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ABSTRACT. We investigate the asymptotic properties as t — co of the differential
equation

(S) #(t) +a(t)x(t) + VG(x(t)) =0, t>0,

where x(-) is R-valued, the map a : Ry — Ry is non increasing, and G : R — R
is a potential with locally Lipschitz continuous derivative. We identify conditions
on the function a(-) that guarantee or exclude the convergence of solutions of this
problem to points in argmin G, in the case where G is convex and argmin G is an

" ) )
interval. The condition [;° e~ Joa) 454t < oo is shown to be necessary for conver-
gence of trajectories, and a slightly stronger condition is shown to be sufficient.

1. INTRODUCTION

In this note, we study the differential equation
(S) ¥(t) +a(t)x(t) + VG(x(t)) =0, t>0

where x(-) is R-valued, themap G : R — Risatleastof class C!,and a : Ry — R
is a non increasing function. In a previous paper [3], we studied this differential
equation in a finite- or infinite-dimensional Hilbert space H. We are interested in
the case where a(f) — 0 as t — oo. Broadly speaking, convergence of solutions
can be expected if a(t) — 0 sulfficiently slowly. One of the questions left open in
that paper was whether solutions converge to a limit if the property

/O'oo o= a4 — o )

does not hold and if argmin G consists of more than just one point. In this note, we
give a positive answer to this question, in the one dimensional case.

2. PRELIMINARY FACTS

Throughout this paper, we will denote by G : R — R a C! function for which
the derivative ¢ = G’ is Lipschitz continuous, uniformly on bounded sets. The
function a : R — R, will always be assumed to be continuous and non-increasing.
We also define the energy

£(t) = Glx(1) + 5 |x(1)P. @
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Here are some basic results for solutions of (S) from [3].

For any (xo, x1) € R?, the problem (S) has a unique solution x(-) € C?([0, T), R)
satisfying x(0) = xp, %(0) = x1 on some maximal time interval [0, T) C [0, c0). For
every t € [0, T), the energy identity holds

d )
¢ = —a(t)]x(t)[*. ®)
If in addition G is bounded from below, then
T
/ a ()] %()2dt < oo, (4)
JO

and the solution exists for all T > 0. If also G(¢) — oo as |§| — oo (i.e. if G is coer-
cive), then all solutions to (S) remain bounded together with their first and second
derivatives for all t > 0. The bound depends only on the initial data. If a solution
x to (S) converges toward some X € R, then lim; . %(t) = lim¢ .. ¥(t) = 0 and
VG(x) = 0. If [;°a(s)ds < oo and if inf G > —oo, then solutions x(-) of (S) for
which (x(0), %(0)) ¢ argminG x {0} cannot converge to a point in argminG.

For the remainder of this note we shall assume that argmin G # @. Without loss
of generality, we may assume that ming G = 0 and G(0) = 0. If for some p € R

(G) Vx € R, G(x) = G(z) < pG'(x)(x — 2).
then it is possible to show that any solution x to the differential equation (S) sat-
isfies
/ a(t) E(t) dt < co. ®)
0

Since t — £(t) is decreasing, this estimate implies that £(t) — minG = 0 as
t — oo, provided that [;°a(t)dt = co. If now argminG = {x} is a singleton,
then trajectories must converge to X under fairly weak additional conditions. The
reader is referred to [3] for details.

3. CONVEX POTENTIALS WITH NON-UNIQUE MINIMA

In this section, we investigate the convergence of the trajectories of (S) when
argmin G is not a singleton. While the previous discussion shows that [;° a(s)ds =
oo is a necessary condition for trajectories to converge to a point in argmin G, this
condition is clearly not sufficient, as the particular case G = 0 shows. In this case,
the solution is given by

x(t) = x(0) + %(0) /Ot e Jo alw) dugg

and the solution x converges if and only if (1) does not hold. Therefore it is natural
to ask whether for a general potential G, the trajectory x is convergent if this con-
dition does not hold. The potential G is assumed to have all the properties listed in
the previous section. A general result of non-convergence of the trajectories under
the condition (1) is shown in [3]. There, we assume that G is coercive, infr G = 0,
argminG = [a, B] for some & < B, and that G is non-increasing on (—oo, a] and
non-decreasing on [B, c0). It is also assumed that 4 satisfies condition (1). Then ei-
ther a solution satisfies (x(0), x(0)) € [a, B] x {0}, or else the w- limit set w(xo, X()
contains [«, B] and hence the trajectory x does not converge.
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We now ask if the converse assertion is true: do the trajectories x of (S) con-
verge if (1) does not hold? We give a positive answer when the map a satisfies the
following stronger condition

/oo o—? jga(u)duds < 0, (6)
0

for some 0 € (0,1).

Theorem 3.1. Let G : R — R be a convex function of class C' such that G’ is Lipschitz
continuous on the bounded sets of R. Assume that argminG = [a, f] with « < B and
that there exists 6 > 0 such that

Vi€ (—ooa], G'(8) <26(3—a) and Vi€ [Boo), G'(E)=26(5—p)

Let a : Ry — Ry be a differentiable non increasing map such that limy_.. a(t) = 0 and
such that condition (6) holds for some positive 6 < 1. Then, for any solution non constant
solution x to the differential equation (S), lim—,c0 x(t) exists.

Proof. We may assume without loss of generality that « = 0, = 1. The conditions
on G imply that it is coercive, hence lim; .o £(t) = 0 and |x(¢)| < M for some
M >0, forallt € Ry.

Define the set 7 = {t > 0| x(t) = 0} of sign changes of x. This set must be
discrete, for if it had an accumulation point t*, then x(#*) = 0 and also %(t*) = 0
by Rolle’s Theorem. Since then x(t*) = ¥(t*) = G'(x(t*)) = 0, x would have to be
the constant solution 0, which yields a contradiction.

If 7 is a finite set, then % does not change sign for sufficiently large ¢, and the
trajectory x has a limit. Let us therefore assume that 7 = {t, |n € IN}, where
the f,, are increasing and tend to co. We want to show that this is impossible.
Observe that at each f,, X must change its sign and G’ (x(t,)) # 0, since otherwise
also #(t,) = 0 and we would again have a stationary solution. Without loss of
generality, we can assume that %(0) < 0, x(0) < 0 and therefore x(tp) < 0. Since
G'(x(to)) < 0, equation (S) shows that (o) > 0, hence the map x is positive on
(to, t1), x(t1) > 1, x is negative on (1, ), and so on.

The argument so far shows that G’ (x(t)) vanishes on a union of infinitely many
disjoint closed intervals,

{t10 < x(t) < 1} = Ugso[tig, k1]

where 0 < tg < ug and uy_1 < t < uy fork =1, 2,.... Let us observe that, for
every k € N,

1= frlnzer) = ()| = [

Uk

Uok+1 | .
J2()] dt < Juger — uge| max [2(b)].
t>1p)

Since lim;_, X(t) = 0, we deduce that limy_, |to 1 — Upr| = 0.
We next observe that for upy < t < upq the function v = X satisfies v(f) +

a(t)v(t) = 0 and hence

Uk

— [ a(r)dr ' @)

Vt € [uok, Uokt1), xX(t) = % (ug)e

Claim 3.1. There is a constant <y such that uy o — g1 < 7y forall k € N.
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To show this claim, fix k € IN and assume that t € [up, 1, Uprsp]. Assume for
now that k is odd and thus x(t) < 0. Define the quantity A(f) = exp (% fg a(s) ds)
and set y(t) = A(t) x(t). Then y is the solution of the differential equation

a? a
i+ 406 (45) - (S + 5 v =0 ®

and satisfies y(ugk1) = y(uaks2) = 0 and y(ugei1) = A(ugeir) #(uzes1) < 0.
Since the map a converges to 0, we can choose k large enough so that a(t) < 2v/6
for every t € [uog i1, Ugki2]. On the other hand, the assumption on G’ shows that,

for every t € (g1, Uks2],

o y(t)
~— | < .
A(t) G (A(t)) <26y(t)
Recalling finally that a(t) < 0 for every t > 0, we deduce from (8) that

Vt € [ugkir,ugesa],  §(E) +0y(t) = 0.

The unique solution z of the differential equation Z(t) + ¢ z(t) = 0 with the same
initial conditions as y has the first zero larger than uy 1 at up, 1 + %. By a stan-

dard comparison argument, we deduce that y vanishes before z does, hence
T
Ugky2 S Ugky1 T, 7= N
The same argument applies if k is even. This proves the claim.

Claim 3.2. Thereis a kg € IN such that for k > kg

U2k+2
|x(u2k+2)’ S |.7.C(Z,12k)|g_gfquJr ﬂ(s)ds‘

where 0 is as in (6).

To prove this, pick kg so large that for all k > kg
(1—6) (upkr2 — 1) = 76

This is possible since 1y p — iy — 00 as k — oo. Since a is non-increasing, this
implies that

Uok+2
0 [ amar < A0a(ui) < (1-0) (a1 — uz)alui)

2k+1
u
< (14))/ ()t
u

2k

U u
9/ Zkﬂa('r)d‘fg / 2kﬂa(’r)alr.
u

U

N

and hence

Then for k > ko,

A

v . . M2kl d
|x(u2k+2)| > |X(M2k+1)| = ‘x(uzk”e jqu a(s) ds

[£(age) = i o)

IN

proving the claim.
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Claim 3.3. If the set T is unbounded, there must exist a constant C, depending on T and
on x(0),x(0) such that for all t > 0

£(1)] < Ce 0 oal)ds, 9)

By making sure that C is sufficiently large, we only have to prove the estimate
for t > uyy, . First assume that uy; <t < uyq for some k. Then from (7)
ot t
()] < () ™ o™ < () ",
Using induction, we deduce from Claim 3.2 that
-6 lf a(s)ds
£(0)] < [l e 20" = Cre e

. ) 2k .
with Cp = [ (1, )| ¢ Jo™" a(s)ds Next consider the case where U1 < t < Uppyo
for some k. Then

()] < [e(ugn)] < Crem0 ™" o < ¢ il alohT -0
k42
Due to Claim 3.1, ¢ w1 AT T < @, for all k, for some constant Cp. Estimate (9)

now follows for t > uy, with C = C;C,. By enlarging C further, the estimate
follows for all t > 0.

Let us now conclude the proof of the theorem. From assumption (6) and es-
timate (9), we derive that x € Ll(O,oo). Hence lim; . x(t) exists, contradicting
the initial assumption. Therefore lim;_. x(t) exists after all, and the theorem has
been proved. U

Remark 3.1. Note that the map t — tfl with ¢ > 1 satisfies condition (6) for every

0 € (1,1). In fact, if merely a(t) > i1 for t large enough for some ¢ > 1, then
condition (6) is satisfied. Consider next the family of maps a : Ry — R defined
by
o 1 d
O el s S R

for some d > 0. It is immediate to check that condition (1) holds if and only if d €
(0,1]. Thus non-stationary trajectories of (S) do not converge when d € (0, 1]. But
condition (6) is never satisfied, for any 6 € (0,1) and d > 0, and the convergence
of trajectories remains an open question. Thus there remains a “logarithmic” gap
between the criteria for existence and non-existence of limits.

We conclude with some remarks on convergence results in dimension n > 1.
It is possible to extend the non-convergence result given at the beginning of this
section to the case where the differential equation is given in a Hilbert space H,
see [3]. However, it is not clear how to prove that lim;_. x(t) exists, in a gen-
eral Hilbert space H and for the case where G is convex and argminG is not a
singleton. Since in this case |%(t)| < \/2&(t), it appears natural to derive conver-
gence results from suitable estimates for £(t). In [3], we give conditions that imply
E(t) < Da(t) for all ¢, for some constant D > 0. However, since we must also as-
sume that fo s)ds = oo, these estimates are not strong enough to guarantee the
convergence of tra]ectorles
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One could try to extend the proof of Theorem 3.1. Set a1(t) = a(t) - xs(x(t)),
where x; is the characteristic function of S, then %5 (t) < —2a1(f)&E(t), and hence

E(t) < E(O)e_zfot ()45 If the function t +— e~ J0®()% can be shown to be in
L1(0, 00), it would follow that |%| is integrable, implying the convergence of trajec-
tories. This works in the one-dimensional case since the behavior of trajectories is
quite simple. However, if dimH > 1, it is difficult to satisfy this property, since
trajectories corresponding to (S) can be expected to behave like trajectories of a
billiard problem in S = argmin G for large times.

When the map 7 is constant and positive, it is established in [1, 2] that the tra-
jectories of (S) are weakly convergent if the potential G : H — R is convex and
argminG # @, in an arbitrary Hilbert space H. The key ingredient of the proof
is the Opial lemma [4], which allows the authors of these papers to prove con-
vergence even if |%(+)| is only in L?(0,0) and not in L'(0,00). However, if e.g.
a(t) = 751, then Opial’s lemma requires that we show [(°(t + 1)[%(t)[*dt < o,

while (4) implies only [;° 7|%(t)[>dt < co. Hence there remains a gap if argu-

ments similar to those in [1] or [2] are to be used. It is unclear how this gap can be
closed.
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