ON SECOND ORDER DIFFERENTIAL EQUATIONS WITH ASYMPTOTICALLY SMALL DISSIPATION

ALEXANDRE CABOT, HANS ENGLER, AND SÉBASTIEN GADAT

Pour Alban, né le 27 mars 2008

Abstract

We investigate the asymptotic properties as $t \rightarrow \infty$ of the differential equation $$
\begin{equation*} \ddot{x}(t)+a(t) \dot{x}(t)+\nabla G(x(t))=0, \quad t \geq 0 \tag{S} \end{equation*}
$$ where $x(\cdot)$ is \mathbb{R}-valued, the map $a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is non increasing, and $G: \mathbb{R} \rightarrow \mathbb{R}$ is a potential with locally Lipschitz continuous derivative. We identify conditions on the function $a(\cdot)$ that guarantee or exclude the convergence of solutions of this problem to points in $\operatorname{argmin} G$, in the case where G is convex and $\operatorname{argmin} G$ is an interval. The condition $\int_{0}^{\infty} e^{-\int_{0}^{t} a(s) d s} d t<\infty$ is shown to be necessary for convergence of trajectories, and a slightly stronger condition is shown to be sufficient.

1. Introduction

In this note, we study the differential equation

$$
\begin{equation*}
\ddot{x}(t)+a(t) \dot{x}(t)+\nabla G(x(t))=0, \quad t \geq 0 \tag{S}
\end{equation*}
$$

where $x(\cdot)$ is \mathbb{R}-valued, the $\operatorname{map} G: \mathbb{R} \rightarrow \mathbb{R}$ is at least of class \mathcal{C}^{1}, and $a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is a non increasing function. In a previous paper [3], we studied this differential equation in a finite- or infinite-dimensional Hilbert space \mathcal{H}. We are interested in the case where $a(t) \rightarrow 0$ as $t \rightarrow \infty$. Broadly speaking, convergence of solutions can be expected if $a(t) \rightarrow 0$ sufficiently slowly. One of the questions left open in that paper was whether solutions converge to a limit if the property

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\int_{0}^{t} a(s) d s} d t=\infty \tag{1}
\end{equation*}
$$

does not hold and if argmin G consists of more than just one point. In this note, we give a positive answer to this question, in the one dimensional case.

2. Preliminary Facts

Throughout this paper, we will denote by $G: \mathbb{R} \rightarrow \mathbb{R}$ a \mathcal{C}^{1} function for which the derivative $g=G^{\prime}$ is Lipschitz continuous, uniformly on bounded sets. The function $a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$will always be assumed to be continuous and non-increasing. We also define the energy

$$
\begin{equation*}
\mathcal{E}(t)=G(x(t))+\frac{1}{2}|\dot{x}(t)|^{2} . \tag{2}
\end{equation*}
$$

[^0]Here are some basic results for solutions of (\mathcal{S}) from [3].
For any $\left(x_{0}, x_{1}\right) \in \mathbb{R}^{2}$, the problem (\mathcal{S}) has a unique solution $x(\cdot) \in \mathcal{C}^{2}([0, T), \mathbb{R})$ satisfying $x(0)=x_{0}, \dot{x}(0)=x_{1}$ on some maximal time interval $[0, T) \subset[0, \infty)$. For every $t \in[0, T)$, the energy identity holds

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}(t)=-a(t)|\dot{x}(t)|^{2} \tag{3}
\end{equation*}
$$

If in addition G is bounded from below, then

$$
\begin{equation*}
\int_{0}^{T} a(t)|\dot{x}(t)|^{2} d t<\infty \tag{4}
\end{equation*}
$$

and the solution exists for all $T>0$. If also $G(\xi) \rightarrow \infty$ as $|\xi| \rightarrow \infty$ (i.e. if G is coercive), then all solutions to (\mathcal{S}) remain bounded together with their first and second derivatives for all $t>0$. The bound depends only on the initial data. If a solution x to (\mathcal{S}) converges toward some $\bar{x} \in \mathbb{R}$, then $\lim _{t \rightarrow \infty} \dot{x}(t)=\lim _{t \rightarrow \infty} \ddot{x}(t)=0$ and $\nabla G(\bar{x})=0$. If $\int_{0}^{\infty} a(s) d s<\infty$ and $\operatorname{if} \inf G>-\infty$, then solutions $x(\cdot)$ of (\mathcal{S}) for which $(x(0), \dot{x}(0)) \notin \operatorname{argmin} G \times\{0\}$ cannot converge to a point in $\operatorname{argmin} G$.

For the remainder of this note we shall assume that $\operatorname{argmin} G \neq \varnothing$. Without loss of generality, we may assume that $\min _{\mathbb{R}} G=0$ and $G(0)=0$. If for some $\rho \in \mathbb{R}_{+}$

$$
\begin{equation*}
\forall x \in \mathbb{R}, \quad G(x)-G(z) \leq \rho G^{\prime}(x)(x-z) \tag{G}
\end{equation*}
$$

then it is possible to show that any solution x to the differential equation (\mathcal{S}) satisfies

$$
\begin{equation*}
\int_{0}^{\infty} a(t) \mathcal{E}(t) d t<\infty \tag{5}
\end{equation*}
$$

Since $t \mapsto \mathcal{E}(t)$ is decreasing, this estimate implies that $\mathcal{E}(t) \rightarrow \min G=0$ as $t \rightarrow \infty$, provided that $\int_{0}^{\infty} a(t) d t=\infty$. If now $\operatorname{argmin} G=\{\bar{x}\}$ is a singleton, then trajectories must converge to \bar{x} under fairly weak additional conditions. The reader is referred to [3] for details.

3. CONVEX POTENTIALS WITH NON-UNIQUE MINIMA

In this section, we investigate the convergence of the trajectories of (\mathcal{S}) when $\operatorname{argmin} G$ is not a singleton. While the previous discussion shows that $\int_{0}^{\infty} a(s) d s=$ ∞ is a necessary condition for trajectories to converge to a point in $\operatorname{argmin} G$, this condition is clearly not sufficient, as the particular case $G \equiv 0$ shows. In this case, the solution is given by

$$
x(t)=x(0)+\dot{x}(0) \int_{0}^{t} e^{-\int_{0}^{s} a(u) d u} d s
$$

and the solution x converges if and only if (1) does not hold. Therefore it is natural to ask whether for a general potential G, the trajectory x is convergent if this condition does not hold. The potential G is assumed to have all the properties listed in the previous section. A general result of non-convergence of the trajectories under the condition (1) is shown in [3]. There, we assume that G is coercive, $\inf _{\mathbb{R}} G=0$, $\operatorname{argmin} G=[\alpha, \beta]$ for some $\alpha<\beta$, and that G is non-increasing on $(-\infty, \alpha]$ and non-decreasing on $[\beta, \infty)$. It is also assumed that a satisfies condition (1). Then either a solution satisfies $(x(0), \dot{x}(0)) \in[\alpha, \beta] \times\{0\}$, or else the ω - limit set $\omega\left(x_{0}, \dot{x}_{0}\right)$ contains $[\alpha, \beta]$ and hence the trajectory x does not converge.

We now ask if the converse assertion is true: do the trajectories x of (\mathcal{S}) converge if (1) does not hold? We give a positive answer when the map a satisfies the following stronger condition

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\theta} \int_{0}^{s} a(u) d u d s<\infty \tag{6}
\end{equation*}
$$

for some $\theta \in(0,1)$.
Theorem 3.1. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function of class \mathcal{C}^{1} such that G^{\prime} is Lipschitz continuous on the bounded sets of \mathbb{R}. Assume that $\operatorname{argmin} G=[\alpha, \beta]$ with $\alpha<\beta$ and that there exists $\delta>0$ such that

$$
\forall \xi \in(-\infty, \alpha], \quad G^{\prime}(\xi) \leq 2 \delta(\xi-\alpha) \quad \text { and } \quad \forall \xi \in[\beta, \infty), \quad G^{\prime}(\xi) \geq 2 \delta(\xi-\beta)
$$

Let $a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a differentiable non increasing map such that $\lim _{t \rightarrow \infty} a(t)=0$ and such that condition (6) holds for some positive $\theta<1$. Then, for any solution non constant solution x to the differential equation $(\mathcal{S}), \lim _{t \rightarrow \infty} x(t)$ exists.

Proof. We may assume without loss of generality that $\alpha=0, \beta=1$. The conditions on G imply that it is coercive, hence $\lim _{t \rightarrow \infty} \mathcal{E}(t)=0$ and $|x(t)| \leq M$ for some $M>0$, for all $t \in \mathbb{R}_{+}$.

Define the set $\mathcal{T}=\{t \geq 0 \mid \dot{x}(t)=0\}$ of sign changes of \dot{x}. This set must be discrete, for if it had an accumulation point t^{*}, then $\dot{x}\left(t^{*}\right)=0$ and also $\ddot{x}\left(t^{*}\right)=0$ by Rolle's Theorem. Since then $\dot{x}\left(t^{*}\right)=\ddot{x}\left(t^{*}\right)=G^{\prime}\left(x\left(t^{*}\right)\right)=0, x$ would have to be the constant solution 0 , which yields a contradiction.

If \mathcal{T} is a finite set, then \dot{x} does not change sign for sufficiently large t, and the trajectory x has a limit. Let us therefore assume that $\mathcal{T}=\left\{t_{n} \mid n \in \mathbb{N}\right\}$, where the t_{n} are increasing and tend to ∞. We want to show that this is impossible. Observe that at each t_{n}, \dot{x} must change its sign and $G^{\prime}\left(x\left(t_{n}\right)\right) \neq 0$, since otherwise also $\ddot{x}\left(t_{n}\right)=0$ and we would again have a stationary solution. Without loss of generality, we can assume that $\dot{x}(0)<0, x(0)<0$ and therefore $x\left(t_{0}\right)<0$. Since $G^{\prime}\left(x\left(t_{0}\right)\right)<0$, equation (\mathcal{S}) shows that $\ddot{x}\left(t_{0}\right)>0$, hence the map \dot{x} is positive on $\left(t_{0}, t_{1}\right), x\left(t_{1}\right)>1, \dot{x}$ is negative on $\left(t_{1}, t_{2}\right)$, and so on.

The argument so far shows that $G^{\prime}(x(t))$ vanishes on a union of infinitely many disjoint closed intervals,

$$
\{t \mid 0 \leq x(t) \leq 1\}=\cup_{k \geq 0}\left[u_{2 k}, u_{2 k+1}\right]
$$

where $0<t_{0}<u_{0}$ and $u_{2 k-1}<t_{k}<u_{2 k}$ for $k=1,2, \ldots$ Let us observe that, for every $k \in \mathbb{N}$,

$$
1=\left|x\left(u_{2 k+1}\right)-x\left(u_{2 k}\right)\right|=\int_{u_{2 k}}^{u_{2 k+1}}|\dot{x}(t)| d t \leq\left|u_{2 k+1}-u_{2 k}\right| \max _{t \geq u_{2 k}}|\dot{x}(t)|
$$

Since $\lim _{t \rightarrow \infty} \dot{x}(t)=0$, we deduce that $\lim _{k \rightarrow \infty}\left|u_{2 k+1}-u_{2 k}\right|=\infty$.
We next observe that for $u_{2 k} \leq t \leq u_{2 k+1}$ the function $v=\dot{x}$ satisfies $\dot{v}(t)+$ $a(t) v(t)=0$ and hence

$$
\begin{equation*}
\forall t \in\left[u_{2 k}, u_{2 k+1}\right], \quad \dot{x}(t)=\dot{x}\left(u_{2 k}\right) e^{-\int_{u_{2 k}}^{t} a(\tau) d \tau} \tag{7}
\end{equation*}
$$

Claim 3.1. There is a constant γ such that $u_{2 k+2}-u_{2 k+1} \leq \gamma$ for all $k \in \mathbb{N}$.

To show this claim, fix $k \in \mathbb{N}$ and assume that $t \in\left[u_{2 k+1}, u_{2 k+2}\right]$. Assume for now that k is odd and thus $x(t) \leq 0$. Define the quantity $A(t)=\exp \left(\frac{1}{2} \int_{0}^{t} a(s) d s\right)$ and set $y(t)=A(t) x(t)$. Then y is the solution of the differential equation

$$
\begin{equation*}
\ddot{y}(t)+A(t) G^{\prime}\left(\frac{y(t)}{A(t)}\right)-\left(\frac{a^{2}(t)}{4}+\frac{\dot{a}(t)}{2}\right) y(t)=0 \tag{8}
\end{equation*}
$$

and satisfies $y\left(u_{2 k+1}\right)=y\left(u_{2 k+2}\right)=0$ and $\dot{y}\left(u_{2 k+1}\right)=A\left(u_{2 k+1}\right) \dot{x}\left(u_{2 k+1}\right)<0$. Since the map a converges to 0 , we can choose k large enough so that $a(t)<2 \sqrt{\delta}$ for every $t \in\left[u_{2 k+1}, u_{2 k+2}\right]$. On the other hand, the assumption on G^{\prime} shows that, for every $t \in\left[u_{2 k+1}, u_{2 k+2}\right]$,

$$
A(t) G^{\prime}\left(\frac{y(t)}{A(t)}\right) \leq 2 \delta y(t)
$$

Recalling finally that $\dot{a}(t) \leq 0$ for every $t \geq 0$, we deduce from (8) that

$$
\forall t \in\left[u_{2 k+1}, u_{2 k+2}\right], \quad \ddot{y}(t)+\delta y(t) \geq 0 .
$$

The unique solution z of the differential equation $\ddot{z}(t)+\delta z(t)=0$ with the same initial conditions as y has the first zero larger than $u_{2 k+1}$ at $u_{2 k+1}+\frac{\pi}{\sqrt{\delta}}$. By a standard comparison argument, we deduce that y vanishes before z does, hence

$$
u_{2 k+2} \leq u_{2 k+1}+\gamma, \quad \gamma=\frac{\pi}{\sqrt{\delta}} .
$$

The same argument applies if k is even. This proves the claim.
Claim 3.2. There is a $k_{0} \in \mathbb{N}$ such that for $k \geq k_{0}$

$$
\left|\dot{x}\left(u_{2 k+2}\right)\right| \leq\left|\dot{x}\left(u_{2 k}\right)\right| e^{-\theta \int_{u_{2 k}}^{u_{2 k+2}} a(s) d s}
$$

where θ is as in (6).
To prove this, pick k_{0} so large that for all $k \geq k_{0}$

$$
(1-\theta)\left(u_{2 k+2}-u_{2 k}\right) \geq \gamma \theta
$$

This is possible since $u_{2 k+2}-u_{2 k} \rightarrow \infty$ as $k \rightarrow \infty$. Since a is non-increasing, this implies that

$$
\begin{aligned}
\theta \int_{u_{2 k+1}}^{u_{2 k+2}} a(\tau) d \tau & \leq \gamma \theta a\left(u_{2 k+1}\right) \leq(1-\theta)\left(u_{2 k+1}-u_{2 k}\right) a\left(u_{2 k+1}\right) \\
& \leq(1-\theta) \int_{u_{2 k}}^{u_{2 k+1}} a(\tau) d \tau
\end{aligned}
$$

and hence

$$
\theta \int_{u_{2 k}}^{u_{2 k+2}} a(\tau) d \tau \leq \int_{u_{2 k}}^{u_{2 k+1}} a(\tau) d \tau
$$

Then for $k \geq k_{0}$,

$$
\begin{aligned}
\left|\dot{x}\left(u_{2 k+2}\right)\right| & \leq\left|\dot{x}\left(u_{2 k+1}\right)\right|=\left|\dot{x}\left(u_{2 k}\right)\right| e^{-\int_{u_{2 k}}^{u_{2 k+1}} a(s) d s} \\
& \leq\left|\dot{x}\left(u_{2 k}\right)\right| e^{-\theta \int_{u_{2 k}}^{u_{2 k+2}} a(s) d s}
\end{aligned}
$$

proving the claim.

Claim 3.3. If the set \mathcal{T} is unbounded, there must exist a constant C, depending on \mathcal{T} and on $x(0), \dot{x}(0)$ such that for all $t \geq 0$

$$
\begin{equation*}
|\dot{x}(t)| \leq C e^{-\theta \int_{0}^{t} a(s) d s} \tag{9}
\end{equation*}
$$

By making sure that C is sufficiently large, we only have to prove the estimate for $t \geq u_{2 k_{0}}$. First assume that $u_{2 k} \leq t \leq u_{2 k+1}$ for some k. Then from (7)

$$
|\dot{x}(t)| \leq\left|\dot{x}\left(u_{2 k}\right)\right| e^{-\int_{u_{2 k}}^{t} a(s) d s} \leq\left|\dot{x}\left(u_{2 k}\right)\right| e^{-\theta \int_{u_{2 k}}^{t} a(s) d s}
$$

Using induction, we deduce from Claim 3.2 that

$$
|\dot{x}(t)| \leq\left|\dot{x}\left(u_{2 k_{0}}\right)\right| e^{-\theta \int_{u_{2 k_{0}}}^{t} a(s) d s}=C_{1} e^{-\theta \int_{0}^{t} a(s) d s}
$$

with $C_{1}=\left|\dot{x}\left(u_{2 k_{0}}\right)\right| e^{\theta \int_{0}^{u_{2 k}}} a(s) d s$. Next consider the case where $u_{2 k+1}<t \leq u_{2 k+2}$ for some k. Then

$$
|\dot{x}(t)| \leq\left|\dot{x}\left(u_{2 k+1}\right)\right| \leq C_{1} e^{-\theta \int_{0}^{u_{2 k+1}} a(s) d s} \leq C_{1} e^{\theta \int_{u_{2 k+1}}^{u_{2 k+2}} a(\tau) d \tau} e^{-\theta \int_{0}^{t} a(s) d s} .
$$

Due to Claim 3.1, $e^{\theta \int_{u_{2 k+1}}^{u_{2 k+2}} a(\tau) d \tau} \leq C_{2}$ for all k, for some constant C_{2}. Estimate (9) now follows for $t \geq u_{2 k_{0}}$ with $C=C_{1} C_{2}$. By enlarging C further, the estimate follows for all $t \geq 0$.

Let us now conclude the proof of the theorem. From assumption (6) and estimate (9), we derive that $\dot{x} \in L^{1}(0, \infty)$. Hence $\lim _{t \rightarrow \infty} x(t)$ exists, contradicting the initial assumption. Therefore $\lim _{t \rightarrow \infty} x(t)$ exists after all, and the theorem has been proved.

Remark 3.1. Note that the map $t \mapsto \frac{c}{t+1}$ with $c>1$ satisfies condition (6) for every $\theta \in\left(\frac{1}{c}, 1\right)$. In fact, if merely $a(t) \geq \frac{c}{t+1}$ for t large enough for some $c>1$, then condition (6) is satisfied. Consider next the family of maps $a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$defined by

$$
a(t)=\frac{1}{t+1}+\frac{d}{(t+1) \ln (t+2)}
$$

for some $d>0$. It is immediate to check that condition (1) holds if and only if $d \in$ $(0,1]$. Thus non-stationary trajectories of (\mathcal{S}) do not converge when $d \in(0,1]$. But condition (6) is never satisfied, for any $\theta \in(0,1)$ and $d>0$, and the convergence of trajectories remains an open question. Thus there remains a "logarithmic" gap between the criteria for existence and non-existence of limits.

We conclude with some remarks on convergence results in dimension $n>1$. It is possible to extend the non-convergence result given at the beginning of this section to the case where the differential equation is given in a Hilbert space \mathcal{H}, see [3]. However, it is not clear how to prove that $\lim _{t \rightarrow \infty} x(t)$ exists, in a general Hilbert space \mathcal{H} and for the case where G is convex and $\operatorname{argmin} G$ is not a singleton. Since in this case $|\dot{x}(t)| \leq \sqrt{2 \mathcal{E}(t)}$, it appears natural to derive convergence results from suitable estimates for $\mathcal{E}(t)$. In [3], we give conditions that imply $\mathcal{E}(t) \leq D a(t)$ for all t, for some constant $D>0$. However, since we must also assume that $\int_{0}^{\infty} a(s) d s=\infty$, these estimates are not strong enough to guarantee the convergence of trajectories.

One could try to extend the proof of Theorem 3.1. Set $a_{1}(t)=a(t) \cdot \chi_{S}(x(t))$, where χ_{S} is the characteristic function of S, then $\frac{d}{d t} \mathcal{E}(t) \leq-2 a_{1}(t) \mathcal{E}(t)$, and hence $\mathcal{E}(t) \leq \mathcal{E}(0) e^{-2 \int_{0}^{t} a_{1}(s) d s}$. If the function $t \mapsto e^{-\int_{0}^{t} a_{1}(s) d s}$ can be shown to be in $L^{1}(0, \infty)$, it would follow that $|\dot{x}|$ is integrable, implying the convergence of trajectories. This works in the one-dimensional case since the behavior of trajectories is quite simple. However, if $\operatorname{dim} \mathcal{H}>1$, it is difficult to satisfy this property, since trajectories corresponding to (\mathcal{S}) can be expected to behave like trajectories of a billiard problem in $S=\operatorname{argmin} G$ for large times.

When the map a is constant and positive, it is established in [1,2] that the trajectories of (\mathcal{S}) are weakly convergent if the potential $G: \mathcal{H} \rightarrow \mathbb{R}$ is convex and $\operatorname{argmin} G \neq \varnothing$, in an arbitrary Hilbert space \mathcal{H}. The key ingredient of the proof is the Opial lemma [4], which allows the authors of these papers to prove convergence even if $|\dot{x}(\cdot)|$ is only in $L^{2}(0, \infty)$ and not in $L^{1}(0, \infty)$. However, if e.g. $a(t)=\frac{c}{t+1}$, then Opial's lemma requires that we show $\int_{0}^{\infty}(t+1)|\dot{x}(t)|^{2} d t<\infty$, while (4) implies only $\int_{0}^{\infty} \frac{1}{t+1}|\dot{x}(t)|^{2} d t<\infty$. Hence there remains a gap if arguments similar to those in [1] or [2] are to be used. It is unclear how this gap can be closed.

References

[1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. on Control and Optimization, 38 (2000), n° 4, 1102-1119.
[2] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method: I the continuous dynamical system, Communications in Contemporary Mathematics, 2 (2000), n° 1, 1-34.
[3] A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in Trans. of the Amer. Math. Soc.. http://arxiv.org/abs/0710.1107
[4] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. of the American Math. Society, 73, (1967), 591-597.

Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

E-mail address: acabot@math.univ-montp2.fr
Department of Mathematics, Georgetown University, Box 571233, Washington, DC 20057, USA

E-mail address: engler@georgetown.edu
Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, Route de Narbonne 31062 Toulouse Cedex 9, France

E-mail address: Sebastien. Gadat@math.ups-tlse.fr

[^0]: 2000 Mathematics Subject Classification. 34G20, 34A12, 34D05.
 Key words and phrases. Differential equation, dissipative dynamical system, vanishing damping, asymptotic behavior.

