U.
iiiq The set of initialisation points suh that xÆ is a loal minimum is open and densein R. 59



Hene, we do not have obtained satisfatory result on the onvergene towards the globalminimum of U, it was thus quite natural to be interested by some noisy perturbation of thedynamial system (4.1).
4.2 Memory average gradient diffusion

4.2.1 Average diffusion modelWe desribe in this paragraph a natural generalization of (4.1) when the dynamial systemis orrupted by a standard Brownian motion. We still onsider two inreasing maps h and kwhih are non negatives. If σ is an invertible squared ovariane matrix of size d and pBtqt¥0a d-dimensional Brownian motion, the dynamial system is then desribed by the followingstohasti di�erential equation
dXt � � 1

kptq �» t0 hpuq∇UpXuqdu
dt� σdWt, (4.3)We de�ne pYtqt¥0 the instantaneous drift of pXtq,
Yt � 1

kptq » t0 hpsq∇UpXsqds,and we remark that dYt � ph{kqptqp∇UpXtq�Ytqdt. Hene, (4.3) is a kineti di�erential system
2d-dimensional, it is also an inhomogeneou Markov proess desribed by :#

dXt � σpXtqdWt � Ytdt.
dYt � rptqp∇UpXtq � Ytqdt, (4.4)where rptq � h

k ptq is C1.In the sequel, I will only disuss on the ase h � 9k even if it is also possible to extendsome of these results to more general memory ases. It is easy to hek that pXt, Yt, tqt¥0 is anhomogeneous Markov proess whose generator A ats on f P C2KpRd � R
d � R�q following :

Afpx, y, tq � �xy,∇xfy � rptqx∇Upxq � y,∇yfy � 1

2
Tr�σ�pxqD2xfpx, yqσpxq	 � Btf. (4.5)We will assume that U satis�es the assumption pHUq given by :

Assumption 10 (HU) lim|x|Ñ�8Upxq � �8 lim inf|x|Ñ�8xx,∇Upxqy ¡ 0, Tr �σ�D2Uσ� ¤ CU.This assumption is true for a wide lass of potentials U : for instane Upxq �8 C1|x|p with
D2Upxq �8 C2|x|p�2 sati�es pHUq as soon as }σpxq} � Op|x|q. This is also the ase for weakerinreasing U : Upxq �8 C1 ln |x| and D2Upxq �8 C2|x|�2 with }σpxq} � Op1� |x|q also satis�espHUq.
Proposition 4.2.1 Assume that pHUq holds, then there exists a unique strong solutionof (4.4). Moreover, if pX0, Y0q is suh that ErUpX0q � |Y0|2s   �8, then for any T ¡ 0sup

tPr0,T sErUpXtq � |Yt|2s   �8.60



The proof relies on a ontrol within a �nite time of trajetories and uses a Gronwall Lemma onthe lassial Lyapunov funtion de�ned as :
Epx, y, tq � Upxq � |y|2

2rptq . (4.6)We will study in the sequel the regularity of the semi-group assoiated to pXt, Yt, tqt¥0 as wellas the onvergene to steady regime (when one steady regime exists). For sake of simpliity, wewill note z0 � px0, y0q P R
d �R

d the initialisation point (random or not) of the di�usion.
4.2.2 Hypo-ellipticityThe random proess (4.4) is totally degenerated on oordinate Y, thus existene of densityand regularity properties of Ptpz0, .q is not so lear. We next provide two important results inorder to obtain irreduibility of the Markov proess 3.
Existence and regularity of the density with respect to the Lebesgue measure The�rst result onerns the existene of density with respet to the Lebesgue measure and uses theset EU de�ned as

EU � !
x P R

d, det�D2Upxq	 � 0), et MU � R
dzEU. (4.7)We then assume that :

Assumption 11 (HHypo) σ and U are C8 and there exists ε0 ¡ 0 suh that σσ� ¥ ε0Id,(uniform elliptiity of σ over R
d). Moreover, the manifold MU is suh that dimpMUq ¤

d� 1.The vetor �elds that orrespond to the di�usion part and the drift part in (4.4) are
Lσpxqpfq � 1

2

ḑ

j�1x∇xpσjqpxq, σjpxqpfqy.where �j P t1 . . . du : σjpxq � ḑ

i�1σijpxqBxi . (4.8)and
LDpt, x, yq � �xy,∇xy � rptqx∇Upxq � y,∇yy.

Proposition 4.2.2 Assume that pHHypoq holds, then for any z0 P R
d � R

d and any t ¡ 0,
Ptpz0, .q is absolutely ontinuous w.r.t. the Lebesgue measure on R

d � R
d. Moreover, forany t ¡ 0 and z0 P R

d � R
d, z ÞÑ ptpz0, zq is C8 over R

d � R
d where ptpz0, .q is the densityof Ptpz0, .q.This proposition uses the fat that the dimension of the Lie algebra spanned by Bt � pLD �

Lσq, σ1, . . . , σd is 2d� 1 under assumption pHHypoq, it is thus possible to use H�ormander theo-rem. This proposition does not give any result on the smoothness of pz0, zq ÞÑ ptpz0, zq, thisappliation should ertainly be ontinuous if one assume moreover that vetor �elds possess atthe most polynomial growth and this question ould be takled using Malliavin alulus or Har-nak inequality (see for instane[Hairer, 2011℄ or [Pasui and Polidoro, 2006℄) but this pointhas been get rounded and still remains open sine I have note studied this question.3. Irreduibility is espeially important when the proess is homogeneous in order to obtain uniqueness ofinvariant measures. 61



Minoration of ptpz0, .q Positiveness of ptpz0, .q (de�ned in the paragraph above) is indeedrather di�erent from the use H�ormander ondition to obtain smooth density w.r.t. Lebesguemeasure. In fat, a minoration of ptpz0, zq tradues that a suÆient amount of trajetories of(4.4) starting at point z0 an reah neighbourhoods of z. It is thus a problem of ontrol fortrajetories de�ned by the following di�erential system (4.9).# 9xptq � σpxptqqϕptq � yptq.9yptq � rptqp∇Upxptqq � yptqqdt, (4.9)Controllability of suh di�erential system will be disussed in detail in the last setion ofthis hapter, but this ontrollability is already important here. It is lear that starting fromany z0 of Rd � R
d, one an reah any arbitrary point on oordinate x, but this is largely moreompliated on the oordinate y sine the ontrol ϕ only ats on xptq and not on yptq. Indeed,we should onsider the initial problem and remark that yptq an still be written as

yptq � y0 � 1

kptq » t0 9kpsq∇Upxpsqq. (4.10)Hene, if ∇U is bounded, y annot exit from Bpy0, }∇U}8q and equation (4.10) naturally stimu-lates us to assume that ∇U is surjetive inRd. Following suh idea, we then obtain the followingresult.
Proposition 4.2.3 Assume that pHHypoq is true and that lim|x|Ñ�8 Upxq|x| � �8, then the twofollowing points are satis�ed.(i) For any T ¡ 0 and z0 P R

d � R
d, if O � R

d � R
d is an arbitrary open set, then

PT pz0,Oq ¡ 0. Hene, for allz0 P R
2d, pT pz0, .q is λ2d- a.s. positive and there exists at themost a unique invariant measure for pXt, Ytqt¥0 when rptq ÞÝÑ r8 P p0;�8q.(ii) Assume r to be a positive onstant and that there exists a minimum x� of U suh that

D2Upx�q is invertible, then if we denote z� � px�, 0q, one an �nd T ¡ 0 suh that for anyompat K of R2d, one an �nd νK ¡ 0 and αpT, Kq ¡ 0 suh that�z0 P K, PT pz0, .q ¥ αpT, Kqλ2dp.X Bpz�, νKqq.The �rst point uses the ontrollability of the di�erential system (4.9) and the Fenhel-Legendre transform of U : if lim|x|Ñ�8 Upxq|x| � �8, for any v in R
d, the map Fvpxq � xv, xy�Upxqhas a maximumand thus ∇U is surjetive. In order to reah any open set O of R

d � R
d, wethen build a trajetory in three parts : the �rst one bring x to xpηq, the seond part remainsonstant in oordinate x between η and T�η then the last part bring the trajetory into ΠxpOq.Of ourse, we must �nd xpηq so that the time spent between η and T � η on this point enables

ypT � ηq to reah ΠypOq. Suh point xpηq exists owing to the surjetivity of ∇U. This strategypermits to show the approahed ontrollability of the di�erential system (4.9).The seond point is ruial in order to show that ompat sets are petite sets for the appli-ation of Meyn and Tweedie estimates. The proof relies on a stronger result on the ontrolledsystem (4.9) whih stands for the exat small ontrollability around the equilibrium z�. Thisis ensured by the non degeneray of D2Upx�q whih implies the full rank Kalman onditionfor the linearised system around z� (one may �nd further details in[Coron, 2007℄ for instane).This last ondition should be replaed by any other suÆient onditions whih implies the exatloal ontrollability near z�. This ontrollability result is then suÆient to obtain enough massaround z� to obtain lower bound on pt following the argument of[Delarue and Menozzi, 2010℄.62



4.2.3 Steady regimes (r8 ¡ 0)
Short range memory We desribe in this part some results on the asymptoti behaviour ofpXt, Ytq when the memory (desribed by appliation t ÞÑ rptq) is not too long. Suh situation isidenti�ed through the limit behaviour of r at �8. Suh steady regime orresponds to rptq ÞÝÑ
r8 Ps0,�8s. We thus assume the following hypothesis on r.
Assumption 12 (Hr) The map r possesses a non negative limit r8 when t ÞÝÑ �8 (where r8 � �8 is admissible). Moreover, we assume that r varies slow enough near �8 :lim

t ÞÑ�8 r 1ptqr2ptq � 0.This last assumption is enountered in the two following situations :{ kptq � exppλtq and rptq � r8 � λ thus pXzt, Yzt qt¥0 is homogeneous Markov.{ kptq � expptαq with α ¡ 1 and in this ase r8 � limtÑ�8 rptq � �8.
Lyapunov function The stability of the proess is guaranteed as soon as ∇U possesses en-ough repelling fore to imply a tightness property. This is tradued by the following somewhattehnial hypothesis.
Assumption 13 (H̃U) There exists m P p0, r8q and ε P p0, r8 �mq suh thatlim sup|x|Ñ�8 ��mxx,∇Upxqy � 1

2
Tr�σ�pxqpD2Upxq � pm� εqIdqσpxq	
 � �8.(H̃U) is stronger thatn assumption (H̃U) but is not too restritive. If σ is independent from

x, (H̃U) holds for potentials Upxq �|x|Ñ�8 |x|q as soon as q ¡ 0 and it is even true when
Upxq �|x|ÞÑ�8 lnp|x| � 1qβ with β ¡ 1 . σ may also vary, but it should not be too large when
x ÞÑ 8 :{ For polynomial growth of U : Upxq �|x|Ñ�8 |x|q with q ¡ 0, this assumption is true for}σpxqσ�pxq} � op|x|q^2q and |x| Ñ �8.{ For logarithmi growth of U : Upxq �|x|Ñ�8 lnp|x| � 1qβ with β ¡ 1, this assumption istrue if }σpxqσ�pxq} � oplnp|x| � 1qβ�1q when |x| Ñ �8.The key point is now to build a Lyapunov funtion whih permits to ontrol the dynamialsystem both on oordinate x and y. One should remark that the former lassial funtion Ede�ned by Epx, y, tq � Upxq � |y|2

2rptq does not satisfy suh requirements sine only oordinate yis bounded :
AEpx, y, tq � �y2�1� r 1ptq

2r2ptq
� 1
2
Tr

�
σ�pxqD2Upxqσpxq	 .However, it is possible to slightly modify this funtion by the addition of a rossed term ! po-sition - speed "to obtain also information on oordinate x. For a given ouple pmε, εq desribedin (H̃U), we de�ne

Vpx, y, tq � Upxq � |y|2
2rptq �mε

� |x|2
2

� xx, yy
ρptq 


, (4.11)where ρ is a real funtion solution of the o.d.e.
ρptq � �» �8

t

kptq
kpsqds
�1

.Funtion V desribes a real repelling fore on oordinates x and y sine for t large enough
AVpx, y, tq ¤ �C1xx,∇Upxqy � 1

2
Tr

�
σ�pxqD2Upxqσpxq	 �C2|y|2.63



Occupation measures For z0 P R
d � R

d, we onsider the two family of oupation mea-sures pνz0t pω,dx, dyqqt¥1 and pµz0t pdx, dyqqt¥1 de�ned as follows : for any bounded measurableontinuous f : Rd � R
d Ñ R, we denote :

ν
z0
t pω, fq � 1

t

» t
0

fpXz0s , Yz0s qds,and
µ
z0
t pfq � 1

t

» t
0

ErfpXz0s , Yz0s qsds � Erνz0t pω, fqs.It is possible to show ergodiity of pµz0t qt¥0 :
Theorem 4.2.1 Assume that (H̃U) and (Hr) hold with r8 P R

�� Y t�8u, for any z0 �P
R
d �R

d, pµz0t qt¥1 is tight. If µ8 denotes any aumulation point of pµztqt¥1 when tÑ �8,one has(i) If r8 � �8, the �rst marginal (on oordinate x) of µ8 is an invariant measure ofthe Kolmogorov proess
dXt � �∇UpXtqdt� σpXtqdBt.(ii) If rptq tÑ�8ÝÝÝÝÑ r8   �8, µ8 is an invariant distribution of the homogeneous Markovproess solution of (4.4) with rptq � r8, �t ¥ 0.It is also possible to obtain a onvergene result on the random oupation measures pνz0t pω,dx, dyqqt¥1under the following slightly stronger hypothesis.

Assumption 14 (ȞU) There exists a P p0, 1s, β P R and α ¡ 0 suh thatpiq � xx,∇Upxqy ¤ β� α�Upxq _ |x|2	a ,�x P R
dpiiq p1� Trpσσ�qpxqq�1� |∇Upxq|2

Upxq � }D2Upxq} � |||D3Upxq|||
 |x|Ñ�8� oppUpxq _ |x|2qaq.Under suh ondition, it is possible to show similar results on pνz0t pω,dx, dyqqt¥1 whih aredesribed in [15℄.
Stationary measures and convergence rates It is possible to desribe the nature of theequilibrium of the proess pXt, Ytq in the ase0   r8   �8.
Proposition 4.2.4 Assume that pHrq, pHHypoq and (H̃U) are true and suppose that rptq �
r8 P R

��. If lim|x|Ñ�8 Upxq|x| � �8, then there exists a unique invariant measure ν suh that{ (i) ν is absolutely ontinuous w.r.t. the Lebesgue measure, with density pr8 whih is
C8pRd � R

d,R�q. Moreover, pr8 is the unique probability measure solution ofxy,∇xpr8y � 1

2
Tr�σ�D2xpr8σq	� r8 rxy�∇Upxq,∇ypr8y � pr8s � 0. (4.12){ (ii) If d � 1, Upxq � x2{2 and σpxq � σ ¡ 0 �x P R, and rptq � r8 Ps0;�8r, then pr8is a Gaussian measure entered with ovariane matrix

Σ2pr8q � σ2

2

�
r8�1
r8 1

1 1

�
.64



Remark 4.2.1 The situation is quite simple when r8 � �8 sine Theorem 4.2.1 showsthat the limiting behaviour of the memory di�usion is similar to the Kolmogorov one,but when r8 P p0,�8q the limiting invariant measure is non standard sine even in theGaussian ase, the density pr8 is a twisted Gaussian. The more r8 is near 0, the morelonger is the memory whih leads to an explosive variane of pr8. In the general ase, theP.D.E. satis�ed by pr8 does not seem to possess expliit solutions.At last, it is possible to desribe onvergene rate results of Ptpz0, .q when tÑ �8.In the homogeneous ase rptq � r8, it is possible to use the approah of [Down et al., 1995℄.
Theorem 4.2.2 Assume that r is homogeneous : rptq � r8 ¡ 0 and that hypo-elliptiassumptions of proposition 4.2.3, ii) are true. If U satis�es (ȞU) for some a P p0, 1s, thenfor any p ¥ 1 and t ¥ 0 :suptf,|f|¤1u |Pr8t pz0, fq � νpfq| ¤ Ca,p,r8Vp8pz0q#expp�γp,r8tq if a � 1

t�p�a�1
1�a if a P p0, 1q.where z � px, yq, V8 is a positive funtion de�ned as V8pzq � Upxq� r8

2

���x� y
r8 ���2, γp,r8 and

Ca,p,r8 are expliit non negarive onstants that does not depend on z0 and t.Remark that it is also possible to give some onvergene rates when r8 � �8 using someoupling argument to the di�usion dXt � �∇UpXtqdt�σpXtqdBt. Further details may be foundin [15℄.
4.2.4 Explosion (r8 � 0)When the memory funtion r satis�es limt ÞÑ�8 rptq � r8 � 0, we have a long memory inthe proess. Suh typial ase is kptq � p1 � tqα for any α ¡ 0 or when kptq � ep1�tqα with
0   α   1.
Under-quadratic potential We have obtained a quite preise result in the under-quadratiase of potential U. This result is summarized in the following theorem.
Theorem 4.2.3 Assume that there exists C suh that |∇U|2 ¤ Cp1 � Uq and λ0 ¡ 0 forwhih Trpσ�D2Uσqpxq ¥ λ0 ¡ 0. If r8 � 0 and for t large enough r 1ptq� 2r2ptq ¥ 0, then forany z0 lim sup

tÑ�8 rptqEr|Xz0t |2s ¡ 0.Moreover, there exists a sequene ptnqn¥1 suh that Er|Xz0tn|2s Ñ �8.This theorem may be applied for instane when the weighting memory is uniform all alongthe trajetory before t : Yt � 1
1�t ³t0∇UpXsqds. Hene, to obtain a stable proess with a longrange memory, it is neessary to redue the volatility of the random dynamial system. Thisphenomenon may be explained by the analogy with the phisial interpretation of the HBFmodel. More details are given in the introdution of [15℄.65



Quadratic potential It is also possible to obtain a very preise behaviour when U is quadra-ti. If one onsiders the result of proposition 4.2.4 iiq, we may remark that when r8 ÞÑ 0, theovariane matrix beomes ! in�nite "on oordinate x. Sine pXt, Ytqt¥0 is a Gaussian proess, ifthere exists an invariant measure, this latter one should also be Gaussian, whih yields �nallya non existene result.Moreover, we assume Upxq � x2{2, d � 1 and that the memory is polynomial : kptq � p1�tqα(thus rptq � α{p1�tq). All information is given in fptq � ErX2t s, gptq � ErY2t s and hptq � ErXtYts.Itô's formula shows that pSq$''''&''''% f 1ptq� 1� 2hptq
g 1ptq� 2rptqrhptq � gptqs
h 1ptq��gptq � rptqrfptq � hptqs.We then obtain the following theorem.

Theorem 4.2.4 Assume d � 1, Upxq � x2{2 and kptq � p1� tqα with α ¡ 1{2, one has :i) For any z0, pXz0t , Yz0t qt¥0 is asymptotially entered.ii) The proess pXz0t , Yz0t qt¥0 satis�eslim
tÑ8EY2t � α

2α� 1, and EX2t � t

2α� 1 when tÑ �8.iii) �
2α� 1
t

Xt,


2α� 1
α

Yt

�
Lùñ N p0, I2q when tÑ �8.

4.3 Particular case of kinetic Fokker-Planck evolutions

4.3.1 ModelWhen we have thought about average di�usion (4.4), we were mainly interested in propertiesthat may naturally be used for optimization appliations. Thus, the main questions of �rstinterest for suh appliations are behaviour of invariant measures with small parameters, andthe nature of the evolution of the norm }Pt�µ8}L2pµ8qý when t goes to �8. It is important towell estimate the onstants whih desribe the exponential onvergenes to equilibrium in orderto obtain the best simulated annealing as possible. Results desribed in [15℄ are in some sensequite unsatisfatory sine we only have results in total variation norm and onstants may not beso good for suh partiular kineti equation. In [19℄, we study a situation whih is more known :the kineti Fokker-Plank evolution. Suh equations are de�ned through the semi-group pPtqt¥0givent by #
dXt � σpVtqdt.
dVt � �∇UpVtq � adWt,

(4.13)where a is a non negative parameter and Wt a standard Brownian motion. Even if there doesnot exists a linear hange of variables whih permits to dedue results on (4.4) from (4.13) 4,these equations are quite similar, at least from a visual point of view. It was thus natural toonsider the omputation of the norms}Pt � µ8}L2pµaqý where µa is the stationary measure ofFokker-Plank kineti semi-group(4.13) whih is expliit here (ontrary to the one of (4.4)).4. In the Gaussian ase, one an write (4.4) using a di�erent parametrisation to obtain dXt � Ytdt and
dYt � �pXt � Ytqdt� dWt 66



4.3.2 Norm computation L2pµaqý for U � 0.In [19℄, we provide some exat results for the norm L
2pµaqý when onsidering the Fokker-Plank kineti semi-group in very partiular ases.The �rst toy model is redued to the state spae T � R for the "position � speed" where

T :� R{p2πZq. Let be given any a ¡ 0, the operator of interest is
La � yBx � aB2y � yBy, (4.14)whih is a partiular ase of(4.13) when U � 0 and the position lives in a ompat set. It isquite easy to see that Ppaqt onverges towards µa � λ b γa where λ is the uniform law on Tand gammaa is the Gaussian distribution entered with variane a. After some quite tehnialdevelopments, it is possible to ompute the evolution of the norm.

Theorem 4.3.1 For any a ¡ 0 and t ¥ 0, we have}Ppaqt � µa}L2pµaqý � max�expp�tq, exp ��a�t� 21� expp�tq
1� expp�tq
�
 , (4.15)where }.}L2pµaqý is the operator norm in L

2pµaq.The proof relies on a natural deomposition of the generator La on a basis of L2pµaq obtainedby a tensor produt of trigonometri polynomials in oordinate x and Hermite polynomials inoordinate y. We then identify some in�nite dimensional orthogonal subspaes whih are stableby La, denoted Vpp¥0 in this formal desription. La at on eah Vpp¥0 as an in�nite tri-diagonalanti-symmetri matrix. We should note that this is this anti-symmetry whih represents a seriousproblem for the omputation of the norm of La sine eigenvalues of La are no longer orthogonalin L
2pµaq.The key point whih permits to ompute both eigenvalues and eigenvetors of La on eah

Vp is to deompose the operator in D � ca,pS � ca,pSÆ and then use the Lie algebra spannedby D,S et SÆ whih is three dimensional here. This important property enables the ompleteomputation of the spetrum of La in this preise ase, the eigenvalues are all reals for any valueof a, as well as all assoiated eigenvetors. Instead of more details on the omputations whihare extremely tehnials 5, let us omment on some numerial onlusions brought by Theorem4.3.1.
4.3.3 Qualitative behaviour, U � 0It is above all interesting to look at the asymptoti behaviour of the norm omputed byTheorem4.3.1 for small and large times. When t ÞÑ 0�,ln�}Ppaqt � µa}L2pµa{cqý	 � � a

12
t3p1� op1qq. (4.16)This shows that the norm dereases very slowly at the beginning of the evolution and the power3 should be onsidered as the �rst order of hypo-oerivity of operator La. Moreover, when tgrowth to �8, � ln�}Ppaqt � µa}L2pµa{cqý	 � "

apt� 2�Ope�tqq , if a ¤ 1
t , if a ¡ 1,5. Commented as "nearby overkill" by some reader67



whih stands for the onvergene to equilibrium of the semi-group pPpaqt qt¥0. This bound isof ourse oherent with former bounds obtained in general studies for kineti Fokker-Plankequations but onstants here are expliit. Using a saling argument, it is possible to deduefrom Theorem 4.3.1 the following orollary :
Corollary 4.3.1 For any a, c ¡ 0 and b P Rzt0u, we onsider

La,b,c :� byBx � aB2y � cyBy (4.17)whih admits for invariant measure µa{c, then the semi-group pPpa,b,cqt qt¥0 satis�es�t ¥ 0, }Ppa,b,cqt � µa{c}L2pµa{cqý � max�expp�ctq, exp ��ab2
c3

�
ct� 21� expp�ctq

1� expp�ctq
�
 .In partiular, the onvergene to equilibrium is given bylim
t ÞÑ�8�1t ln�}Ppa,b,cqt � µa{c}L2pµa{cqý	 � min�c, ab2

c2



.It is quite tempting to ompare this onvergene rate to the usual one obtained with the Heatkernel pQpaq

t qt¥0 on T generated by the operator Ka :� aB2x. Ka uses at eah time the sameamount of randomness as La,b,c (where b P R and c ¡ 0 whih are tuning parameters). Sine Kais self-adjoint in L
2pλq and admits a spetral gap of a, we have�t ¥ 0, }Qpaq

t � λ}L2pλqý � expp�atq.Thus, if one onsiders a Monte Carlo method to simulate the uniform law λ, it would be usefulto hoose the hypo-oerive simulation pPpa,b,cqt qt¥0 instead of pQpaq
t qt¥0 with the hoie c ¡ aand b{c ¡ 1 and then projet the simulations on the �rst oordinate. Of ourse, this is justan example sine the simulation of a Brownian motion is learly more ostly than a simplesimulation of a uniform law but it shows that equilibrium onvergene rates an be improvedby the use of non reversible dynamis. Works of [Diaonis et al., 2010b℄ has already shown suhphenomenon in a framework of seond order Markov hains.

4.3.4 Hypo-coercive Ornstein-Uhlenbeck process.We now desribe briey the results on the hypo-oerive Ornstein-Uhlenbek proess de�nedon R� R through ~La :� yBx ��axBy � B2y � yBy. (4.18)The stationary measure is still expliit here and given by ~µa :� γ1{abγ1. We are going to studythe semi-group evolution p~Ppaqt qt¥0 in L
2p~µaq. The idea is again to ompute the e�et of ~La ona basis of L

2p~µaq obtained by the tensor produt of Hermite polynomials in variables x and
y. We �rst identify orthogonal subspaes whih are stable by ~La and let us denote them ~Vp.On these spaes, ~La may be deomposed in a similar way as it was also the ase when U � 0,~La � ~D � ~ca,p~S � ~ca,p~SÆ on ~Vp. This enables the exat omputation of the eigenvetors andeigenvalues of ~La on eah haque ~Vp and next on the whole spae L

2p~µaq. Here, the spetrumpossesses a di�erent behaviour aording to the position of a with respet to 1/4 : if a   1{4,the spetrum is real and ~La is diagonalisable in a non orthonormal basis of L2p~µaq. If a ¡ 1{4,the same property still holds even if the spetrum is not real. At last, if a � 1{4, ~La is no longerdiagonalisable and has Jordan bloks of all order. At last, ~Ppaqt � ~µa an be omputed in L
2p~µaq.68



Theorem 4.3.2 For all a ¡ 0 and t ¥ 0, one has}~Ppaqt � ~µa}L2pµa{cqý � Captq exp��1�ap1� 4aq�
2

t

�
, (4.19)where }.}L2pµa{cqý is the operator norm in L

2p~µaq and Captq is given by{ If a P p0, 1{4q, denote θ :� ?
1� 4a and

Captq :�gfffee�θt � 1� θ2
2θ2

p1� e�θtq2 � 1� e�2θt
2

��1� 1

θ

d
1� pθ�2 � 1q�eθt � 1

eθt � 1
2�.{ If a P p1{4,�8q, denote θ :� ?
4a� 1i and

Captq :�d
1� |eθt � 1|

2|θ|2 �|eθt � 1| �b|eθt � 1|2 � 4|θ|2
.{ If a � 1{4,
Captq :�gffe

1� t2

2
� td1��

t

2


2
.Again, if t is small enough, the dereasing power is three (see [19℄ for preise omputations)although when t ÞÑ �8, we get an exponential onvergene whose rate depends on the positionof a regarding 1{4. If a ¡ 1{4, the map Captq osillates with a period Ta � 2π{?4a� 1, whihyields a null derivative of the onvergene rate of }~Ppaqt � ~µa} eah times kTa, k P N. One analso extend there results to the generator~La,b,c,d :� byBx � axBy � cB2y � dyByfor whih ~µa,b,c,d :� γbc{padq b γc{d is an invariant measure. The hypo-oerivity obtained isgiven by�t ¥ 0, }~Ppa,b,c,dqt � ~µa,b,c,d}L2p~µa,b,c,dqý � Cab{d2pdtq exp��1�ap1� 4abd�2q�

2
dt

�
.As above, it is interesting to ompare this rate with the one obtained by the semi-groupp ~Qpa,b,c,dq

t qt¥0 whose generator is ~Ka,b,c,d :� cB2x � da
b
xBx. This generator impulses the sameamount of randomness per unit time as the hypo-oerive generator ~La,b,c,d and ~Ka,b,c,d is selfadjoint for γbc{padq (whih is the marginal on oordinate x of ~µa,b,c,d). After a resaling step,~Ka,b,c,d is an Ornstein-Ulhenbek generator with spetral gap da{b. The exponential onvergenerate of p ~Qpa,b,c,dq

t qt¥0 towards γbc{padq is then da{b. Thus, if one hooses
a

b
  1

2

�
1�d�

1� 4ab
d2


�� ,it is still better to use an hypo-oerive semi-group p~Ppa,b,c,dqt qt¥0 than the use of standardp ~Qpa,b,c,dq
t qt¥0 for the simulation of γbc{padq. Hene, the same onlusion (as the one given in theparagraph above) still holds. 69



4.4 Average diffusion with small parameterWe now ome bak to the average gradient di�usion desribed by eqrefsde and fous onsmall perturbations of this dynamial system. We �rst takle the problem of perturbations oftrajetories and then study the question somewhat more intriate of perturbations of invariantmeasures. We shall restrit this problem to the homogeneous Markov ase whih orresponds tothe memory funtion kptq � eλt desribed in the paragraph above :#
dXt � εdWt � Ytdt,
dYt � λp∇UpXtq � Ytqdt. (4.20)Remind that z will refer to the ouple px, yq as well as pZεtqt¥0 will denote the oupledproess pXεt , Yεt qt¥0 with a level ε of noise assoiated to (4.20). In the sequel, we will denote by

νε the unique invariant measure of (4.20) (uniqueness is satis�ed under assumption 11 denoted
HHypo), pPεt pz, .q will be its assoiated semi-group and at last Aε is the generator of (4.20).
4.4.1 Large deviations of finite time trajectoriesOf ourse, the limiting behaviour of (4.20) when εÑ 0 is strongly related to the behaviourof the deterministi dynamial system obtained when ε � 0 whih is here# 9xptq � �yptq.9yptq � λp∇Upxptqq � yptqq. (4.21)This link between (4.20) and (4.21) will be obtained through optimal solutions of the ontrolledproblem already pointed for the minoration of the density ptpz0, zq. We de�ne on R

d � R
d thedrift vetor �eld bpzq � p�y, λr∇Upxq � ysq, the ontrolled problem assoiated to (4.20) omesdown to study for any ϕ P H

1
0 (whih stands for the Cameron-Martin spae) the behaviour of

zϕ :� pzϕptqqt¥0 and ~zϕ :� p~zϕptqqt¥0, that satisfy9zϕ :� bpzϕq �� 9ϕ
0


 et 9~zϕ :� �bp~zϕq �� 9ϕ
0



. (4.22)Under the assumption 14 (denoted pH̃Uq in setion 4.2), it is possible to show non explosion ofontrolled trajetories within a �nite time horizon. Moreover, we establish a preliminary result ofLarge Deviation Priniple (L.D.P.) within �nite time, even if the di�usion is totally degeneratedon oordinate y.

Proposition 4.4.1 Assume that U satis�es assumption pH̃Uq, then for any z P R
d and allsequene pzεqε¡0 Ñ z when ε Ñ 0, the Markov proess Zε � pXpεq, Ypεqq satis�es a L.D.P.on CpR�,R2dq (endowed with the uniform onvergene on ompat sets topology). The rateis ε�2 and the good rate funtion Iz is de�ned for any absolutely ontinuous funtion

z � pzptqqt¥0 whih satis�es zp0q � z by
Izpzq � 1

2
inf

ϕPH1
0
|z�zϕ

» 8
0

| �ϕpsq|2ds.In partiular, for all t ¥ 0 and z P R
2d, pPεt pzε, .qqε¡0 satis�es a L.D.P. with rate ε�2 andgood rate funtion Iz,t de�ned for all z, z 1 P R

2d by
Iz,tpz 1q � inf

zPZtpz,z 1q Izpzq (4.23)70



where Ztpz, z 1q is the set of absolutely ontinuous trajetories z that leads z to z 1 in �nitetime t.The main diÆulty for the proof of suh proposition is to show a ontration priniple, this isstronly related to the non explosion of ontrolled trajetories. This last point is obtained using aperturbation of Gronwall's Lemma for the Lyapunov funtion Epx, yq � Upxq�|y|2{p2λ. Remarkthat it may be viewed as an example of extensions of Shilder's Theorem whih is generalizedin [Azenott, 1980℄.
4.4.2 Large deviations sub-sequences of pνεqεÞÑ0The large deviation property on stationary measures pνεqεÞÑ0 next depends on several ondi-tions. The �rst one is an exponential tightness property on pνεqεÞÑ0. This property is obtainedby onsidering hitting times of ompat sets for the proess pZεtqt¥0 when ε ÞÑ 0. The expe-tation of funtions of hitting times are also estimate using Lyapunov funtions. In view of thistightness property, the standard Lyapunov funtion Epx, yq evoked above is not suÆient andone should use a funtion whih globally ontrols both oordinates x and y in (4.20). The trikstill omes to use an appliation built from Vpx, yq already de�ned (4.11), more preisely if wedenote ~Vεpx, yq � exp�

δε�2Vppx, yq	 ,a good tuning of oeÆients δ and p permits to obtain the following ontration
Aε ~Vε ¤ δε�2pβ� αVpq.We an then dedue the following result.

Proposition 4.4.2 Assume that U is suh that pH̃Uq holds, then there exists a ompat Bof R2d, suh that the hitting time τε of B satis�es :
iq For any ompat K, lim supεÑ0 supzPK Ezrpτεq2s   8.
iiq D δ suh that for any ompat K, lim supεÑ0 supzPK supt Ezr|Zpεqt^τε| δ

ε2 sε2   �8.
iiiq For any ompat K suh that KX B � H, lim infεÑ0 infzPK Ezrτεs ¡ 0.We then an dedue the main result of this paragraph whih establishes a L.D.P. up to asub-sequene pεnqnPN and an Hamilton-Jaobi equation satis�ed by the good rate funtion.
Theorem 4.4.1 Assume that pH̃Uq holds, then pνεqεPp0,1s is exponentially tight. Moreover,for any sub-sequene pεnqnPN along whih a L.D.P. holds 6 with rate ε�2n , the good ratefuntion W satis�es�t ¥ 0 �z P R

d � R
d Wpzq � inf$'&'%ϕ P H

1
0

zϕp0q � z �
1

2

» t
0

| 9ϕ|2 �Wp~zϕptqq� . (4.24)This theorem provides only a partial existene of a L.D.P. for the sequene pνεqε¥0 sine theobtained rate funtions solutions of (4.24) may not be all the same. Indeed, this Hamilton-Jaobiequation (desribed here in the variational form of optimal ontrol of dynamial programmingpriniple) does not present some uniqueness property of its solution, and thus we annot dedueany uniqueness property of W from (4.24). The main goal of the next paragraph is to providesuÆient onditions to obtain a L.D.P. along all the sequene pνεqε¥0.6. Suh sub-sequene will be refered as a LD-onvergent sub-sequene71



4.4.3 Freidlin & Wentzell estimates

Equilibrium of the vector field We now assume the main hypothesis whih is neessary toobtain further results on the dynamial system (4.4).
Assumption 15 (HD) The set of ritial points of U is disrete (thus �nite), and theHessian of U is invertible on all these ritial points.We will denote in the sequel txÆ1, . . . xÆℓ u the set of these ritial points of U. The elementaryproperty whih permits to identify equilibriums of (4.21) whih uses the vetor �eld �b is asfollows
Proposition 4.4.3 Under the assumption pHDq,equilibriums of (4.21) are tzÆ1, . . . , zÆℓ u :�tpxÆ1, 0q, . . . , pxÆell, 0qu. The stable points are the ones for whih xÆi is a loal minimum of U.Under this assumption pHDq, it is possible to extend equation(4.24) to an in�nite horizon,hene the good rate funtion W is indeed solution of :�z P R

d � R
d Wpzq � min

1¤i¤ℓ inf$'&'%ϕ P H
1
0

zϕp0q � z, zϕp�8q � zÆi �
1

2

» t
0

| 9ϕ|2 �WpzÆi q� . (4.25)The proof of suh equality relies on dynamial argument of the vetor �eld �b : non explosionof trajetories in in�nite horizon, ompatness of trajetories and ω-limit sets. In partiular,the proof of (4.25) still does not use any uniqueness argument for W. However, the importantpoint in formula (4.25) is to remark that the funtion W de�ned on R
d�R

d depends exlusivelyon its values WpzÆi q taken in equilibrium points of �b. These values WpzÆi q are provided by theFreidlin & Wentzell estimates.
Freidlin & Wentzell theorey The idea is to exploit an expliit representation of the in-variant measures pνεqε¥0 obtained through a skeleton hain built from the hitting and exitingtimes of neighbourhoods of equilibriums. We extend this due to [Has'minskii, 1980℄ (whih isa key poinf of the approah of [Freidlin and Wentzell, 1984℄), to our hypo-ellipti ase usingontrol arguments of trajetories to ensure that the skeleton representation orresponds to a�nite measure proportional to νε.
Proposition 4.4.4 Let us denote ~µε the unique invariant measure of the skeleton Markovhain that lives in Yℓi�1gi, the the measure de�ned for any Borelian set A of Rd � R

d by
µεpAq :� »Bg ~µBgε pdzqEz » τ1pBgq

0

1Zz,ε
s PAdsis an invariant measure �nite and proportional to the invariant distribution νε.Next, we show that Freidlin & Wentzell estimates an be applied to our skeleton hain. Forany ouple of points ξ1 and ξ2, we de�ne the optimal ontrol ost with �nite time T to reah

ξ2 from ξ1 as
IT pξ1, ξ2q :� inf$'&'%ϕ P H

1
0

zϕp0q � ξ1, zϕpTq � ξ2 1

2

» T
0

| 9ϕpsq|2ds,72



zÆ1� �
zÆ2 �

zÆ3
BpzÆ1, ρ0q g1 g2 g3

z

ΓZz,ε
τ 1
1
pΓq

Zz,ετ1pBgq
Zz,ε
τ 12pΓqZz,ετ2pBgq

K
K1

Figure 4.1 { Representation of neighbourhoods gi of equilibriums points and proess pZz,εt qt¥0,the skeleton hain is desribed by the transition of Zz,ε
τ1pBgq ÞÑ Zz,ε

τ2pBgq whih belong to Yℓi�1gi.and the optimal ontrol ost is Ipξ1, ξ2q :� infT¥0 IT pξ1, ξ2q. In a similar way,~IpzÆi , zÆj q :� inf
T¡0 inf "1

2

» T
0

| 9ϕpsq|2ds,ϕ P H
1
0, zϕp0q � zÆi , zϕpTq � zÆj ,�s P r0, T s, zϕpzÆi , sq R Yk�i,jgk* .It is then possible to use a L.D.P. on trajetories of �nite horizon and the exat loal ontrollabi-lity near eah zÆi to obtain sharp approximations of the transitions of the skeleton hain using Iwhen ε is small enough (see [20℄ and [Freidlin and Wentzell, 1984℄) . We an prove the followingresult.

Proposition 4.4.5 Assume that U satis�es the assumptions pHDq, pH̃Uq and pHHypq,then :
iq For any ouple pi, jq P t1 . . . ℓu2, ~IpzÆi , zÆj q   �8 and there exists only one ommuni-ation lass of gi for the skeleton hain.
iiq Moreover, for any γ ¡ 0, one an �nd ρ0 and ρ1 (size of neighbourhoods of zÆi forthe de�nition of the skeleton hain) suh that 0   ρ1   ρ0 and for whih a suÆientlysmall ε yields�pi, jq P t1 . . . ℓu2 �x P Bgi 0   e�ε�2r~IpzÆi ,zÆj q�γs ¤ ~Pεpx, Bgjq ¤ e�ε�2r~IpzÆi ,zÆj q�γs.

4.4.4 Large Deviation Principle for invariant measures pνεqε¥0The above estimation permits to ompute a sharp approximation of the stationary measureof the skeleton Markov hain using the notion of tiu-Graphs. Remind briey that for any i Pt1, . . . , ℓu, Gpiq is the set of oriented graphs with verties tzÆ1, . . . , zÆℓ u and suh that(i) All vertex zÆj � zÆi is the starting point of exatly one edge.(ii) The graph does not ontain any yle.(iii) For any zÆj , there exists a unique path of oriented edges starting at zÆj whih reahes zÆi .73



At last, the estimation of µε for the skeleton Markov hain dedued from proposition 4.4.5assoiated to the "link" formula of νε given by proposition 4.4.4 permet alors de onlure ler�esultat suivant.
Theorem 4.4.2 Under assumptions pHHypoq, pHDq and pH̃Uq, for any pεnq LD-onvergentsub-sequene, the good rate funtion W satis�es�i P t1 . . . ℓu WpzÆi q � min

gPGpiq ¸pzÆmÑzÆnqPg IpzÆm, zÆnq � min
gPGpiq ¸pzÆmÑzÆnqPg~IpzÆm, zÆnq. (4.26)Moreover, W is uniquely de�ned by (4.26) and�z P R

d � R
d Wpzq � min

1¤i¤ℓ inf$'&'%ϕ P H
1
0~zϕp0q � z, ~zϕp�8q � zÆi �

1

2

» 8
0

| 9ϕ|2 �WpzÆi q� ,thus pνεqε¥0 satis�es a Large Deviation Priniple.
4.4.5 Quasi-potential for a double-well potentialThe variation of the quasi-potential W (rate funtion of the L.D.P.) given in the paragraphabove by Theorem 4.4.2 is simple when U is onvex, but it is far from being also the ase ina more general situation. We are going to study the partiular ase of a potential de�ned on
R whih is not onvex and possesses a double well. This potential U is typially desribed inFigure 4.2.
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Figure 4.2 { Double-well potentiel U with 2 minima x1   x2 and one loal maximum x�.We then aim to ompute the quasi-potential assoiated to the L.D.P. obtained for the proess(4.4), its formal expression is quite simple sine only L2 osts of ontrol to transit between
zÆ1 :� px1, 0q and zÆ2 :� px2, 0q are neessary (owing to the simpliity of i-graphs). Withoutloss of generality, we assume that Upx1q   Upx2q and we wish to ompute a lower bound of
WpzÆ2q � IpzÆ1, zÆ2q as well as an upper bound of WpzÆ1q � IpzÆ2, zÆ1q.74



Upper and lower bound in the standard case In standard ase of simulated annealing, thedrift term orresponds to the opposite of a gradient and the ontrol problem is non degeneratedand written as 9z � �∇Upzq � ϕ. One may remark that the partiular hoie ϕpzq � 2∇Upzqenables to reah a loal maxima xÆ from a loal minimum x1 with a ost equals to 2rUpxÆq �
Upx1qs. Then, a ontinuity argument of the ost permits to obtain an idential ost between x1and x2, and the following upper bound easily follows

Ipx1, x2q ¤ 2rUpxÆq �Upx1qs.Moreover, a simple argument lead to a mathing lower bound : for any trajetory pztqt¥0 startingat x1 whih leads to x2 neessary reahes x� 7| 9ϕ|2 � | 9z�∇U|2 ¥ 2x 9z,∇Upzqy.and we then obtain that the ontrol ost is bounded from below by 2rUpxÆq �Upx1qs.
Upper and lower bound in the average gradient system Indeed, it is possible to ex-pand the former results to a slightly more general ase of drifts (see for instane the works of[Sheu, 1986℄) but the problem is largely open for a general drift given by bpx, yq � p�y, λp∇Upxq�
yq. In order to �nd a good trajetory whih drives zÆ2 to zÆ1, we have been inspired by the standardase and we exploit the idea to "invert" the drift in view to go bak in time. This is traduedby the following di�erential equation

dXt � 1

eλt

» t
0

λeλs∇UpXsqds. (4.27)Sine the ontrol ϕ only ats on the �rst oordinate, it is quite natural to hoose 9ϕ � 2y sine ityields the desired di�erential equation desribed by (4.27). This method thus �nds a trajetorywith a ost idential to the one obtained in the standard ase.
Proposition 4.4.6 For the double-well potential desribed above, we have

WpzÆ1q � IpzÆ2, zÆ1q ¤ 2rUpxÆq �Upx2qs.Finding a suitable lower bound of Wpz2q is learly a muh more diÆult task and may betakled by onsidering either ontrolled trajetory with ontrols whih at on x and y, or ina more natural way by limiting the ontrol to at only on the x oordinate. We immediatelyremark that :
IT pzÆ1, zÆ2q � inf$''''&''''%ϕ P H

1
0

zϕp0q � zÆ1
zϕpTq � zÆ2 1

2

» T
0

| 9ϕpsq|2ds ¥ inf$''''&''''%ϕ,ψ P H
1
0

zϕ,ψp0q � zÆ1
zϕ,ψpTq � zÆ2 1

2

» T
0

| 9ϕpsq|2 � | 9ψpsq|2ds
where zϕ,ψ is a x{y ontrolled trajetory by ϕ and ψ. In the sequel, we only provide theapproah developed for the degenerated ontrol problems whih only ats on oordinate x, theother approah may be desribed in [20℄ and provides interesting results and quite more generalresults (on U) than the ones detailed here. Note that the lower bound here are better for the7. In larger dimension, one should onsider the minimal elevation neessary to limb the hill between x1 and
x2 75



degenerate ontrol but the needed assumptions are slightly restritive. For any ϕ ontrolledtrajetory , we have | 9ϕ|2 � | 9x� y|2 � 9x2 � y2 � 2 9xy,and we aim to bound this quadrati form in px, y, 9xq from below by the derivative along thetrajetory zϕ of a suitable funtion of x and y. The priniple is thus similar to the one used inthe standard approah when we used | 9ϕ|2 ¥ 2x 9z,∇Upzqy. Thus, we wish to �nd Lpx, yq suhthat 9x2 � y2 � 2 9xy ¥ x∇Lpx, yq, p 9x, 9yqy. (4.28)We researhed map L is of the form
Lα,β,γpx, yq :� αUpxq � βy2{2� γyU 1pxq,and it is quite intriate to remark that suh funtion may be used both to obtain ompatnessresults in large time, and also may yield some lower bound of L2 ontrol ost between two points

zÆ1 and zÆ2. We then obtain the following result.
Proposition 4.4.7 For any α P r0, 2s, there exists an expliit mpα, λq suh that }U"}8 ¤
mpαq implies that one an �nd βpαq and γpαq so that (4.28) holds. For this hoie, wehave

IT pzÆ1, zÆ2q ¥ αrUpxÆq �Upx1qs.We will instantaneously remark that this proposition annot reah a lower bound greater thantwie the elevation of U between x1 and x2, whih is oherent with the result of 4.4.6. Thesetwo results ombined with Theorem 4.4.2 permits to give the �nal result on the behaviour of νεtowards the global minimum of U.
Theorem 4.4.3 Under assumptions pHHypoq, pHDq and pH̃Uq, if U is a double-well real va-lued potential (desribed as above) with Upx1q   Upx2q and suh that }U"}8 ¤ m�

2
UpxÆq�Upx2q
UpxÆq�Upx1q , λ	,then lim

εÞÑ0νε � δx1 .At last, remark that when λ omes larger, the average gradient system uses a shorter rangememory and the bound on }U"}8 in the former result is muh more permissive. This phenomenonis illustrated in Figure 4.3 whih shows for several values of λ the evolution of α whih is themultipliative oeÆient of UpxÆq �Upx1q that depends on }U"}8.
4.5 Further developments

4.5.1 Hypo-coercivity of the memoru gradient diffusion, simulated annealingThe �rst forthoming work would onern some hypo-oerivity results and thus how ob-tain an upper bound of its semi-group in L
2pνq. This points has not been addressed sine ourresults was obtained using [Down et al., 1995℄ tehniques, whih yield total variation results.It would be interesting to �nd a stronger result. An inidene angle to go towards suh resultshould ertainly use the Lyapunov funtion in order to obtain some Poinar�e-like inequality.Suh method has already been exploited in the ase of kineti Fokker-Plank equations (see forinstane a brief exposition of suh method in [Villani, 2006℄). An additional diÆulty in the aseof memory gradient di�usion is the non expliit nature of its invariant distribution and onlyimpliit relations are known through a P.D.E. satis�ed by ν.76
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Figure 4.3 { Evolution of α multipliative oeÆient of the elevation of U with respet to }U"}8for several λ.
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The seond natural point would ontinue the annealing study in view of a real simulatedannealing proedure, ε should now beome an evanesent funtion of t. Numerial experiments(not shown in this memory) has pointed that it was possible to use a temperature sheme
εptq � c{ log t and obtain a onvergene of pZεptqt qt¥0 towards the global minimum of U inthe ase of a double-well potential, provided that the "hill" between the two wells is enoughundershot (see assumptions of Theorem 4.4.3). Moreover, there still also exists other numerialhints whih would prove that the onstant c may be hosen lower than the limiting one in thease of the standard simaulted annealing proedure. At last, an optimisation with respet to λfor the memory simulated annealing seems to be important. There is no theoretial response onall suh points at the moment.
4.5.2 Controllability result on the memory systemAnother important lass of problem is the nature of ontrollability results we may obtainfor the system 4.22. We show in our study that under hypothesis of non degeneray near ri-tial points of U and growing onditions at 8, the approahed ontrollability is true. Even ifthe growing ondition seems imperative on U, it seems to be more disussable regarding theassumption of non degeneray. Indeed, there exists a large amount of methods to avoid theuse of the Kalman linearisation method, see for instane Sussman onditions in [Coron, 2007℄to obtain loal exat ontrollability, or �xed point tehniques (an example may be found in[Beauhard and Zuazua, 2009℄).At last, from a numerial point of view, it seems hallenging to develop algorithms forthe omputation of optimal ontrol osts to obtain W. A starting ollaboration with numerialspeialists of ontrollability has lead us to onsider the Pontryagin maximum priniple to obtainnumerial results.
4.5.3 Non reversible simulationsConlusions drawn by the paragraph 4.3 should stimulate the interest of seond order simu-lations (seond order Markov hains, kineti equations) in order to obtain faster onvergenerates to steady regime than the one obtained by �rst order dynamial systems. This point is nottrue of ourse in full generality, and should be ompleted by generi examples. This is not thease at the moment regarding for instane the very partial results obtained in the ase of kinetiFokker-Plank equations. If suh phenomenon holds, it would be of �rst interest for stohastialgorithms whih uses MCMC simulations or Bayesian algorithms.
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Published or accepted papers - Statistics in large dimensions[2℄ Kim-Anh Lê Cao, Philippe Besse, Olivier Gon�alves, and S�ebastien Gadat. Seletion ofbiologially relevant genes with a wrapper stohasti algorithm. Statistial Appliationsin Genetis and Moleular Biology, 6, 2007.[3℄ Kim-Anh Lê Cao, Agn�es Bonnet, and S�ebastien Gadat. Multilass lassi�ation and geneseletion with a stohasti algorithm. Computational Statistis and Data Analysis,53 :3601{3615, 2009.[4℄ Serge Cohen, S�ebastien D�ejean, and S�ebastien Gadat. Adaptive sequential design forregression on multi-resolution bases. Statistis and Computing, to appear, 22(2) :1{20,2012.[5℄ S�ebastien Gadat. Jump di�usion over feature spae for objet reognition. Siam, Journalon Control and Optimisation, 47 :904{935, 2008.[6℄ S�ebastien Gadat and Laurent Younes. A stohasti algorithm of features extration forpattern reognition. Journal of Mahine Learning Researh, 8 :509{547, 2007.[7℄ N. Villa, T. Dkaki, S. Gadat, J.M. Inglebert, and Q.D. Truong. Reherhe et repr�esentationde ommunaut�es dans un grand graphe : une approhe ombin�ee. Doument Num�erique,14 :59{80, 2011.
Published or accepted papers - Deformable models[8℄ J. Bigot, C. Christophe, and S. Gadat. Random ation of ompat lie groups and minimaxestimation of a mean pattern. IEEE, Transations on Information Theory, to appear,2012.[9℄ J�er�emie Bigot and S�ebastien Gadat. A deonvolution approah to estimation of a ommonshape in a shifted urves model. Annals of Statistis, 38(4) :2422{2464, 2010.[10℄ J�er�emie Bigot and S�ebastien Gadat. Smoothing under di�eomorphi onstraints withhomeomorphi splines. Siam, Journal on Numerial Analysis, 48(1) :224{243, 2010.[11℄ J�er�emie Bigot, S�ebastien Gadat, and Jean-Mihel Loubes. Statistial m-estimation andonsisteny in large deformable models for image warping. Journal of MathematialImaging and Vision, 34(3) :270{290, 2009.79



[12℄ J�er�emie Bigot, S�ebastien Gadat, and Cl�ement Marteau. Sharp template estimation in ashifted urves model. Eletroni Journal of Statistis, 4 :994{1021, 2010.
Published or accepted papers - Random dynamical systems[13℄ A. Cabot, H. Engler, and S. Gadat. On the long time behavior of seond order di�e-rential equations with asymptotially small dissipation. Transations of the AmerianMathematial Soiety, 361 :5983{6017, 2009.[14℄ A. Cabot, H. Engler, and S. Gadat. Seond order di�erential equations with asymptoti-ally small dissipation and pieewise at potentials. Eletroni Journal of Di�erentialEquations, 17 :33{38, 2009.[15℄ S. Gadat and F. Panloup. Long time behavior and stationary regime of memory gradientdi�usions. in revision for Annales de l'Institut Henri Poinar�e (B), pages 1{40, 2012.
Submitted papers[16℄ J. Bigot, S. Gadat, T. Klein, and C. Marteau. Intensity estimation of non-homogeneouspoisson proesses from shifted trajetories. Preprint, 2011.[17℄ C. Ciero, M. Champion, S. Gadat, and M. Vignes. A boost-boost algorithm for highdimensional multivariate regression. Preprint, 2012.[18℄ C. Ciero, M. Champion, S. Gadat, and M. Vignes. Gene network reovery and L

2 boostingalgorithm. Preprint, 2012.[19℄ S. Gadat and L. Milo. Spetral deompositions and l2-operator norms of toy hypooerivemodels. Preprint, 2012.[20℄ S. Gadat, F. Panloup, and C. Pellegrini. Large deviation priniple for invariant distribu-tions of memory gradient di�usions. Preprint, 2012.
Books chapter[21℄ J. Bigot and S. Gadat. hapter : Pattern reognition through large deformations ofimages, in book Pattern Reognition. Inteh, 2010.[22℄ S. Gadat. hapter : Feature Seletion in high dimension for fae Detetion, in bookAdvanes in Fae Image Analysis. Tehniques and Tehnologies, IGI - Global, 2009.[23℄ J. Vandel D. Allouhe C. Ciero-Ayrolles T. Shiex B. Mangin S. Gadat S. de GivryM. Vignes, M. Champion. hapter : Integration of omplementary approahes to re-onstrut gene regulatory networks in a genetial genomis framework, in book Veri-�ation of methods for gene network inferene from Systems Genetis data. Springer,2012.
Proceedings[24℄ J.M. Azais, D. Debailleux, S. Gadat, and N. Suard. Assessment of an ionosphere stormourrene risk. In Proeedings of the 2011 Conferene ENC GNSS, London, England,November 2011. 80
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