
Journal of Machine Learning Research () 1-40 Submitted 2/05; Revised 03/06; Published

A stochastic algorithm for feature selection in pattern

recognition
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Abstract

We introduce a new model adressing feature selection from a large dictionary of variables
that can be computed from a signal or an image. Features are extracted according to an
efficiency criterion, on the basis of specified classification or recognition tasks. This is done
by estimating a probability distribution P on the complete dictionary, which distributes
its mass over the more efficient, or informative, components. We implement a stochastic
gradient descent algorithm, using the probability as a state variable and optimizing a multi-
task goodness of fit criterion for classifiers based on variable randomly chosen according
to P. We then generate classifiers from the optimal distribution of weights learned on the
training set. The method is first tested on several pattern recognition problems including
face detection, handwritten digit recognition, spam classification and micro-array analysis.
We then compare our approach with other step-wise algorithms like random forests or
recursive feature elimination.

Keywords: stochastic learning algorithms, Robbins-Monro application, pattern recogni-
tion, classification algorithm, feature selection

1. Introduction

Most of the recent instances of pattern recognition problems (whether in computer
vision, image understanding, biology, text interpretation, or spam detection) involve highly
complex datasets with a huge number of possible explanatory variables. For many reasons,
this abundance of variables significantly harms classification or recognition tasks. Weakly
informative features act as artificial noise in data and limit the accuracy of classification
algorithms. Also, the variance of a statistical model is typically an increasing function of
the number of variables, whereas the bias is a decreasing function of this same quantity
(Bias-Variance dilemma discussed by Geman et al. (1992)); reducing the dimension of the
feature space is necessary to infer reliable conclusions. There are efficiency issues, too, since
the speed of many classification algorithms is largely improved when the complexity of the
data is reduced. For instance, the complexity of the q-nearest neighbor algorithm varies
proportionally with the number of variables. In some cases, the application of classification
algorithms like Support Vector Machines (see Vapnik, 1998, 2000) or q-nearest neighbors on
the full feature space is not possible or realistic due to the time needed to apply the decision
rule. Also, there are many applications for which detecting the pertinent explanatory
variables is critical, and as important as correctly performing classification tasks. This
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is the case, for example, in biology, where describing the source of a pathological state is
equally important to just detecting it (Guyon et al., 2002; Golub et al., 1999).

Feature selection methods are classically separated into two classes. The first approach
(filter methods) uses statistical properties of the variables to filter out poorly informative
variables. This is done before applying any classification algorithm. For instance, singu-
lar value decomposition or independent component analysis (Jutten and Hérault, 1991)
remain popular methods to limit the dimension of signals, but these two methods do not
always yield relevant selection of variables. Superpositions of several efficient filters (Bins
and Draper, 2001) has been proposed to remove irrelevant and redundant features, and
the use of a combinatorial feature selection algorithm has provided results achieving high
reduction of dimensions (more than 80 % of features are removed) preserving good accuracy
of classification algorithms on real life problems of image processing. (Xing et al., 2001)
have proposed a mixture model and afterwards an information gain criterion and a Markov
Blanket Filtering method to reach very low dimensions. They next apply classification al-
gorithms based on Gaussian classifier and Logistic Regression to get very accurate models
with few variables on the standard database studied in (Golub et al., 1999). The heuristic
of Markov Blanket Filtering has been likewise competitive in feature selection for video
application in (Liu and Render, 2003).

The second approach (wrapper methods) is computationally demanding, but often is
more accurate. A wrapper algorithm explores the space of features subsets to optimize
the induction algorithm that uses the subset for classification. These methods based on
penalization face a combinatorial challenge when the set of variables has no specific or-
der and when the search must be done over its subsets since many problems related to
feature extraction have been shown to be NP-hard (Blum and Rivest, 1992). Therefore,
automatic feature space construction and variable selection from a large set has become
an active research area. For instance, in (Fleuret and Geman, 2001; Amit and Geman,
1999; Breiman, 2001) the authors successively build tree-structured classifiers considering
statistical properties like correlations or empirical probabilities in order to achieve good
discriminant properties . In a recent work of Fleuret (2004), the author suggests to use
mutual information to recursively select features and obtain performance as good as that
obtained with a boosting algorithm (Friedman et al., 2000) with fewer variables. Weston
et al. (2000) and Chapelle et al. (2002) construct another recursive selection method to
optimize generalization ability with a gradient descent algorithm on the margin of Support
Vector classifiers. Another effective approach is the Automatic Relevance Determination
(ARD) used in MacKay (1992) which introduce a learning hierarchical prior over weights
in a Bayesan Network, the weights connected to irrelevant features are automatically pe-
nalysed which reduces their influence near zero. At last, an interesting work of Cohen et al.
(2005) use an hybrid wrapper and filter approach to reach highly accurate and selective re-
sults. They consider an empirical loss function as a Shapley value and perform an iterative
ranking method combined with backward elimination and forward selection. This last work
is not so far from the ideas we develop in this paper.

In this paper, we provide an algorithm which attributes a weight to each feature, in
relation with their importance for the classification task. The whole set of weights is op-
timized by a learning algorithm based on a training set. This weighting technique is not
so new in the context of feature selection since it has been used in Sun and Li (2006). In
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our work, these weights result in an estimated probability distribution over features. This
estimated probability will also be used to generate randomized classifiers, where the ran-
domization is made on the variables rather than on the training set, an idea introduced by
Amit and Geman (1997), and formalized by Breiman (2001). The selection algorithm and
the randomized classifier will be tested on a series of examples.

The article is organized as follows. In section 2, we describe our feature extraction
model and the related optimization problem. Next, in sections 3 and 4, we define stochastic
algorithms which solve the optimization problem and discuss its convergence properties. In
section 5, we provide several applications of our method, first with synthetic data, then on
image classification, spam detection and on microarray analysis. Section 6 is the conclusion
and addresses future developments.

2. Feature extraction model

We start with some notations.

2.1 Primary notation

We follow the general framework of supervised statistical pattern recognition: the input
signal, belonging to some set I, is modeled as a realization of a random variable, from
which several computable quantities are accessible, forming a complete set of variables (or
tests, or features) denoted F = {δ1, . . . δ|F|}. This set is assumed to be finite, although |F|
can be a very large number, and our goal is to select the most useful variables. We denote
δ(I) the complete set of features extracted from an input signal I.

A classification task is then specified by a finite partition C = {C1, . . . CN} of I; the
goal is to predict the class from the observation δ(I). For such a partition C and I ∈ I, we
write C(I) for the class Ci to which I belongs, which is assumed to be deterministic.

2.2 Classification algorithm

We assume that a classification algorithm, denoted A, is available, for both training and
testing. We assume that A can be adapted to a subset ω ⊂ F of active variables and to
a specific classification task C. (There may be some restriction on C associated to A, for
example, support vector machines are essentially designed for binary (two-class) problems.)
In training mode, A uses a database to build an optimal classifier Aω,C : I → C, such that
Aω,C(I) only depends on ω(I). We shall drop the subscript C when there is no ambiguity
concerning the classification problem C. The test mode simply consists in the application
of Aω on a given signal.

We will work with a randomized version of A, for which the randomization is with
respect to the set of variables ω (see Amit and Geman, 1997; Breiman, 2001, 1998). In the
training phase, this works as follows: first extract a collection {ω(1), . . . , ω(n)} of subsets
of F , and build the classifiers Aω(1) , . . . , Aω(n) . Then, perform classification in test phase
using a majority rule for these n classifiers. This final algorithm will be denoted ĀC =
Ā(ω(1), . . . , ω(n), C). It is run with fixed ω(i)’s, which are obtained during learning.

Note that in this paper, we are not designing the classification algorithm, A, for which we
use existing procedures; rather, we focus on the extraction mechanism creating the random
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subsets of F . This randomization process depends on the way variables are sampled from
F , and we will see that the design of a suitable probability on F for this purpose can
significantly improve the classification rates. This probability therefore comes as a new
parameter and will be learned from the training set.

Figure 1 summarizes the algorithm in test phase.

Input signal of I I ∈ I

|F|-dimensional vector

Computation of ω(1)(I), . . . , ω(n)(I)

Resulting individual decisions: Aω(1)(I), . . . , Aω(n)(I)

Combination of individual decisions Ā(I)

Figure 1: Global algorithm in test phase.

2.3 Measuring the performance of the algorithm A

The algorithm A provides a different classifier Aω for each choice of a subset ω ⊂ F . We
let q be the classification error: q(ω, C) = P(Aω(I) 6= C(I)) which will be estimated by

q⋆(ω, C) = P̂(Aω(I) 6= C(I)) (1)

where P̂ is the empirical probability on the training set.
We shall consider two particular cases for a given A.

• Multi-class algorithm: assume that A is naturally adapted to multi-class problems
(like a q-nearest neighbour, or random forest classifier). We then let g(ω) = q⋆(ω, C)
as defined above.

• Two-class algorithms: this applies to algorithms like support vector machines, which
are designed for binary classification problems. We use the idea of the one-against-all
method: denote by Ci the binary partition {Ci, I \ Ci}. We then denote:

g(ω) =
1

N

N
∑

i=1

q⋆(ω, Ci)

which is the average classification rate of the one vs. all classifiers. This “one against
all strategy” can easily be replaced by others, like methods using error correcting
output codes (see Dietterich and Bakiri, 1995).
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2.4 A computational amendment

The computation q⋆(ω, C), as defined in equation (1), requires training a new classification
algorithm with variables restricted to ω, and estimating the empirical error; this can be
rather costly with large datasets (this has to be repeated at each of the steps of the learning
algorithm).

Because of this, we use a slightly different evaluation of the error. In the algorithm,
each time an evaluation of q⋆(ω, C) is needed, we use the following procedure (T being a
fixed integer and Ttrain will be the training set):

1. Sample a subset T1 of size T (with replacements) from the training set.

2. Learn the classification algorithm on the basis of ω and T1.

3. Sample, with the same procedure, a subset T2 from the training set, and define
q̂
(T1,T2)

(ω, C) to be the empirical error of the classifier learned via T1 on T2.

Since T1 and T2 are independent, we will use q̂(ω, C) defined by

q̂(ω, C) = E
(T1,T2)

[

q̂
(T1,T2)

(ω, C)
]

(2)

to quantify the efficiency of the subset ω, where the expectation is computed over all the
samples T1,T2 of signals taken from the training set of size T . It is also clear that defining
such a cost function contributes in avoiding overfitting in the selection of variables. For the
multiclass problem, we define

ĝT1,T2(ω) =
1

N

N
∑

i=1

q̂
(T1,T2)

(ω, Ci)

and we replace the previous expression of g by the one below:

g(ω) = ET1,T2 [ĝT1,T2(ω)]

This modified function g will be used later in combination with a stochastic algorithm
which will replace the expectation over the training and validation subsets by empirical
averages. The selection of smaller training and validation sets for the evaluation of ĝT1,T2

then represents a huge reduction of computer time. The selection of the size of T1 and T2

depends on the size of the original training set and of the chosen learning machine. It has
so far been selected by hand.

In the rest of our paper, the notation E
ξ
[.] will refer to the expectation using ξ as the

integration variable.

2.5 Weighting the feature space

To select a group a variables which are most relevant for the classification task one can
think first of a hard selection method, i.e. search ω such that

q̂(ω, C) = arg min
ω∈F |ω|

q̂(ω, C)
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But sampling all possible subsets (ω covers F |ω|) may be untractable since |F| can be
thousands and |ω| ten or hundreds.

We address this with a soft selection procedure that attributes weights to the features
F .

2.6 Feature extraction procedure

Consider a probability distribution P on the set of features F . For an integer k, the dis-
tribution P⊗k corresponds to k independent trials with distribution P. We define the cost
function E by

E(P) = EP⊗kg(ω) =
∑

ω∈Fk

g(ω)P⊗k(ω). (3)

Our goal is to minimize this averaged error rate with respect to the selection parame-
ter, which is the probability distribution P. The relevant features will then be the set of
variables δ ∈ F for which P(δ) is large. The global (iterative) procedure that we propose
for estimating P is summarized in Figure 2.

I ∈ I Set F

Feature sampling using P: ω

Classification A on ω(I)

Computing the mean performance g(ω) on the training set

Parameters’ selection feedback

Figure 2: Scheme of the procedure for learning the probability P.

Remark: We use P here as a control parameter: we first make a random selection of
features before setting the learning algorithm. It is thus natural to optimize our way to
select features from F and formalize it as a probability distribution on F . The number of
sampled features (k) is a hyperparameter of the method. Although we have set it by hand
in our experiments, it can be estimated by cross-validation during learning.

3. Search algorithms

We describe in this section three algorithmic options to minimize the energy E with respect
to the probability P. This requires computing the gradient of E , and dealing with the
constraints implied by the fact that P must be a probability distribution. These constraints
are summarized in the following notation.
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We denote by SF the set of all probability measures on F : a vector P of R|F| belongs
to SF if

∑

δ∈F

P(δ) = 1 (4)

and

∀δ ∈ F P(δ) ≥ 0 (5)

We also denote HF the hyperplane in R|F| which contains SF , defined by (4).

We define the projections of an element of R|F| onto the closed convex sets SF and HF .
Let πSF

(x) be the closest point of x ∈ R|F| in SF

πSF
(x) = arg min

y∈SF

{

‖y − x‖2
2
}

(6)

and similarly

πHF
(x) = arg min

y∈HF

{

‖y − x‖2
2
}

= x − 1

|F|
∑

δ∈F

x(δ). (7)

The latter expression comes from the fact that the orthogonal projection of a vector x onto
a hyperplane is x − 〈x,N〉N where N is the unit normal to the hyperplane. For HF , N is
the vector with all coordinates equal to 1/

√

|F|.
Our first option will be to use projected gradient descent to minimize E , taking only

constraint (4) into account. This implies solving the gradient descent equation

dPt

dt
= −πHF

(∇E(Pt)) (8)

which is well-defined as long as Pt ∈ SF . We will also refer to the discretized form of (8),

Pn+1 = Pn − ǫnπHF
(∇E(Pn)) (9)

with positive (ǫn)n∈N
. Again, this equation can be implemented as long as Pn ∈ SF . We

will later propose two new strategies to deal with the positivity constraint (5), the first one
using the change of variables P 7→ log P, and the second being a constrained optimization
algorithm, that we will implement as a constrained stochastic diffusion on SF .

3.1 Computation of the gradient

However, returning to (8), our first task is to compute the gradient of the energy. We first
do it in the standard case of the Euclidean metric on SF , that is we compute ∇PE(δ) =
∂E/∂P(δ). For ω ∈ Fk and δ ∈ F , denote by C(ω, δ) the number of occurences of δ in ω:

C(ω, δ) = |{i ∈ {1, . . . k} | ωi = δ}| (10)

C(ω, .) is then the |F|-dimensional vector composed by the set of values C(ω, δ), δ ∈ F .
Then, a straightforward computation gives:
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Proposition 1 If P is any point of SF , then

∀δ ∈ F ∇PE(δ) =
∑

ω∈Fk

C(ω, δ)P⊗k(ω)

P(δ)
g(ω) (11)

Consequently, the expanded version of (9) is

Pn+1(δ) = Pn(δ) − ǫn

∑

ω∈Fk

P⊗k(ω)g(ω)

(

C(ω, δ)

P(δ)
− 1

|F|
∑

µ∈ω

C(ω, µ)

P(µ)

)

(12)

In the case when P(δ) = 0, then, necessarily C(ω, δ) = 0 and the term C(ω, δ)/P(δ) is by
convention equal to 0.

The positivity constraint is not taken in account here, but this can be dealt with, as
described in the next section, by switching to an exponential parameterization. It is also be
possible to design a constrained optimization algorithm, exploring the faces of the simplex
when needed, but this is a rather complex procedure, which is harder to conciliate with
the stochastic approximations we will describe in section 4. This approach will in fact
be computationally easier to handle with a constrained stochastic diffusion algorithm, as
described in section 3.3.

3.2 Exponential parameterization and Riemannian gradient

Define y(δ) = log P(δ) and

Y =

{

y = (y(δ), δ ∈ F) |
∑

δ∈F

ey(δ) = 1

}

(13)

which is in one-to-one correspondence with SF (allowing for the choice y(δ) = −∞). Define

Ẽ(y) = E(P) =
∑

ω∈Fk

ey(ω1)+···+y(ωk)g(ω) (14)

Then, we have:

Proposition 2 The gradient of E with respect to these new variables is given by:

∇yẼ(δ) =
∑

ω∈Fk

ey(ω1)+···+y(ωk)C(ω, δ)g(ω). (15)

We can interpret this gradient on the variables y as a gradient on the variables P with
a Riemannian metric

〈u, v〉P =
∑

δ∈F

u(δ)v(δ)/P(δ).

The geometry of the space SF with this metric D has the property that the boundary points
∂SF are at infinite distance from any point into the interior of SF .
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Denoting ∇̃ for the gradient with respect to this metric, we have in fact, with y = log P:

∇̃PE(δ) = ∇yẼ =
∑

ω∈Fk

P⊗k(ω)C(ω, δ)g(ω) (16)

To handle the unit sum constraint, we need to project this gradient on the tangent space
to Y at point y. Denoting this projection by πy, we have

πy(w) = w − 〈w|ey〉/‖ey‖2

where ey is the vector with coordinates ey(δ). This yields the evolution equation in the y
variables

dyt(δ)

dt
= −∇yt Ẽ(δ) + κte

yt(δ), (17)

where

κt =

(

∑

δ′∈F

∇yt Ẽ(δ′)eyt(δ′)

)

/

(

∑

δ′∈F

e2yt(δ′)

)

does not depend on δ.
The associated evolution equation for P becomes

dPt(δ)

dt
= −Pt(δ)

(

∇̃PtE(δ) − κtPt(δ)
)

. (18)

Consider now a discrete time approximation of (18), under the form

Pn+1(δ) =
Pn(δ)

Kn
e−ǫn(∇̃PnE(δ)−κnPn(δ)) (19)

where the newly introduced constant Kn ensures that the probabilities sum to 1. This
provides an alternative scheme of gradient descent on E which has the advantage of satisfying
the positivity constraints (5) by construction.

• Start with P0 = UF 7−→ y0 = log P0

• Until convergence: Compute Pn+1 from equation (19).

Remark: In terms of yn, (19) yields

yn+1(δ) = yn(δ) − ǫn

(

∇̃PnE(δ) − κnPn(δ)
)

− log Kn . (20)

The definition of the constant Kn implies that

Kn =
∑

δ∈F

Pne−ǫn(∇̃PnE(δ)−κnPn(δ)).

We can write a second order expansion of the above expression to deduce that

Kn =
∑

δ∈F

Pn(δ) − ǫnPn(δ)
(

∇̃PnE(δ) − κnPn(δ)
)

+ Anǫ2
n = 1 + Anǫ2

n

since, by definition of κn:
∑

δ∈F

Pn(δ)(∇̃PnE(δ) − κnPn(δ)) = 0.

Consequently, there exists a constant B which depends on k and max(ǫn) such that, for all
n, | log Kn| ≤ Bǫ2

n.
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3.3 Constrained diffusion

The algorithm (12) can be combined with reprojection steps to provide a consistent pro-
cedure. We implement this using a stochastic diffusion process constrained to the simplex
SF . The associated stochastic differential equation is

dPt = −∇PtEdt +
√

σdWt + dZt (21)

where E is the cost function introduced in (3), σ is a positive nondegenerate matrix on
HF and dZt is a stochastic process which accounts for the jumps which appear when a
reprojection is needed. In other words, d|Zt| is positive if and only if Pt hits the boundary
∂SF of our simplex.

The rigorous construction of such a process is linked to the theory of Skorokhod maps,
and can be found in works of Dupuis and Ishii (1991) and Dupuis and Ramanan (1999).
Existence and uniqueness are true under general geometric conditions which are satisfied
here.

4. Stochastic approximations

The evaluation of ∇E in the previous algorithms requires summing the efficiency measures
g(ω) over all ω in Fk. This is, as already discussed, an untractable sum. This however can
be handled using a stochastic approximation, as described in the next section.

4.1 Stochastic gradient descent

We first recall general facts on stochastic approximation algorithms.

4.1.1 Applying the ODE method

Stochastic approximations can be seen as noisy discretizations of deterministic ODE’s (see
Benveniste et al., 1990; Benäım, 2000; Duflo, 1996). They are generally expressed under
the form

Xn+1 = Xn + ǫnF (Xn, ξn+1) + ǫ2
nηn (22)

where Xn is the current state of the process, ξn+1 a random perturbation, and ηn a secondary
error term. If the distribution of ξn+1 only depends on the current value of Xn (Robbins-
Monro case), then one defines an average drift X 7→ G(X) by

G(X) = E
ξ
[F (X, ξ)] (23)

and the equation (22) can be shown to evolve similarly to the ODE Ẋ = G(X), in the sense
that the trajectories coincide when (ǫn)n∈N goes to 0 (a more precise statement is given in
section 4.1.4).

4.1.2 Approximation terms

To implement our gradient descent equations in this framework, we therefore need to identify
two random variables dn or d̃n such that

E [dn] = πHF
[∇PnE ] and E

[

d̃n

]

= πyn

[

∇yn Ẽ
]

(24)
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This would yield the stochastic algorithms:

Pn+1 = Pn − ǫndn or Pn+1 = Pn
e−ǫnd̃n

Kn
.

¿From (11), we have:

∇PE(δ) = Eω

[

C(ω, δ)g(ω)

P(δ)

]

.

Using the linearity of the projection πHF
, we get

πHF
(∇E(P)) (δ) = Eω

[

πHF

(

C(ω, .)g(ω)

P(.)

)

(δ)

]

.

Consequently, following (24), it is natural to define the approximation term of the gra-
dient descent (8) by:

dn = πHF

(

C(ωn, .)q̂T n
1 ,T n

2
(ωn, C)

Pn(.)

)

(25)

where the set of k features ωn is a random variable extracted from F with law P⊗k
n and

T n
1 ,T n

2 are independently sampled into the training set T .
In a similar way, we can compute the approximation term of the gradient descent based

on (15) since
∇yẼ(δ) = Eω [g(ω)C(ω, δ)]

yielding
d̃n = πyn

(

C(ωn, .)q̂T n
1 ,T n

2
(ωn, C))

)

(26)

where πy is the projection on the tangent space T Y to the sub-manifold Y at point y, and
ωn is a random variable extracted from F with the law P⊗k

n .
By construction, we therefore have the proposition

Proposition 3 The mean effect of random variables dn and d̃n is the global gradient de-
scent, in other words:

E [dn] = πHF
(∇E(Pn)) (27)

and
E [d̃n] = πyn

(

∇Ẽ(yn)
)

. (28)

4.1.3 Learning the probability map (Pn)n∈N

We now make explicit the learning algorithms for equations (8) and (17). We recall the
definition of

C(ω, δ) = |{i ∈ {1, . . . k} | ωi = δ}|
where δ is a given feature and ω a given feature subset of length k which is an hyperparameter
(see bottom of page 6). q̂T1,T2(ω, C), which is the empirical classification error on T2 for a
classifier trained on T1 using features in ω.
• Euclidean gradient (figure 3):
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Let F = (δ1, . . . δ|F|), integers µ, T and a real number α (stoping criterion)

n = 0: define P0 to be the uniform distribution UF on F
while

∣

∣Pn−⌊n/µ⌋ − Pn

∣

∣

∞
> α and Pn ≥ 0

Extract ωn with replacement from Fk with respect to P⊗k
n

Extract T n
1 and T n

2 of size T with uniform independent samples over Ttrain

Compute q̂T n
1 ,T n

2
(ωn, C)and the drift vector dn where

dn(δ) = q̂T n
1 ,T n

2
(ωn, C)

(

C(ωn, δ)

Pn(δ)
−
∑

µ∈ωn

C(ωn, µ)

|F|Pn(µ)

)

Update Pn+1 with Pn+1 = Pn − ǫn.dn.
n 7→ n + 1

Figure 3: Euclidean gradient Algorithm.

• Riemannian Gradient: For the Riemannian case, we have to give few modifications for
the update step (figure 4).

The mechanism of the two former algorithms summarized by figures 3,4 can be intuitively
explained looking carefully at the update step. For instance, in the first case, at step n,
one can see that for all features of δ ∈ ωn, we substract from Pn(δ) amount proportional to
the error performed with ω and inversely proportional to Pn(δ) although for other features
out of ωn, weights are a little bit increased. Consequently, worst features with poor error
of classification will be severely decreased, particularly when they are suspected to be bad
(small weight Pn).

Remark We provide the Euclidean gradient algorithm, which is subject to failure (one
weight might become nonpositive) because it may converge for some applications, and in
these cases, is much faster than the exponential formulation.

4.1.4 Convergence of the approximation scheme

This more technical section can be skipped without harming the understanding of the rest
of the paper. We here rapidly describe in which sense the stochastic approximations we

Let F = (δ1, . . . δ|F|), integers µ, T and a real number α (stoping criterion)

n = 0: define P0 to be the uniform distribution UF on F
while

∣

∣Pn−⌊n/µ⌋ − Pn

∣

∣

∞
> α

Extract ωn from Fk with respect to P⊗k
n

Extract T n
1 and T n

2 of size T with uniform independent samples over Ttrain

Compute q̂T n
1 ,T n

2
(ωn, C).

Update Pn+1 with:

Pn+1(δ) =
Pn(δ)e

−ǫn(C(ωn,δ)q̂T n
1

,T n
2

(ωn,C)+κnPn(δ))

Kn
with

κn =
(
∑

δ′∈ωn
C(ωn, δ′)Pn(δ′)

)

/(
(
∑

δ′∈F Pn(δ′)2
)

and Kn is a normalization constant.
n 7→ n + 1

Figure 4: Riemannian gradient Algorithm.
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have designed converge to their homologous ODE’s. This is a well-known fact, especially
in the Robbins-Monro case that we consider here, and the reader may refer to works of
Benveniste et al. (1990); Duflo (1996); Kushner and Yin (2003), for more details. We follow
the terminology employed in the approach of Benaim (1996).

Fix a finite dimensional open set E. A differential flow (t, x) 7→ φt(x) is a time-indexed
family of diffeomorphisms satisfying the semi-group condition φt+h = φh ◦ φt and φ0 = Id;
φt(x) is typically given as the solution of a differential equation dy

dt = G(y), at time t, with
initial condition y(0) = x. Asymptotic pseudotrajectories of a differential flow are defined
as follows:

Definition 4 A map X : R+ 7−→ E is an asymptotic pseudotrajectory of the flow φ if, for
all positive numbers T

lim
t7→∞

sup
0≤h≤T

‖X(t + h) − φh(X(t))‖ = 0. (29)

In other words, the tails of the trajectory X asymptotically coincides, within any finite
horizon T , with the flow trajectories.

Consider algorithms of the form

Xn+1 = Xn + ǫnF (Xn, ξn+1) + ǫ2
nηn+1 (30)

with Xn ∈ E, ξn+1 a first order perturbation (such that the conditional distribution knowing
all present and past variables only depends on Xn), and ηn a secondary noise process. The
variable Xn can be linearly interpolated into a time-continuous process as follows: define

τn =
n
∑

k=1

ǫk and Xτn = Xn; then let Xt be linear and continuous between τn and τn+1, for

n ≥ 0.

Consider the mean ODE

dx

dt
= G(x) = E

ξ
[F (X, ξ)|X = x] (31)

and its associated flow φ. Then, under mild conditions on F and ηn, and under the as-
sumption that

∑

n>0
ǫ1+α
n < ∞ for some α > 0, the linearly interpolated process Xt is an

asymptotic pseudotrajectory of φ. We will consequently choose ǫn = ǫ/(n+C) where ǫ and
C are positive constants fixed at start of our algorithms. We can here apply this result with
Xn = yn, ξn+1 = (ωn,T n

1 ,T n
2 ) and ηn+1 = log Kn/ǫ2

n for which all the required conditions
are satisfied since for the euclidean case, when ωn ∼ P⊗k

n and (T1,T2) ∼ U⊗2T
T :

13
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Eωn
[F (Pn, ωn)] = E

ωn,T1,T2
[dn(ωn,T1,T2)]

= E
ωn,T1,T2

[

πHF

(

C(ωn, .)q̂T1,T2(ωn, C)

Pn(.)

)]

= Eωn

[

πHF

(

C(ωn, .)E
T1,T2

[q̂T1,T2(ωn, C)]

Pn(.)

)]

= Eωn

[

πHF

(

C(ωn, .)q̂(ωn, C)

Pn(.)

)]

Eωn
[F (Pn, ωn)] = πHF

(∇E(Pn))

4.2 Numerical simulation of the diffusion model

We use again (25) for the approximation of the gradient of E . The theoretical basis for
the convergence of this type of approximation can be found in (Buche and Kushner (2001);
Kushner and Yin (2003)), for example. A detailed convergence proof is provided in (Gadat
(2004)).

This results in the following numerical scheme. We recall the definition of

C(ω, δ) = |{i ∈ {1, . . . k} | ωi = δ}|
and of q̂T1,T2(ω, C),which is the empirical classification error on T2 for a classifier trained on
T1 using features in ω.

Let F = (δ1, . . . δ|F|), an integer

n = 0: define P0 to be the uniform distribution UF on F
Iterate the loop

Extract ωn from Fk with respect to P⊗k
n

Extract T n
1 and T n

2 of size T with uniform independent samples over Ttrain

Compute q̂T n
1 ,T n

2
(ωn, C)

Compute the intermediate state Qn (may be out of SF ):

Qn = Pn − ǫn

C(ωn, .)q̂T n
1 ,T n

2
(ωn)

Pn
+

√
ǫn

√
σdξn

where dξn is a centered normal |F| dimensional vector.
Project Qn on SF to obtain Pn+1:

Pn+1 = πSF
(Qn) = Qn + dzn

n 7→ n + 1
Figure 5: Constrained diffusion.

4.3 Projection on SF

The natural projection on SF can be computed in a finite number of steps as follows.

1. Define X0 = X, if X0 does not belong to the hyperplane HF , project first X0 to HF :

X1 = πHF
(X0)

14
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2. – If Xk belongs to SF , stop the recursion.

– Else, call Jk the set of integers i such that Xk
i ≤ 0 and define Xk+1 by

∀i ∈ Jk Xk+1
i = 0

∀i /∈ Jk Xk+1
i = Xk

i +
1

|F| − |Jk|



1 −
∑

j /∈Jk

Xk
j





One can show that the former recursion stops in at most |F| steps (see Gadat, 2004, chap.
4).

5. Experiments

This section provides a series of experimental results using the previous algorithms. Table
1 briefly summarizes the parameters of the several experiments performed.

Data Set Dim. A Classes Training Set Test Set

Synthetic 100 N.N. 3 500 100
IRIS 4 CART 3 100 50
Faces 1926 SVM 2 7000 23000
SPAM 54 N.N. 2 3450 1151
USPS 2418 SVM 10 7291 2007

Leukemia 3859 SVM 2 72 ∅
ARCENE 10000 SVM 2 100 100
GISETTE 5000 SVM 2 6000 1000
DEXTER 20000 SVM 2 300 300

DOROTHEA 100000 SVM 2 800 350
MADELON 500 N.N. 2 2000 600

Table 1: Characteristics of the data sets used in experiments.

5.1 Synthetic example

We start with a simple, but illustrative, small dimensional example.

5.1.1 Synthetic example

Data We consider |F| = 100 ternary variables and 3 classes (similar results can be ob-
tained with more classes and variables). We let I = {−1; 0; 1}f and the feature δi(I) simply
be the ith coordinate of I ∈ I. Let G be a subset of F . We define the probability distribu-
tion µ( ;G) in I to be the one for which all δ in F are independent, δ(I) follows a uniform
distribution on {−1; 0; 1} if δ 6∈ G and δ(I) = 1 if δ ∈ G. We model each class by a mixture
of such distributions, including a small proportion of noise. More precisely, for a class Ci,
i = 1, 2, 3, we define

µi(I) =
q

3

(

µ(I;F1
i ) + µ(I;F2

i ) + µ(I;F3
i )
)

+ (1 − q)µ(I; ∅)
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with q = 0.9 and

F1
1 = {δ1; δ3; δ5; δ7} F2

1 = {δ1; δ5} F3
1 = {δ3; δ7}

F1
2 = {δ2; δ4; δ6; δ8} F2

2 = {δ2; δ4} F3
2 = {δ6; δ8}

F1
3 = {δ1; δ4; δ8; δ9} F2

3 = {δ1; δ8} F3
3 = {δ4; δ9}

In other words, these synthetic data are generated with almost deterministic values on
some variables (which depends on the class the sample belongs to) and with a uniform
noise elsewhere. We expect our learning algorithm to put large weights on features in F j

i

and ignore the other ones. The algorithm A we use in this case is an M nearest neighbour
classification algorithm, with distance given by

d(I1, I2) =
∑

δ∈ω

χ
δ1(I) 6=δ2(I)

This toy example is interesting because it is possible to compute the exact gradient of E
for small values of M and k = |ω|. Thus, we can compare the stochastic gradient algorithms
with the exact gradient algorithm and evaluate the speed of decay of E . Moreover, one can
see in the construction of our signals that some features are relevant with several classes
(reusables features), some features are important only for one class and others are simply
noise on the input. This will permit to evaluate the model of ”frequency of goodness” used
by OFW.
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Figure 6: Note that the left and right figures are drawn on different scales. Left: Exact
gradient descent (full line) vs. stochastic exponential gradient descent (dashed
line) classification rates on the training set. Right: Stochastic Euclidean gradi-
ent descent (full line) vs. stochastic exponential gradient descent (dashed line)
classification rates on the training set.
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Results We provide in figure 6 the evolution of the mean error E on our training set
set against the computation time for exact and stochastic exponential gradient descent
algorithms. The exact algorithm is faster but is quickly captured in a local minimum
although exponential stochastic descent avoids more traps. Also shown in figure 6, is the
fact that the stochastic Euclidean method achieved better results faster than the exponential
stochastic approach and avoided more traps than the exponential algorithm to reach lower
error rates.

Note that figure 6 (and similar plots in subsequent experiments) is drawn for the com-
parison of the numerical procedures that have been designed to minimize the training set
errors. This does not relate to the generalization error of the final classifier, which is eval-
uated on test sets.

Finally, figure 7 shows that the efficiency of the stochastic gradient descent and of the
reflected diffusion are almost similar in our synthetic example. This has in fact always been
so in our experiments: the diffusion is slightly better than the gradient when the latter
converges. For this reason, we will only compare the exponential gradient and the diffusion
in the experiments which follow.
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Figure 7: Stochastic Euclidean gradient descent (dashed line) vs. reflected diffusion (full
line) classification rate on the training set.

Finally, we summarize this instructive synthetic experiments in figure 8. Remark that in
this toy example; the exact gradient descent and the euclidean stochastic gradient (first
algorithm of section 4.1.3) are almost equivalent.

In figure 9, we provide the probabilities of the first 15 features in function of k = |ω|.
(The graylevel is proportional to the probability obtained at the limit).
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Figure 8: Comparison of the mean error rate computed on the test set with the 4 exact or
stochastics gradient descents.

F δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 . . .

|ω| = 2

|ω| = 3

|ω| = 4

Figure 9: Probability histogram for several values of |ω|.

Interpretation We observe that the features which are preferably selected are those
which lie in several subspaces F j

i , and which bring information for at least two classes.
These are reusable features, the knowledge of which being very precious information for
the understanding of pattern recognition problems. This result can be compared to selec-
tion methods based on information theory. One simple method is to select the variables
which provide the most information to the class, and therefore minimize the conditional
entropy (see Cover and Thomas, 1991) of the class given each variable. In this example,
this conditional entropy is 1.009 for features contained in none of the sets F j

i , 0.852 for
those contained in only one set and approximatively 0.856 for those contained in two of
these sets. This implies that this information-based criterion would correctly discard the
non-informative variables, but fail to discriminate between the last two groups.

Remark finally that the features selected by OFW after the reusables ones are still
relevant for the classification task.

18



A stochastic algorithm for feature selection in pattern recognition

5.1.2 IRIS Database

We use in this section the famous Fisher’s IRIS database where data are described by the
4 variables: “Sepal Length”, “Sepal Width”, “Petal Length” and “Petal Width”. Even
though our framework is to select features in a large dictionary of variables, it will be
interesting to look at the behavior of our algorithm on IRIS since results about feature
selection are already known on this classical example. We use here a Classification and
Regression Tree (CART) using the Gini index. We extract 2 variables at each step of the
algorithm, 100 samples out of 150 are used to train our feature weighting procedure. The
figures 10 and 11 describe the behavior of our algorithms (with and without the noise term).
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Figure 10: Evolution with n of the distribution on the 4 variables using a stochastic eu-
clidean algorithm.

We remark here that for each one of our two approaches, we approximately get the
entire weight on the last two variables “ Petal Length” (70%) and “Petal Width” (30%).
This result is consistent with the selection performed by CART on this database since we
obtain similar results as seen in figure 12. Moreover, a selection based on the Fisher score
reaches the same results for this very simple and low dimensional example.

The classification on Test Set is improved selecting two features (with OFW as Fisher
Scoring) since we obtain an error rate of 2.6% although without any selection, CART
provides an error rate of 4%. In this small low dimensional example, OFW quickly converges
to the optimal weight and we obtain a ranking coherent with the selection performed by
Fisher Score or CART.

5.2 Real classification problems

We now address real pattern recognition problems. We also compare our results with other
algorithms: no selection method, Fisher scoring method, Recursive Feature Elimination
method (RFE) (Guyon et al., 2002), L0-Norm for linear support vector machines (Weston
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Figure 11: Evolution with n of the distribution on the 4 variables using a stochastic eu-
clidean diffusion algorithm.

et al., 2003) and Random Forests (RF) (Breiman, 2001). We used for these algorithms
Matlab implementations provided by the Spider package 1 for RFE and L0-SVM and the
random forest package of Leo Breiman 2. In our experiments, we arbitrarily fixed the number
of features per classifier (to 100 for the Faces, Handwritten Digits and Leukemia data and
to 15 for the email database). It would be possible to also optimize it, through cross-
validation, for example, once the optimal P has been computed (running this optimization
online, while also estimating P would be too computationally intensive). We have remarked
in our experiments that the estimation of P was fairly robust to to variations of the number
of features extracted at each step (k in our notation). In particular, taking k too large does
not help much.

5.2.1 Face detection

Experimental framework We use in this section the face database from MIT, which
contains 19× 19 gray level images; samples extracted from the database are represented in
figure 13. The database contains almost 7000 images to train and more than 23000 images
to test.

The features in F are binary edge detectors, as developed in works of Amit and Geman
(1999); Fleuret and Geman (2001). This feature space has been shown to be efficient for
classification in visual processing. We therefore have as many variables and dimensions as
we have possible edge detectors on images. We perform among the whole set of these edge
detectors a preprocessing step described in Fleuret and Geman (2001). We then obtain
1926 binary features, each one defined by its orientation, vagueness and localisation.

1. available on http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html
2. available on http://www.stat.berkeley.edu/users/breiman/RandomForests
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|

Petal.Length< 2.45

Petal.Width< 1.75

Petal.Length>=2.45

Petal.Width>=1.75

setosa    
50/50/50

setosa    
50/0/0

versicolor
0/50/50

versicolor
0/49/5

virginica 
0/1/45

 

Figure 12: Complete classification tree of IRIS generated from recursive partitioning
(CART implementation is using the rpart library of R).

Figure 13: Sample of images taken from MIT database.

The classification algorithm A which is used here is an optimized version of Linear
Support Vector Machines developed by Joachims and Klinkenberg (2000); Joachims (2002)
(with linear kernel).
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Results We first show the improvement of the mean performance of our extraction
method, learned on the training set, and computed on the test set, from a random uni-
form sampling of features (figure 14).
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Figure 14: Left: Evolution with k of the average classification error of faces recognition on
the test set using a uniform law (dashed line) and P∞ (full line), learned with
a stochastic gradient method with exponential parameterization. Right: same
comparison, for the constrained diffusion algorithm.

Our feature extraction method based on learning the distribution P improves signifi-
cantly the classification rate, particularly for weak classifiers (k = 20 or 30 for example) as
shown in figure 14. We remark again that the constrained diffusion performs better than the
stochastic exponential gradient. We achieve a 1.6% error rate after learning with a reflected
diffusion, or 1.7% with a stochastic exponential gradient (2% before learning). The analysis
of the most likely features (which are the most weighted variables) is also interesting, and
occurs in meaningful positions, as shown in figure 15.

Figure 15: Representation of the main edge detectors after learning.
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Figure 16 shows a comparison of the efficiency (computed on the test set) of Fisher,
RFE, L0-SVM and our weighting procedure to select features; besides we have shown the
performance of A without any selection and the best performance of Random Forests (as
an asymptote).
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Figure 16: Efficiency of several feature extractions methods for the faces database test set.

We observe that our method is here less efficient with a small number of features (for
20 features selected, we obtain 7.3% while RFE and L0 selections get 4% and 3.2% of
misclassification rate). However, for a larger set of features, our weighting method is more
effective than other methods since we obtained 1.6% of misclassification for 100 features
selected (2.7% for L0 selection and 3.6% for RFE).

The comparison with the Random Forest algorithm is more difficult to estimate: one
tree achieves 2.4% error but the length of this tree is more than 1000 and this error rate is
obtained by the 3 former algorithms using only 200 features. The final best performance
on this database is obtained using Random Forests with 1000 trees. We obtain then a
misclassification rate of 0.9%.

5.2.2 SPAM classification

Experimental framework This example uses a text database available at (UCI), which
contains emails received by a research engineer from the HP labs, and divided into SPAM
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and non SPAM categories. The features here are the rates of appearance of some keywords
(from a list of 57) in each text. As the problem is quite simple using the last 3 features of
the previous list, we choose to remove these 3 variables (which depends on the number of
capital letters in an email), we start consequently with a list of 54 features. We use here
a 4-nearest neighbor algorithm and we extract 15 features at each step. The database is
composed by 4601 messages and we use 75% of the email database to learn our probability
P∞, representing our extraction method while the 25% samples of data is left to form the
test set.
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Figure 17: Time evolution of the energy E1 for the spam/email classification UCI com-
puted on the test set, using a stochastic gradient descent with an exponential
parameterization (left) and with a constrained diffusion (right).

Results We plot the average error on the test set in figure 17. On our test set, the method
based on the exponential parameterization achieves better results than those obtained by
reflected diffusion which is slower because of our Brownian noise. The weighting method is
here again efficient in improving the performances of the Nearest Neighbour algorithm.

Moreover, we can analyze the words selected by our probability P∞. In the next table,
two columns provide the features that are mainly selected. We achieve in a different way
similar results to those noticed in Hastie et al. (2001) regarding the ranking importance of
the words used for spam detection.

The words which are useful for spam recognition (left columns) are not surprising (“busi-
ness”, “remove”, “receive” or “free” are highly weighted). More interesting are the words
selected in the right column; these words are here useful to enable a personal email detec-
tion. Personal informations like phone numbers (“650”, “857”) or first name (“george”)
are here favored to detect real email messages. The database did not provide access to the
original messages, but the importance of the phone numbers or first name is certainly due
to the fact that many non-spam messages are replies to previous messages outgoing from
the mailbox, and would generally repeat the original sender’s signature, including its first
name, address and phone number.
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Words favored for SPAM Frequency Words favored for NON SPAM Frequency

remove 8.8% cs 5.4%

business 8.7% 857 4.6%

[ 6% 415 4.4%

report 5.9% project 4.3%

receive 5.6% table 4.2%

internet 4.4% conference 4.2%

free 4.1% lab 3.9%

people 3.7% labs 3.2%

000 3.6% edu 2.8%

direct 2.3% 650 2.7%

! 1.2% 85 2.5%

$ 1% george 1.6%

Figure 18: Words mostly selected by P∞ (exponential gradient learning procedure) for the
spam/email classification.

We compare next the performances obtained by our method with RFE, RF and L0-SVM.
Figure 19 show relative efficiency of these algorithms on the spam database.

Without any selection, the linear SVM has more than 15% error rate while each one
of the former feature selection algorithms achieve better results using barely 5 words. The
best algorithm is here the L0-SVM method, while the performance of our weighting method
(7.47% with 20 words) is located between RFE (11.1% with 20 words) and L0-SVM (4.47%
with 20 words). In addition, RF high performance is obtained using a small forest of 5
trees (not as deep as in the example of faces recognition) and we obtain with this algorithm
7.24% of misclassification rate using trees of size varying from 50 to 60 binary tests.

5.2.3 Handwritten number recognition

Experimental framework A classical benchmark for pattern recognition algorithms is
the classification of handwritten numbers. We have tested our algorithm on the USPS
database (Hastie et al. (2001); ?): each image is a segment from a ZIP code isolating a
single digit. The 7291 images of the training set and 2007 of the test set are 16 × 16 eight-
bit grayscale maps, with intensity between 0 and 255. We use the same feature set, F , as
in the faces example. We obtain a feature space F of 2418 edge detectors with one precise
orientation, location and blurring parameter. The classification algorithm A we used is here
again a linear support vector machine.

Results Since our reference wrapper algorithms (RFE and L0-SVM) are restricted to 2
class problems, we present only results obtained on this database with the algorithm A

which is a SVM based on the “one versus all” idea.
The improvement of the detection rate is also similar to the previous example, as shown

in figure 21. We first plot the mean classification error rate before and after learning the
probability map P. These rates are obtained by averaging g(ω) over samples of features
uniformly distributed on F in the first case, and distributed according to P in the second
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Figure 19: Efficiency of several feature extractions methods on the test set for the SPAM
database.

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Image I

Figure 20: Sample of images taken from the USPS database.

case. These numbers are computed on training data and therefore serve for evaluation of the
efficiency of the algorithm in improving the energy function from E1(UF ) to E1(P∞). Figure
21 provides the variation of the mean error rate in function of the number of features k used
in each ω. The ratio between the two errors (before and after learning) rates, is around
90% independently on the value of k.

Figure 22 provides the result of the classification algorithm (using the voting procedure)
on the test set. The majority vote is based on 10 binary SVM-classifiers on each binary
classification problem Ci vs. I \ Ci. The features are extracted first with the uniform
distribution UF on F , then using the final P∞.

The learning procedure significantly improves the performance of the classification algo-
rithms. The final average error rate on the USPS database is about 3.2% for 10 elementary
classifiers per class Ci, with 100 binary features per elementary classifier. The performance
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Figure 21: Mean error rate over the training set USPS for k varying from 40 to 100, be-
fore (dashed line) and after (full line) a stochastic gradient learning based on
exponential parameterization (left) and constrained diffusion (right).
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Figure 22: Evolution with k of the mean error of classification on the test set, extraction
based on random uniform selection (dashed line) and P∞ selection (full line)
for USPS data, learning computed with stochastic gradient using exponential
parameterization (left) and constrained diffusion (right).

is not as good as the one obtained by the tangent distance method of Simard and LeCun
(1998) (2.7% error rate of classification), but we here use very simple (edge) features. And
the result is better, for example, than linear or polynomial Support Vector Machines (8.9%
and 4% error rate) computed without any selection and than sigmoid kernels (4.1%) (see
?) with a reduced complexity (measured, for example by the needed amount of memory).

Since the features we consider can be computed at every location in the image, it is
interesting to visualize where the selection has occurred. This is plotted in figure 23, for
the four types of edges we consider (horizontal, vertical and two diagonal), with grey levels
proportional to the value of P∞ for each feature.
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Horizontal edges Vertical edges Diagonal edges “+π/4” Diagonal edges “−π/4”

Figure 23: Representation of the selected features after a stochastic exponential gradient
learning for USPS digits. Greyscales are proportional to weights of features

5.2.4 Gene selection for Leukemia AML-ALL recognition

Experimental framework We carry on our experiments with feature selection and clas-
sification for microarray data. We have used the Leukemia Database AML-ALL of Golub
et al. (1999). We have a very small number of samples (72 signals) described by a very
large number of genes. We run a preselection method to obtain the database used by Deb
and Reddy (2003)3 that contains 3859 genes. Our algorithm A is here a linear support
vector machines. As we face a numerical problem with few samples on each class (AML
and ALL), we decide to benchmark each of the algorithms we have tested using a 10-fold
cross validation method.
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Figure 24: Evolution of the mean energy E computed by the constrained diffusion method
on the training set with time for k = 100.

3. available on http://www.iitk.ac.in/kangal/
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Results Figure 24 shows the efficiency of our method of weighting features in reducing
the mean error E on the training set. We remark that with random uniform selection of 100
features, linear support vector machines obtain a poor rate larger than 15% while learning
P∞, we achieve a mean error rate less than 1%.

We now compare our result to RFE, RF and L0-SVM using the 10-fold cross validation
method. Figure 25 illustrates this comparison between these former algorithms. In this

Figure 25: Efficiency of several feature extractions methods for the Leukemia database.
Performances are computed using 10 CV.

example, we obtain better results without any selection, but in fact the classification of
one linear SVM does not permit to rank features by importance effect on the classification
task. We note here again that our weighting method is less effective for short size subsets
(5 genes) while our method is competitive with larger subsets (20-25 genes). Here again,
we note that L0-SVM outperforms RFE (like in the SPAM study section 5.2.2). Finally,
the Random Forest algorithm obtains results which are very irregular in connection with
the number of trees as one can see in figure 26.
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Figure 26: Error bars of Random Forests in connection with the number of trees used
computed by cross-validation.

5.2.5 Feature Selection Challenge

We conclude our experiments with results on the Feature Selection Challenge (Guyon et al.,
2004) 4. Datasets cover a large field of the feature selection problem since examples are taken
in several areas (Microarray data, Digit classification, Synthetic examples, Text recognition
and Drug discovery). Results are provided using the Balanced Error Rate (BER) obtained
on the validation set rather than the classical error rate.

We first performed a direct Optimal Feature Weighting algorithm on theses datasets
without any feature preselection using a linear SVM for our base classifier A. For four of
the five datasets (DEXTER, DOROTHEA, GISETTE and MADELON) the numerical per-
formances of the algorithm are significantly improved if a variable preselection is performed
before running it. This preselection was based on the Fisher Score:

Fi =
(x1

i − xi)
2 + (x2

i − xi)
2

1

n1 − 1

n1
∑

k=1

(x1
k,i − x1

i )
2 +

1

n2 − 1

n2
∑

k=1

(x2
k,i − x2

i )
2

.

Here n1 and n2 are the numbers of samples of the training set of classes 1 and 2, x1
i , x

2
i and

xi assign the mean of feature i on class 1, 2 and over the whole training set. We preselect
the features with Fisher Score higher than 0.01.

We then perform our Optimal Feature Weighting algorithm with the new set of features
obtained by the Fisher preselection using for A a support vector machine with linear kernel.
Figure 27 show the decreasing evolution of the mean BER on the training set for each
datasets of the feature selection challenge. One instantaneously can see that OFW is much

4. datasets are available on http://www.nipsfsc.ecs.soton.ac.uk/datasets/

30



A stochastic algorithm for feature selection in pattern recognition

more efficient on GISETTE or ARCENE than on other datasets since the evolution of mean
BER is faster and have a larger amplitude.
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Figure 27: Evolution with iterations n of the Balanced Error Rate on the training set.

For computational efficiency, our weight distribution P is learned using a linear SVM
for the basic algorithm, A. Once this is done, an optimal nonlinear SVM is used for the
final classification (the parameters of the kernel of this final SVM being estimated via cross-
validation). We select the number of features used for the classification on the validation set
on the basis of a 10-fold cross validation procedure on the training set. Table 2 summarizes
results obtained by our OFW algorithm and, Linear SVM 5 and others algorithms of feature
selection (Transductive SVM of Wu and Li (2003), combined filter methods with svm as

5. Reader can refer at http://www.nipsfsc.ecs.soton.ac.uk/results for other results obtained by feature se-
lection procedure or different classification algorithms
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F+SVM of Chen and Lin (2006) and FS+SVM of Lal et al. (2006), G-flip of Gilad-Bachrach
et al. (2004), Information-Based Feature Selection of Lee et al. (2006), and analysis of
redundancy and relevance (FCBF) of Yu and Liu (2004)). We select these methods since
they are meta algorithms (as OFW method) whose aim is to optimize the feature subset
entry of standard algorithms. These results are those obtained on the Validation Set since
most of the papers previously cited do not report results on the Test Set. One can show
that most of these methods outperform the performance of SVM without any selection.

Fisher criterion is numerically effective and can exhibit very reduced sets of features,
but using it alone provides performances that are below those reported in table 2. FS+SVM
and F+SVM, like all filter approaches, are equally effective and perform quite well, but re-
quires the estimation of several thresholds, and suffer from lack of theoretical optimization
background. The G-flip algorithm is to find a growing sequence of features that successively
maximize the margin of the classifier. The main idea is consequently not so far from the
OFW approach, even though we pick up a new feature subset at each iteration. Results are
comparable with OFW and authors obtained generalization error bounds. The Transduc-
tive SVM incorporates a local optimization on the training set for a cost function related
to the performances of SVM, and updates a parameter defined on each feature using co-
efficients of the hyperplanes constructed at each step. This approach has the drawback of
high computation cost, can fail in the local optimization step and requires to tune many
parameters, but obtains interesting results and suggests further developments on model se-
lection. FCBF, which does not intend directly to increase the accuracy of any classifier as
a wrapper algorithm, selects the features by identifying the redundancy between features
and relevance analysis of variables. The resulting algorithms (FCBF-NBC and FCBF-C4.5)
obtains very good results and is numerically simple to handle. However, this approach does
not provide any theoretical measure of efficiency selection with respect to the accuracy of
classification.

Our method is competitive on all datasets but DOROTHEA. The OFW algorithm is
particularly good on the GISETTE dataset. Moreover, we outperform most of methods
based on a filter + svm approach.

Table 3 provides our results on the Test Set as well as the results of the best challenge
participants. Looking at BER, best results of the challenge outperforms our OFW approach,
but this comparison seems unfair since best entries are classification algorithm rather than
features selection algorithm (most of features are kept to treat the data) and the difference
of BER is not statistically significantly different except for the DOROTHEA database. We
add moreover recent results on these 5 datasets obtained by quite simple filter methods
Guyon et al. (2006) that reach remarkable BER results.

6. Discussion and conclusion

6.1 Discussion

From the previous empirical study, we can conclude that OFW can dramatically reduce
the dimension of the feature space while preserving the accuracy of classification and even
enhance it in many cases. We observe likewise that we obtain results comparable to those of
reference algorithms like RFE or RF. In most cases, the learning process of P∞ is numerically
easy to handle with our method and the results on test set are convincing. Besides the
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Figure 28: Performances of several algorithms on the Validation Set of the FSC. Zero bar
correspond to missing values.

accuracy of classifier, another interesting advantage of OFW is the stability of the subsets
which are selected when we run several bootstrap version of our algorithm. Further works
could include numerical comparisons on the stability of several algorithms using for instance
a bootstrap average of Hamming distances as it is performed in Dune et al. (2002).

Nevertheless, in some rare cases (DEXTER or DOROTHEA), learning the optimal
weights is more complicated: in the case of DEXTER database, we can guess from figure
27 that our stochastic algorithm has been temporarily trapped in a neighborhood of a local
minimum of our energy E . Even if the OFW has succeeded in escaping the local minimum
after a while, this still reduces drastically the convergence speed and the final performance of
classification on the validation set. In the case of DOROTHEA, the results of SVM are quite
irregular according to subsets selected along time (see figure 27) and the final performance,
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as all methods based on SVM classifiers noticed in table 2, is not as good as other reported
for OFW (see best BER of the challenge in table 3 obtained without using any SVM as final
classifier). At last, results obtained by OFW are a little bit worse than those obtained by
filtering techniques Guyon et al. (2006) (see table 3) that perform efficient feature selection.
Note also that all the results obtained require larger feature subsets than OFW and use
a larger amount of probes in the set of selected features. To make a comparison of their
efficiency, we compute the subsets obtained by these filtering methods with the number
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Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

BER of SVM 17.86 7.33 33.98 2.10 40.17

BER of OFW 11.04 5.67 8.53 1.1 6.83
BER of Fisher + SVM 31.42 12.63 21.84 7.38 17.4

% features selected (3.80) (1.43) (0.01) (6.54) (2.80)

BER of TSVM 14.2 5.33 10.63 2 10.83
% features selected (100) (29.47) (0.5) (15) (2.60)

BER of F+SVM 21.43 8 21.38 1.8 13
% features selected (6.66) (1.04) (0.445) (18.2) (2.80)

BER of G-flip 12.66 7.61
% features selected (0.76) (3.60)

BER of FS+SVM 12.76 3.3 16.34 1.3 11.22
% features selected (47) (18.6) (1) (34) (4)

BER of IBFS 18.41 14.60 15.26 2.74 38.5
% features selected (1.85) (5.09) (0.77) (9.30) (2.40)

BER of FCBF+NBC 7 10 2.5
% features selected (0.24) (0.17) (0.5)

BER of FCBF+C4.5 17 16.3 7.8
% features selected (0.24) (0.17) (0.5)

Table 2: Performances of OFW and other meta algorithms on the Validation Set of the
FSC, BER are given in percentage. The best results are in bold characters. The
second line compares OFW with the simple Fisher scoring method with the same
amount of features and show the error bars obtained by OFW.

Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

BER of OFW/(% features) 11.54/(3.80) 4.8/(1.31) 14.43/(0.04) 1.35/(8.18) 6.78/(3.2)

Best BER of the challenge 13.3/(100) 3.9/(1.52) 8.7/(100) 1.3/(100) 7.2/(100)

BER of Guyon et al. (2006) 10.48/(14) 3.25/(22.5) 9.3/(0.7) 0.98/(15.68) 6.22/(4)

BER of Filters 14.21/(3.80) 4.8/(1.31) 41.33/(0.04) 4.54/(8.18) 7.33/(3.2)

Table 3: Performances of OFW on the Test Set of the FSC, BER are given in percentage.

Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

Probes of OFW 0.79 19.47 2.56 0 0

Probes of best challenge entry 30 12.87 50 50 96

Probes of Guyon et al. (2006) 0.36 55.38 22.14 49.23 0

Probes of Filters methods 7.63 54.58 33.33 45.97 0

Table 4: Fractions of probes selected by OFW and other algorithms on the FSC, fractions
are given in percentage.
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of features used for OFW. These results are reported in the last line of table 3. One can
see that filter methods obtained poorer performances with a reduced number of features,
one can note that on the DOROTHEA dataset, the SVM completely miss one of the two
unbalanced class and obtained bad results.

Another point of interest is the fraction of probes finally selected by each methods.
Probes are artificial features added at random in each datasets with statistical distributions
similar to the one of some real features, but these probes do not carry any information on
the class labels of signals. Thus, a good feature selection algorithm should obtained a small
fraction of probes on the final selection. We show in table 4 the fraction of probes obtained
by the methods cited in table 3. One can remark that OFW is particularly effective to
reduce the amount of probes of any datasets (see GISETTE for instance).

Better results of OFW have been obtained for two special cases of databases which are
microarray data (ARCENE and Leukemia) and image recognition data (USPS, GISETTE
and Faces). SVM initially performs well on this datasets, but OFW significantly improve
the performance without any selection.

More generally, OFW seems to behave well and to boost accuracy of algorithms A that
have initial performance that vary smoothly with respect to small changes in the feature
set. Even if our learning procedure is computed in a very large dimensional training set,
recent work have shown that in the context of classification, bootstrap approaches (as it is
done in OFW) do not introduce a supplementary important bias (Singhi and Liu (2006))
and it is equally what we can conclude in our case.

In the first synthetic example, one can make the important remark that reusable features
are mainly favored by OFW. The algorithm classes those which are relevant, but not reusable
in a second group. This point looks favorable to our model of ”frequency of use”.

Our approach does not address the issue of redundancy (two similar features would most
likely receive the same weight). Some ideas in how to take this into account are sketched
in the concluding section.

6.2 Computational considerations

We have performed our experiments using a C++ compiler with a 2.2 GHz 1 Go RAM
processor pentium IV PC on a Debian system. The learning time of OFW mostly depends
on the initial number of variables in the feature space and the step of our stochastic scheme;
for the Leukemia database which contains 3859 genes, learning took about one hour.

However, OFW can be easily implemented with parallel techniques since at each step of
the stochastic procedure, one can test several subsets of the feature set still using the same
update formula of Pn. Moreover, we remark that it can be effective for the calculation time
to first filter out very irrelevant features (selected for instance by a Fisher Score) and run
the OFW procedure.

Another option would be to use algorithm A simpler than SVM, CART or NN, based on
basic statistical tools as likelihood or mutual information whilst performing a final decision
with SVM for instance.
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6.3 Conclusion, Future work

Our approach introduces a mathematical model to formalize the search for optimal
features. Our selection of features is done by learning a probability distribution on the
original feature set, based on a gradient descent of an energy E within the simplex SF .

The numerical results show that the performance is significantly improved over an initial
rule in which features are simply uniformly distributed. Our Optimal Feature Weighting
method is moreover competitive in comparison with other feature selection algorithms and
leads to an algorithm which does not depend on the nature of the classifier A which is used,
whereas, for instance, RFE or L0-SVM are only based on SVM.

Our future work will enable the feature space F to be also modified during the algorithm,
by allowing for combination rules, creation and deletion of tests, involving a hybrid evolution
in the set of probability measures and in the feature space. This will be implemented as
a generalization of our constrained diffusion algorithm to include jumps in the underlying
feature space.

Another development would be to speed up the learning procedure using stochastic
algorithm techniques to handle even larger databases without using a combination of filter
and wrapper method.
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image. PhD thesis, École Normale Supérieure de Cachan, 94235 Cedex, France, 2004.
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