ON SECOND ORDER DIFFERENTIAL EQUATIONS WITH ASYMPTOTICALLY SMALL DISSIPATION

ALEXANDRE CABOT, HANS ENGLER, AND SÉBASTIEN GADAT

Pour Alban, né le 27 mars 2008

ABSTRACT. We investigate the asymptotic properties as $t \to \infty$ of the differential equation

 $\ddot{x}(t) + a(t)\dot{x}(t) + \nabla G(x(t)) = 0, \quad t \ge 0,$

where $x(\cdot)$ is \mathbb{R} -valued, the map $a : \mathbb{R}_+ \to \mathbb{R}_+$ is non increasing, and $G : \mathbb{R} \to \mathbb{R}$ is a potential with locally Lipschitz continuous derivative. We identify conditions on the function $a(\cdot)$ that guarantee or exclude the convergence of solutions of this problem to points in argmin G, in the case where G is convex and argmin G is an interval. The condition $\int_0^\infty e^{-\int_0^t a(s) ds} dt < \infty$ is shown to be necessary for convergence of trajectories, and a slightly stronger condition is shown to be sufficient.

1. INTRODUCTION

In this note, we study the differential equation

$$\ddot{x}(t) + a(t)\dot{x}(t) + \nabla G(x(t)) = 0, \quad t \ge 0$$

where $x(\cdot)$ is \mathbb{R} -valued, the map $G : \mathbb{R} \to \mathbb{R}$ is at least of class C^1 , and $a : \mathbb{R}_+ \to \mathbb{R}_+$ is a non increasing function. In a previous paper [3], we studied this differential equation in a finite- or infinite-dimensional Hilbert space \mathcal{H} . We are interested in the case where $a(t) \to 0$ as $t \to \infty$. Broadly speaking, convergence of solutions can be expected if $a(t) \to 0$ sufficiently slowly. One of the questions left open in that paper was whether solutions converge to a limit if the property

$$\int_0^\infty e^{-\int_0^t a(s)ds} dt = \infty \tag{1}$$

does *not* hold and if argmin *G* consists of more than just one point. In this note, we give a positive answer to this question, in the one dimensional case.

2. PRELIMINARY FACTS

Throughout this paper, we will denote by $G : \mathbb{R} \to \mathbb{R}$ a C^1 function for which the derivative g = G' is Lipschitz continuous, uniformly on bounded sets. The function $a : \mathbb{R}_+ \to \mathbb{R}_+$ will always be assumed to be continuous and non-increasing. We also define the energy

$$\mathcal{E}(t) = G(x(t)) + \frac{1}{2} |\dot{x}(t)|^2.$$
(2)

²⁰⁰⁰ Mathematics Subject Classification. 34G20, 34A12, 34D05.

Key words and phrases. Differential equation, dissipative dynamical system, vanishing damping, asymptotic behavior.

Here are some basic results for solutions of (S) from [3].

For any $(x_0, x_1) \in \mathbb{R}^2$, the problem (S) has a unique solution $x(\cdot) \in C^2([0, T), \mathbb{R})$ satisfying $x(0) = x_0$, $\dot{x}(0) = x_1$ on some maximal time interval $[0, T) \subset [0, \infty)$. For every $t \in [0, T)$, the energy identity holds

$$\frac{d}{dt}\mathcal{E}(t) = -a(t)|\dot{x}(t)|^2.$$
(3)

If in addition *G* is bounded from below, then

$$\int_0^T a(t) |\dot{x}(t)|^2 dt < \infty , \qquad (4)$$

and the solution exists for all T > 0. If also $G(\xi) \to \infty$ as $|\xi| \to \infty$ (i.e. if *G* is *coercive*), then all solutions to (S) remain bounded together with their first and second derivatives for all t > 0. The bound depends only on the initial data. If a solution x to (S) converges toward some $\overline{x} \in \mathbb{R}$, then $\lim_{t\to\infty} \dot{x}(t) = \lim_{t\to\infty} \ddot{x}(t) = 0$ and $\nabla G(\overline{x}) = 0$. If $\int_0^\infty a(s) ds < \infty$ and if $\inf G > -\infty$, then solutions $x(\cdot)$ of (S) for which $(x(0), \dot{x}(0)) \notin \operatorname{argmin} G \times \{0\}$ cannot converge to a point in $\operatorname{argmin} G$.

For the remainder of this note we shall assume that argmin $G \neq \emptyset$. Without loss of generality, we may assume that min_{**R**} G = 0 and G(0) = 0. If for some $\rho \in$ **R** $_+$

(G)
$$\forall x \in \mathbb{R}, \quad G(x) - G(z) \le \rho G'(x)(x-z).$$

then it is possible to show that any solution *x* to the differential equation (S) satisfies

$$\int_0^\infty a(t)\,\mathcal{E}(t)\,dt < \infty. \tag{5}$$

Since $t \mapsto \mathcal{E}(t)$ is decreasing, this estimate implies that $\mathcal{E}(t) \to \min G = 0$ as $t \to \infty$, provided that $\int_0^\infty a(t) dt = \infty$. If now argmin $G = \{\overline{x}\}$ is a singleton, then trajectories must converge to \overline{x} under fairly weak additional conditions. The reader is referred to [3] for details.

3. CONVEX POTENTIALS WITH NON-UNIQUE MINIMA

In this section, we investigate the convergence of the trajectories of (S) when argmin *G* is *not* a singleton. While the previous discussion shows that $\int_0^\infty a(s)ds = \infty$ is a necessary condition for trajectories to converge to a point in argmin *G*, this condition is clearly not sufficient, as the particular case $G \equiv 0$ shows. In this case, the solution is given by

$$x(t) = x(0) + \dot{x}(0) \int_0^t e^{-\int_0^s a(u) \, du} ds$$

and the solution *x* converges if and only if (1) does not hold. Therefore it is natural to ask whether for a general potential *G*, the trajectory *x* is convergent if this condition does not hold. The potential *G* is assumed to have all the properties listed in the previous section. A general result of non-convergence of the trajectories under the condition (1) is shown in [3]. There, we assume that *G* is coercive, $\inf_{\mathbb{R}} G = 0$, $\arg\min G = [\alpha, \beta]$ for some $\alpha < \beta$, and that *G* is non-increasing on $(-\infty, \alpha]$ and non-decreasing on $[\beta, \infty)$. It is also assumed that *a* satisfies condition (1). Then either a solution satisfies $(x(0), \dot{x}(0)) \in [\alpha, \beta] \times \{0\}$, or else the ω -limit set $\omega(x_0, \dot{x}_0)$ contains $[\alpha, \beta]$ and hence the trajectory *x* does not converge.

We now ask if the converse assertion is true: do the trajectories x of (S) converge if (1) does not hold? We give a positive answer when the map a satisfies the following stronger condition

$$\int_0^\infty e^{-\theta \int_0^s a(u) \, du} ds < \infty,\tag{6}$$

for some $\theta \in (0, 1)$.

Theorem 3.1. Let $G : \mathbb{R} \to \mathbb{R}$ be a convex function of class C^1 such that G' is Lipschitz continuous on the bounded sets of \mathbb{R} . Assume that $\operatorname{argmin} G = [\alpha, \beta]$ with $\alpha < \beta$ and that there exists $\delta > 0$ such that

$$\forall \xi \in (-\infty, \alpha], \quad G'(\xi) \leq 2\,\delta\,(\xi - \alpha) \quad and \quad \forall \xi \in [\beta, \infty), \quad G'(\xi) \geq 2\,\delta\,(\xi - \beta).$$

Let $a : \mathbb{R}_+ \to \mathbb{R}_+$ be a differentiable non increasing map such that $\lim_{t\to\infty} a(t) = 0$ and such that condition (6) holds for some positive $\theta < 1$. Then, for any solution non constant solution x to the differential equation (S), $\lim_{t\to\infty} x(t)$ exists.

Proof. We may assume without loss of generality that $\alpha = 0, \beta = 1$. The conditions on *G* imply that it is coercive, hence $\lim_{t\to\infty} \mathcal{E}(t) = 0$ and $|x(t)| \leq M$ for some M > 0, for all $t \in \mathbb{R}_+$.

Define the set $\mathcal{T} = \{t \ge 0 | \dot{x}(t) = 0\}$ of sign changes of \dot{x} . This set must be discrete, for if it had an accumulation point t^* , then $\dot{x}(t^*) = 0$ and also $\ddot{x}(t^*) = 0$ by Rolle's Theorem. Since then $\dot{x}(t^*) = \ddot{x}(t^*) = G'(x(t^*)) = 0$, x would have to be the constant solution 0, which yields a contradiction.

If \mathcal{T} is a finite set, then \dot{x} does not change sign for sufficiently large t, and the trajectory x has a limit. Let us therefore assume that $\mathcal{T} = \{t_n \mid n \in \mathbb{N}\}$, where the t_n are increasing and tend to ∞ . We want to show that this is impossible. Observe that at each t_n , \dot{x} must change its sign and $G'(x(t_n)) \neq 0$, since otherwise also $\ddot{x}(t_n) = 0$ and we would again have a stationary solution. Without loss of generality, we can assume that $\dot{x}(0) < 0$, x(0) < 0 and therefore $x(t_0) < 0$. Since $G'(x(t_0)) < 0$, equation (\mathcal{S}) shows that $\ddot{x}(t_0) > 0$, hence the map \dot{x} is positive on (t_0, t_1) , $x(t_1) > 1$, \dot{x} is negative on (t_1, t_2) , and so on.

The argument so far shows that G'(x(t)) vanishes on a union of infinitely many disjoint closed intervals,

$$\{t \mid 0 \le x(t) \le 1\} = \bigcup_{k \ge 0} [u_{2k}, u_{2k+1}]$$

where $0 < t_0 < u_0$ and $u_{2k-1} < t_k < u_{2k}$ for k = 1, 2, ... Let us observe that, for every $k \in \mathbb{N}$,

$$1 = |x(u_{2k+1}) - x(u_{2k})| = \int_{u_{2k}}^{u_{2k+1}} |\dot{x}(t)| \, dt \le |u_{2k+1} - u_{2k}| \max_{t \ge u_{2k}} |\dot{x}(t)|.$$

Since $\lim_{t\to\infty} \dot{x}(t) = 0$, we deduce that $\lim_{k\to\infty} |u_{2k+1} - u_{2k}| = \infty$.

We next observe that for $u_{2k} \le t \le u_{2k+1}$ the function $v = \dot{x}$ satisfies $\dot{v}(t) + a(t)v(t) = 0$ and hence

$$\forall t \in [u_{2k}, u_{2k+1}], \qquad \dot{x}(t) = \dot{x}(u_{2k})e^{-\int_{u_{2k}}^{t} a(\tau)d\tau}.$$
(7)

Claim 3.1. *There is a constant* γ *such that* $u_{2k+2} - u_{2k+1} \leq \gamma$ *for all* $k \in \mathbb{N}$ *.*

To show this claim, fix $k \in \mathbb{N}$ and assume that $t \in [u_{2k+1}, u_{2k+2}]$. Assume for now that k is odd and thus $x(t) \leq 0$. Define the quantity $A(t) = \exp\left(\frac{1}{2}\int_0^t a(s)\,ds\right)$ and set $y(t) = A(t)\,x(t)$. Then y is the solution of the differential equation

$$\ddot{y}(t) + A(t) G'\left(\frac{y(t)}{A(t)}\right) - \left(\frac{a^2(t)}{4} + \frac{\dot{a}(t)}{2}\right) y(t) = 0,$$
(8)

and satisfies $y(u_{2k+1}) = y(u_{2k+2}) = 0$ and $\dot{y}(u_{2k+1}) = A(u_{2k+1})\dot{x}(u_{2k+1}) < 0$. Since the map *a* converges to 0, we can choose *k* large enough so that $a(t) < 2\sqrt{\delta}$ for every $t \in [u_{2k+1}, u_{2k+2}]$. On the other hand, the assumption on *G*' shows that, for every $t \in [u_{2k+1}, u_{2k+2}]$,

$$A(t) G'\left(\frac{y(t)}{A(t)}\right) \le 2\,\delta\,y(t).$$

Recalling finally that $\dot{a}(t) \leq 0$ for every $t \geq 0$, we deduce from (8) that

$$\forall t \in [u_{2k+1}, u_{2k+2}], \qquad \ddot{y}(t) + \delta y(t) \ge 0.$$

The unique solution *z* of the differential equation $\ddot{z}(t) + \delta z(t) = 0$ with the same initial conditions as *y* has the first zero larger than u_{2k+1} at $u_{2k+1} + \frac{\pi}{\sqrt{\delta}}$. By a standard comparison argument, we deduce that *y* vanishes before *z* does, hence

$$u_{2k+2} \le u_{2k+1} + \gamma, \quad \gamma = \frac{\pi}{\sqrt{\delta}}.$$

The same argument applies if *k* is even. This proves the claim.

Claim 3.2. *There is a* $k_0 \in \mathbb{N}$ *such that for* $k \ge k_0$

$$|\dot{x}(u_{2k+2})| \leq |\dot{x}(u_{2k})| e^{-\theta \int_{u_{2k}}^{u_{2k+2}} a(s) ds}.$$

where θ is as in (6).

To prove this, pick k_0 so large that for all $k \ge k_0$

$$(1-\theta)(u_{2k+2}-u_{2k}) \geq \gamma \theta \,.$$

This is possible since $u_{2k+2} - u_{2k} \rightarrow \infty$ as $k \rightarrow \infty$. Since *a* is non-increasing, this implies that

$$\theta \int_{u_{2k+1}}^{u_{2k+2}} a(\tau) d\tau \le \gamma \theta a(u_{2k+1}) \le (1-\theta)(u_{2k+1}-u_{2k})a(u_{2k+1}) \\ \le (1-\theta) \int_{u_{2k}}^{u_{2k+1}} a(\tau) d\tau$$

and hence

$$heta \int_{u_{2k}}^{u_{2k+2}} a(\tau) d\tau \leq \int_{u_{2k}}^{u_{2k+1}} a(\tau) d\tau \,.$$

Then for $k \ge k_0$,

$$\begin{aligned} |\dot{x}(u_{2k+2})| &\leq |\dot{x}(u_{2k+1})| = |\dot{x}(u_{2k})|e^{-\int_{u_{2k}}^{u_{2k+1}} a(s) \, ds} \\ &\leq |\dot{x}(u_{2k})|e^{-\theta \int_{u_{2k}}^{u_{2k+2}} a(s) \, ds} \end{aligned}$$

proving the claim.

Claim 3.3. *If the set* T *is unbounded, there must exist a constant* C*, depending on* T *and on* $x(0), \dot{x}(0)$ *such that for all* $t \ge 0$

$$|\dot{x}(t)| \le C e^{-\theta \int_0^t a(s) \, ds}.$$
(9)

By making sure that *C* is sufficiently large, we only have to prove the estimate for $t \ge u_{2k_0}$. First assume that $u_{2k} \le t \le u_{2k+1}$ for some *k*. Then from (7)

$$|\dot{x}(t)| \leq |\dot{x}(u_{2k})| e^{-\int_{u_{2k}}^{t} a(s) ds} \leq |\dot{x}(u_{2k})| e^{-\theta \int_{u_{2k}}^{t} a(s) ds}.$$

Using induction, we deduce from Claim 3.2 that

$$|\dot{x}(t)| \le |\dot{x}(u_{2k_0})| e^{-\theta \int_{u_{2k_0}}^t a(s) ds} = C_1 e^{-\theta \int_0^t a(s) ds}$$

with $C_1 = |\dot{x}(u_{2k_0})| e^{\theta \int_0^{u_{2k_0}} a(s) ds}$. Next consider the case where $u_{2k+1} < t \le u_{2k+2}$ for some *k*. Then

$$|\dot{x}(t)| \le |\dot{x}(u_{2k+1})| \le C_1 e^{-\theta \int_0^{u_{2k+1}} a(s) \, ds} \le C_1 e^{\theta \int_{u_{2k+1}}^{u_{2k+2}} a(\tau) d\tau} e^{-\theta \int_0^t a(s) \, ds}$$

Due to Claim 3.1, $e^{\theta \int_{u_{2k+1}}^{u_{2k+2}} a(\tau)d\tau} \leq C_2$ for all k, for some constant C_2 . Estimate (9) now follows for $t \geq u_{2k_0}$ with $C = C_1C_2$. By enlarging C further, the estimate follows for all $t \geq 0$.

Let us now conclude the proof of the theorem. From assumption (6) and estimate (9), we derive that $\dot{x} \in L^1(0, \infty)$. Hence $\lim_{t\to\infty} x(t)$ exists, contradicting the initial assumption. Therefore $\lim_{t\to\infty} x(t)$ exists after all, and the theorem has been proved.

Remark 3.1. Note that the map $t \mapsto \frac{c}{t+1}$ with c > 1 satisfies condition (6) for every $\theta \in (\frac{1}{c}, 1)$. In fact, if merely $a(t) \ge \frac{c}{t+1}$ for t large enough for some c > 1, then condition (6) is satisfied. Consider next the family of maps $a : \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$a(t) = \frac{1}{t+1} + \frac{d}{(t+1)\ln(t+2)}$$

for some d > 0. It is immediate to check that condition (1) holds if and only if $d \in (0, 1]$. Thus non-stationary trajectories of (S) do not converge when $d \in (0, 1]$. But condition (6) is never satisfied, for any $\theta \in (0, 1)$ and d > 0, and the convergence of trajectories remains an open question. Thus there remains a "logarithmic" gap between the criteria for existence and non-existence of limits.

We conclude with some remarks on convergence results in dimension n > 1. It is possible to extend the non-convergence result given at the beginning of this section to the case where the differential equation is given in a Hilbert space \mathcal{H} , see [3]. However, it is not clear how to prove that $\lim_{t\to\infty} x(t)$ exists, in a general Hilbert space \mathcal{H} and for the case where *G* is convex and argmin *G* is not a singleton. Since in this case $|\dot{x}(t)| \leq \sqrt{2\mathcal{E}(t)}$, it appears natural to derive convergence results from suitable estimates for $\mathcal{E}(t)$. In [3], we give conditions that imply $\mathcal{E}(t) \leq Da(t)$ for all *t*, for some constant D > 0. However, since we must also assume that $\int_0^{\infty} a(s) ds = \infty$, these estimates are not strong enough to guarantee the convergence of trajectories.

One could try to extend the proof of Theorem 3.1. Set $a_1(t) = a(t) \cdot \chi_S(x(t))$, where χ_S is the characteristic function of *S*, then $\frac{d}{dt}\mathcal{E}(t) \leq -2a_1(t)\mathcal{E}(t)$, and hence $\mathcal{E}(t) \leq \mathcal{E}(0)e^{-2\int_0^t a_1(s)ds}$. If the function $t \mapsto e^{-\int_0^t a_1(s)ds}$ can be shown to be in $L^1(0,\infty)$, it would follow that $|\dot{x}|$ is integrable, implying the convergence of trajectories. This works in the one-dimensional case since the behavior of trajectories is quite simple. However, if dim $\mathcal{H} > 1$, it is difficult to satisfy this property, since trajectories corresponding to (\mathcal{S}) can be expected to behave like trajectories of a billiard problem in $S = \operatorname{argmin} G$ for large times.

When the map *a* is constant and positive, it is established in [1, 2] that the trajectories of (S) are weakly convergent if the potential $G : \mathcal{H} \to \mathbb{R}$ is convex and argmin $G \neq \emptyset$, in an arbitrary Hilbert space \mathcal{H} . The key ingredient of the proof is the Opial lemma [4], which allows the authors of these papers to prove convergence even if $|\dot{x}(\cdot)|$ is only in $L^2(0,\infty)$ and not in $L^1(0,\infty)$. However, if e.g. $a(t) = \frac{c}{t+1}$, then Opial's lemma requires that we show $\int_0^{\infty} (t+1)|\dot{x}(t)|^2 dt < \infty$, while (4) implies only $\int_0^{\infty} \frac{1}{t+1}|\dot{x}(t)|^2 dt < \infty$. Hence there remains a gap if arguments similar to those in [1] or [2] are to be used. It is unclear how this gap can be closed.

REFERENCES

- F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. on Control and Optimization, 38 (2000), n° 4, 1102-1119.
- [2] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method: I the continuous dynamical system, *Communications in Contemporary Mathematics*, 2 (2000), n° 1, 1-34.
- [3] A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in *Trans. of the Amer. Math. Soc.*. http://arxiv.org/abs/0710.1107
- [4] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. of the American Math. Society, 73, (1967), 591-597.

Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

E-mail address: acabot@math.univ-montp2.fr

DEPARTMENT OF MATHEMATICS, GEORGETOWN UNIVERSITY, BOX 571233, WASHINGTON, DC 20057, USA

E-mail address: engler@georgetown.edu

INSTITUT DE MATHÉMATIQUES DE TOULOUSE, UNIVERSITÉ PAUL SABATIER, 118, ROUTE DE NAR-BONNE 31062 TOULOUSE CEDEX 9, FRANCE

E-mail address: Sebastien.Gadat@math.ups-tlse.fr