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a b s t r a c t

Microarray technology allows for the monitoring of thousands of gene expressions in
various biological conditions, but most of these genes are irrelevant for classifying these
conditions. Feature selection is consequently needed to help reduce the dimension of the
variable space. Starting from the application of the stochastic meta-algorithm ‘‘Optimal
Feature Weighting’’ (OFW) for selecting features in various classification problems,
focus is made on the multiclass problem that wrapper methods rarely handle. From a
computational point of view, one of the main difficulties comes from the unbalanced
classes situation that is commonly encountered in microarray data. From a theoretical
point of view, very few methods have been developed so far to minimize the classification
error made on the minority classes. The OFW approach is developed to handle multiclass
problems using CART and one-vs-one SVM classifiers. Comparisons are made with other
multiclass selection algorithms such as Random Forests and the filter method F-test on
five public microarray data sets with various complexities. Statistical relevancy of the
gene selections is assessed by computing the performances and the stability of these
different approaches and the results obtained show that the two proposed approaches are
competitive and relevant to selecting genes classifying the minority classes.
Application to a pig folliculogenesis study follows and a detailed interpretation of the

genes that were selected shows that the OFW approach answers the biological question.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

When dealing with microarray data, one of the most important issues to improve the classification task is to perform
feature selection. Thousands of genes can be measured on a single array, most of which are irrelevant or uninformative for
classification methods. Dimensionality must therefore be reduced without losing information.
In this context, our objective was to look for predictors (the genes) that would classify the observed cases (the

microarrays) into their known classes. The selection of these discriminative variables can be performed in two ways: either
explicitly, with the filter methods or implicitly, with the wrapper methods. The filter methods measure the usefulness
of a feature by ordering it with statistical tests such as t- or F-tests. These gene-by-gene approaches are robust against
overfitting and computationally fast. However, they disregard the interactions between the features and they may fail to
find the ‘‘useful’’ set of variables, as they usually select variables with redundant information. On the contrary, the aim of the
wrapper methods is to measure the usefulness of a subset of features in the whole set of variables. However, when dealing
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with a large number of variables as is the case here, it is computationally impossible to do an exhaustive search among all
subsets of features. Furthermore, these methods are prone to overfit. One solution to benefit from the wrapper approach
is to perform a search using stochastic approximations that still cover a large portion of the feature space and avoid local
minima. The ‘‘Optimal Feature Weighting’’ algorithm (OFW) proposed by Gadat and Younes (2007) allows for the selection
of an optimal discriminative subset of variables. Thismeta-algorithm can be appliedwith any classifier. For example Support
Vector Machines (SVM, Vapnik, 1999) and Classification And Regression Trees (CART, Breiman et al., 1984) were applied to
this stochastic approach in Lê Cao et al. (2007) for 2-class microarray problems. The aim was to make a comparative study
of OFW + SVM/CART with other wrapper methods and a filter method on public microarray data sets. The relevancy of
the results was assessed in a statistical manner by measuring the performance of each gene selection and with a thorough
biological interpretation. The selections obtained with OFW were statistically competitive and biologically relevant, even
for complex data sets.
From this point, we investigate OFWwithmulticlassmicroarray data sets. Multiclass problems are often considered as an

extension of 2-class problems. However, this extension is not always straightforward as the data sets are often characterized
by unbalanced classes with a very small number of cases in at least one of the classes. Furthermore, this ‘‘rare’’ minority class
is often the one of interest for the biologistswhowould like to diagnose a disease for example. Nevertheless,most algorithms
do not perform well for such problems as they aim at minimizing the overall error rate instead of focusing on the minority
class. Moreover, the classification accuracy appears to degrade very quickly as the number of classes increases (Li et al.,
2004). Several methods have been proposed in recent years. Chen et al. (2004) proposed balanced or weighted random
forests, McCarthy et al. (2005) compared sampling methods and cost sensitive learning, but with no clear winner in the
results. More recently Eitrich et al. (2007) and Qiao and Liu (in press) also addressed the unbalanced multiclass issue with
cost sensitive machine learning techniques and SVM.
In the specific context of multiclass microarray data, Li et al. (2004) applied various classifiers with various feature

selection methods and concluded that the accuracy was highly dependent on the choice of the classifier, rather than the
choice of the selection method — although this would be more natural. Chen et al. (2003) applied four filter methods with
lowcorrelation between the selected genes, Tibshirani et al. (2002) proposed the ShrunkenCentroid approach andYeung and
Burmgarner (2003) applied uncorrelated or error-weighted Shrunken Centroid. More recently Chakraborty (2008) proposed
a Bayesian Nearest Neighbor model.
In this study we compare two ways of handling multiclass data, either with an internal weighting procedure in OFW to

take into account the minority classes or without. We do not intend to optimize the size of the gene subset. We rather focus
on the assessment criteria to measure the performance of the different methods on the first selected genes.
Biological interpretation that is one of the main factors to evaluate the relevancy of the results will be given for one case

study. The reader can also refer to Lê Cao et al. (2007) that highlights the importance of biological interpretation in the
analysis.
We apply the multicategory classifier CART and the one-vs-one SVM approach with OFW on five public microarray data

sets. Numerical comparisons are donewith Random Forests, that are known to perform efficiently on such data sets, and one
filter method (F-test). We compute the e.632+ bootstrap error from Efron and Tibshirani (1997) for each feature selection
method, assess the stability of the results with the Jaccard index and compare the different gene lists. The weighted and
non-weighted approaches are then compared in OFW+CART and OFW+ SVMwith the same tools. Finally, application and
biological analysis are performed on a pig folliculogenesis data set.
The first section introduces the theoretical adaptation of the OFWmodel to themulticlass framework. In the next section

we consider the computational aspects of the application of CART and SVM in OFW and describe the different tools to assess
the performance of the results. Application on public data sets and on a practical data set follow. The paper endswith further
elements of discussion.

2. The OFWmodel

We introduce our feature selection model in the framework of multiclass analysis. As we focus here on microarray data,
we will mostly refer to ‘‘genes’’ instead of ‘‘variables’’.

2.1. Measure of the classification efficiency

Let G be a large set of genes numbered from 1 to N that describe a signal I that belongs to one of the classes
{C1, . . . ,Ck, . . . ,CK }, k = 1, . . . , K . A classification algorithm A will be chosen according to the problem type (2-class,
multiclass), as OFW does not depend on the classification procedure A.
Let us define a positive weight parameter P on each of the genes in G. After a normalization step, P can be considered

as a discrete probability on the N genes. The goal is to learn this probability P that fits the efficiency of each gene for the
classification of I in {C1, . . . ,CK }. In this probability, importantweights are given to geneswith a high discriminative power
and lower weights to those that have the poorest influence on the classification task. We denote by p any small integer
compared to N . A gene subset of size p is drawn from G with respect to P. We then define how to measure the goodness of
P for the set of genes G and the classes {C1, . . . ,CK } (i.e. the objective function).
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Definition 1. Given a probability P on G and ε(ω) themeasure of classification efficiency for any p-tupleω ∈ Gp, the energy
of the system at point P is the mean classification performance where ω is drawn with respect to P⊗p in Gp:

E(P) = EP[ε] =
∑
ω⊂Gp

P(w)ε(w). (1)

Remark 1. Genes that are selected with respect to P in (1) are drawn with replacement, although it would look more
reasonable to use subsets of genes without replacement. This mainly comes from the mathematical derivations to optimize
E that are described below.

Note that the energy E depends on the way we measure the classification efficiency on ω denoted ε(ω). Given any
standard classification algorithm A, ε(ω) is actually the error rate of A that is computed on the training set using the set
of extracted features ω. The more P enables us to hold good genes g for the classification task (i.e. important weight on g
and ε(ω) small each time ω contains this gene g), the less the E . Minimizing E with respect to Pwill thus permit to exhibit
the most weighted and consequently the most highly discriminative genes. Therefore, a natural importance ranking will be
read on the weight P? that minimizes E .

2.2. Stochastic optimization method

The energy E can be minimized with a stochastic version of the standard gradient descent technique. More details about
the theoretical derivations can be found in Gadat and Younes (2007).
The function E has to be minimized up to the constraints defined by a discrete probability measure on G. Thus, the more

natural way to optimize (1) is to use a gradient descent of E projected to the set of constraints. The set of constraints S is
the simplex of a probability map on G. We also denote byΠS the affine projection of any point of RN on the simplex S. This
natural projectionΠS of any point x can be computed in a finite number of steps as mentioned in Gadat and Younes (2007).
Using this former projectionΠS , the Euclidean gradient of E is

∀g ∈ G ∇E(P)(g) =
∑
ω∈Gp

C(ω, g)P(ω)
P(g)

ε(ω), (2)

where C(ω, g) is the number of occurrences of g in ω. The iterative procedure to update P is then given by

Pt+dt = Pt −∇Ptdt. (3)

The main clue is that the Euclidean gradient expression (2) can be seen as an expectation as stated in the next proposition.

Proposition 1. For any P probability map onG and if ∇S denotes the gradient of E with respect to constraints S,∇SE is given by

∀g ∈ G ∇SE(P)(g) = ΠS

(
Eω

[
C(ω, g)

P(g)
ε(ω)

])
.

This last expression is numerically intractable since it requires the computation of ε for every possible p-uple from G. To
deal with such gradient, a computable Robbins–Monro algorithm can be used, which exhibits similar asymptotic behavior
as (3), see for instance Gadat and Younes (2007) and Kushner and Clark (1978). With this stochastic method, the updated
formula of Pn becomes:

Pn+1 = ΠS

[
Pn − αn

C(ωn, .)ε(ωn)
Pn(.)

]
, (4)

where ωn is any set of p genes sampled with respect to Pn. Note that the last expression is always defined since when
Pn(g) = 0, we cannot draw this gene in ωn and the integer C(ωn, g) vanishes. The next theorem precisely describes the
asymptotic behavior of (4).

Theorem 1. Defining the discretisation time τk =
∑k
i=0 αi and its associated dual reversion I(t) = sup{k | τk ≤ t}, then the

interpolated process Pk(t) = PI(τk+t) is an asymptotic pseudo-trajectory of the ordinary differential equation (3) provided that
the sequence of steps (αi) satisfies the two conditions:∑

i

αi = ∞ and ∃ ν > 0
∑
i

α1+νi <∞.

This last result ensures that the stochastic algorithm computing Pn is asymptotically equivalent to the real gradient descent
(3). Several derivations of this theoretical point can be found in Gadat and Younes (2007). In our experiments, we have
decided to use a step sequence αi = A/(B+ i) for calibrated constants A and B.
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2.3. Detailed algorithm

We detail the algorithm in the case of a given classifier A:

Let G = (δ1 . . . δ|G|), µ ∈ N∗ and η the stopping criterion.

• For iteration n = 0 define P0 as the uniform distribution on G.
• While |P(n+µ) − Pn|∞ > η:
. extract ωn from Gp with respect to P⊗pn ,
. construct Aωn and compute ε(ωn),
. compute the drift vector dn = C(ωn, ·)ε(ωn)/Pn(·),
. update Pn+1 = ΠS[Pn − αndn],
. n = n+ 1.

The last lines introduce a projectionΠS which corresponds to the natural affine projection into the simplex S of discrete
probability measures. More precisely, we have

ΠS(q) = argmin
p∈S
‖q− p‖2.

Note that since Pn − αndn may have some negative coordinates, this projection is slightly different from a simple
normalization step. Several details are provided in Gadat and Younes (2007).

3. Application of OFW and performance evaluation

We discuss the applications of OFW + CART/SVM in the context of multiclass problems. The binary case can be found
in Lê Cao et al. (2007).

3.1. CART and SVM multiclass applied to OFW

3.1.1. CART
OFW is applied with the classifier CART (Classification And Regression Trees, Breiman et al. (1984)) that is well adequate

for multiclass problems. CART is constructed via a recursive partitioning routine. It builds a classification rule to predict the
class label of the microarrays based on the feature information following the Gini criterion. To avoid overfitting, trees are
then generally pruned using a cross validation procedure.
Note that CART is unstable by nature: a slight change in the features can lead to a very different construction of the tree.

Following the example of Breiman (1996), the trees were aggregated (bagging) to overcome this instability. As in Breiman
(1996), the trees were unpruned, but there is no overfitting thanks to the aggregation technique. Note that recently, Zhang
et al. (2008) proposed a boosting-based double bagging procedure that seemed to perform better than boosting or bagging
alone.
In OFW+ CART, for each iteration n, B trees were constructed on B bootstrap samples and on different variable subsets

ωbn drawn with respect to Pn, b = 1, . . . , B. We then defined the efficiency criterion ε as the mean classification error rate
on the out-of-bag samples. The detailed bagging version of OFW+ CART is described in 3.3.

3.1.2. SVM Multiclass
We applied OFWwith the one-vs-one SVM approach that is implemented in the e1071 R package. Other SVMmulticlass

approaches could have been applied, such as the one-vs-rest approach, the approach proposed by Lee and Lee (2003),
by Joachims (1999) or the multiclass version from Weston and Watkins (1999). Unlike CART, SVM is very stable and ε was
therefore computed on only one bootstrap sample (B = 1).

3.2. Different computations of the gradient

Contrary to Gadat and Younes (2007), we made some slight modifications of the gradient descent to improve the speed
of the algorithm with OFW+ CART. We propose an averaged time version of the initial OFW as follows:

Dn =

n∑
i=1
αid̄i

n∑
i=1
αi

with d̄i =
B∑
b=1

C(ωbi , .)ε(ω
b
i )

Pi(.)
,

where b is the bootstrap sample on which each CART tree is constructed and αi = A/(B+ i) is the step sequence referred to
in Section 2.2.



K.-A. Lê Cao et al. / Computational Statistics and Data Analysis 53 (2009) 3601–3615 3605

This enables OFW to better approximate themean drift (2) than in the standard case. Indeedwith CART, since the variance
of the stochastic algorithm seems higher, the approximation of ∇E is actually much more difficult than in the SVM case.
This averaging step is therefore crucial for the algorithm.

3.3. Detailed OFW+ CART algorithm

Here is the detailed version of OFW+ CART with bagging.

Let G = (δ1 . . . δ|G|), µ ∈ N∗ and η the stopping criterion. A is the unpruned classifier CART.

• For iteration n = 0 define P0 as the uniform distribution on G
• While |P(n+µ) − Pn|∞ > η:
. For b = 1..B:

extract ωbn from Gp with respect to Pn,p = P⊗pn ,
draw a bootstrap sample bsamp and construct A

bsamp
ωbn
,

compute ε(ωbn) on the out-of-bag sample b̄samp.
. compute the averaged drift vector Dn as in 3.2,
. update Pn+1 = ΠS[Pn − αnDn],
. n = n+ 1.

3.4. Weighting procedure

An efficient way to take into account the unbalanced characteristic of the data is to weight the internal error rate ε(ω)
according to the number of samples of each class in the learning set. This would penalize a classification error made on the
minority class and therefore put more weight on the variables that help in classifying this class instead of the majority class.
Let n be the total number of cases andmk, k = 1 . . . K the number of cases in class k. We define the (normalized) weight

of each case in class k bywk = 1
mk×K

. Then, for each out-of-bag test case (i.e. the sample not drawn in the bootstrap sample),
we denote bymisk the number of misclassified cases from class k. The weighted internal error rate is defined as:

ε(ω) =

K∑
k=1

misk × wk,

instead of ε(ω) =
∑K
k misk
n in the non-weighting case. This weighting procedure also stands for the evaluation step, see

following Section 3.5.

3.5. Performance measurement

3.5.1. Comparison of the prediction performance
The error rates of all methods on each data set were computed with the e.632+ bootstrap error estimate from Efron

and Tibshirani (1997) that is adequate for small sample size data sets. Each algorithm is learned on a bootstrap sample to
avoid any overfitting during the gene selection evaluation (see Ambroise and McLachlan (2002)). However, note that this
performance evaluation does not dictate the optimal number of genes to select. The e.632+ only allows for the comparison
of the performances of the different selection methods.

3.5.2. Stability
One can define the feature stability as the level of agreement between the set of genes selected in each bootstrap sample

with the set of genes selected using the full training set. The Jaccard index that is then computed lies between 0 (low level
of agreement) and 1 (high level of agreement) and will be used to compare the stability of all four ranking methods.

Definition 2. Let S(∆) be the set of the∆ selected genes from the entire training set and S(nb,∆) the set of selected genes
from the nb bootstrap sample. The number of true positives (TP) is the number of selected genes that were chosen in both
S(∆) and S(nb,∆):

TP = |S(∆) ∩ S(nb,∆)|.

Similarly, we define as the false positives (FP) the number of selected genes that were chosen in S(nb,∆) but not in S(∆):

FP = |S(nb,∆) \S(∆) |,

and the number of false negatives (FN), the number of genes that were selected in S(∆) but not in S(nb,∆):

FN = |S(∆) \S(nb,∆) |.
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The Jaccard index J(nb,∆) is defined as TP/(TP+FP+FN) and is high and close to 1when there aremany true positives and
few false positives and false negatives. We then compute the averaged Jaccard index J∆ over all nb samples for ∆ varying
between 1 selected gene and∆max selected genes.

We therefore expect to rank the stability of each feature selection procedure with this Jaccard index.

3.6. Ranking methods

Multicategory ranking methods are still rare in the context of classification, especially in the microarray data context.
We compare three wrapper methods: OFW+CART, OFW+SVM, Random Forests (RF, Breiman, 2001) and the filter method
F-test that is still widely used for selecting genes in the context ofmicroarrays. Note that during the evaluation performance,
the F-test gene selection was assessed with a one-vs-one linear SVM.
Although Random Forests can also be performed with a weighting approach such as Balanced Random Forests (BRF)

or Weighted Random Forests (WRF) from Chen et al. (2004), we chose to compare all these methods with no weighting
procedure.

4. Statistical assessment on public data sets

A short description of the five public data sets is first given before we apply OFW + CART, OFW + SVM, RF and F-test
with no weighting procedure. We compare the results obtained in terms of performance, stability and differences in the
gene selections. We then focus on OFW and compare the weighted vs. non-weighted procedure with the same criteria cited
above.

4.1. Multiclass data sets

Five public multiclass data sets were analyzed in this study.
(1) Lymphoma (Alizadeh et al., 2000) compares 3 classes of cells (42, 9 and 11 cases per class) with 4026 gene expressions.
(2) The 3-class Leukemia version (Golub et al., 1999) with 7129 genes compares the lymphocytes B and T in ALL (Acute
Lymphoblastic Leukemia, 38 and 9 cases) and the AML class (Acute Myeloid Leukemia, 25 cases). The classes AML-B and
AML-T are known to be biologically very similar.

(3) The Small Round Blue-Cell Tumor Data of childhood (SRBCT, Khan et al., 2001) includes 4 different types of tumors with
23, 20, 12 and 8 microarrays per class and 2308 genes.

(4) The Brain data set compares 5 embryonal tumors (Pomeroy et al., 2002) with 5597 gene expression. Classes 1, 2 and 3
count 10 microarrays each, the remaining classes 4 and 8.

(5) The Multiple Tumor data set initially compared 14 tumors (Ramaswamy et al., 2001) and 7129 gene expressions. We
used the normalized data set from Yeung and Burmgarner (2003) with 11 types of tumors. To fit into a usual microarray
framework (i.e. a small number of samples), we randomly selected 90 samples (out of 192) that have tumor types
coming from breast (8), central nervous system (4), colon (7), leukemia (26), lung (4), lymphoma (15), melanoma (3),
mesotheolima (7), pancreas (6), renal (5) and uterus (5).

The Brain and the Leukemia data sets were pre-filtered with a very large F-test p-value (0.1 and 0.2, leaving 1963 and 3000
genes). The Multiple Tumor data set was also pre-filtered with an F-test, leaving 2000 genes, to reduce the computation
time of the algorithms. These data sets are succinctly described in Table 1.
All these data sets were chosen for their unbalanced characteristics as the minority class for each data set represents a

small percentage of the total number of cases. All data sets were assumed to be correctly normalized.

4.2. Comparison of the ranking methods with no weighting procedure

4.2.1. Performance comparison
Fig. 1 displays the e.632+ error rates obtained on all data sets with respect to the number of the genes selected with the

different ranking methods.
The classification complexity of the data sets is easy to identify as Lymphoma (a) and SRBCT (c) display an evaluated error

rate less than 7% for a selection of 10 genes, whereas for Leukemia (b), Brain (d) and Multiple Tumor (e), the error rates vary
between 25% to 50% for a selection of 10 genes.
OFW is generally among the best performers, and the error rates of OFW+ CART and OFW+ SVM are often very close,

except for Multiple Tumor, where OFW + SVM gives a poor performance. We suspect that the aggregation of this binary
SVM (one-vs-one) may not be adapted in this extreme multiclass setting.
RF achieves good results on Leukemia, SRBCT and Multiple Tumor, whereas on Lymphoma and Brain, the performance

of the RF selection is the worst. RF might therefore not succeed in selecting genes with sufficient relevant information,
especially in Lymphoma, where all classes are easy to classify.
On the contrary, the F-test achieves good results on Lymphoma and Brain. This filter method orders genes that are

differentially expressed (i.e. significant) for at least one of the classes. If some genes are differentially expressed for more
than one class (or for all classes), they will all be informative enough and the performance will be good, which is likely
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Fig. 1. Error e.632+ bootstrap of several algorithmswith respect to the number of genes on Lymphoma (a), Leukemia (b), SRBCT (c), Brain (d) andMultiple
Tumor (e).

Table 1
Summary of the five data sets.

Lymphoma Leukemia SRBCT Brain Multiple tumor

# Genes 4026 3000a 2308 1963a 2000a
# Classes 3 3 4 5 11
# Obs. 62 72 63 42 90
# Obs. per class 42/9/11 38/9/25 23/20/12/8 10/10/10/4/8 8/4/7/26/ 4/15/3/7/6/5/5
a Pre-filtered with a very large F-test p-value.

the case for Lymphoma and Brain. With Leukemia however, the F-test performs the worst. This data set is more difficult to
classify as the 2 classes ALL-B and ALL-T are similar and ALL-B is the majority class while ALL-T is the minority class. The
F-test thus first ordered significant genes that discriminated the easiest class (ALL-B), to the detriment of the other classes.
In any case, these results show that one cannot draw general conclusions on the best method to apply. In general,

OFW+ SVM and OFW+ CART were the best performers, especially OFW+ CART in a high multiclass setting.

4.2.2. Remark on the performance assessment with e.632+ bootstrap error rate
The e.632+ error ratewas chosen as it is themost adequate to compute the performance of the differentmethods on small

sample data sets (Ambroise and McLachlan, 2002). However we did observe some weaknesses and the interpretation of the
results should be done with caution. One would expect the error rate to increase when the number of evaluated variables
becomes too large (asmore noise enters the selection). This was not the case for anymethod using the SVM classifier and RF,
which are known to base their classification task on the good variables among numerous and possibly noisy variables. The
results that we obtained are in agreement with this fact. We did not observe this tendency with OFW+ CART, as during the
evaluation step, each aggregated tree is constructed on a small variable subset from the selection (see Lê Cao and Chabrier
(2008) for the details of the algorithm).
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Fig. 2. Jaccard index of OFW+ SVM, OFW+ CART, RF and F-test with respect to the number of genes on Lymphoma (a), Leukemia (b), SRBCT (c), Brain (d)
and Multiple Tumor (e).

The evaluation error rate should thus be solely used to compare the ranking methods between each other, and not to
give an accurate classification error rate of a given variable selection.

4.2.3. Stability
The computation of the Jaccard index with respect to the number of selected genes are displayed in Fig. 2. Maximum

stability is obtained on easy data sets (Lymphoma (a) and SRBCT (c)) with a Jaccard index reaching 0.45 and 0.6. The F-test
is undoubtedly the most stable method on complex data sets (Leukemia (b), Brain (d), Multiple Tumor (e)), although its
performance is very poor (as previously discussed). RF is in general very stable compared to OFW+ SVM and OFW+ CART.
The good stability results of the filter method can be explained as the F-test selects redundant information mostly only

on themajority class, whereas the othermethods select genes with relevant information on all classes. As the gene selection
might strongly depend on the cases drawn in the bootstrap sample, especially if one class size is small, these methods will
consequently be less stable.
OFW+SVM and OFW+CART are stochastic methods and are therefore less stable. When the number of classes becomes

large (Brain, SRBCT and Multiple Tumor), the stability results seem largely affected. Thus, a compromise needs to be taken
between information (on all classes) and stability.

4.2.4. Insight into the different gene selections
Tables 2 and 3 provide more insight into the different genes that were selected with all methods on each data set (not

shown forMultiple Tumor). For example in Table 2 for the Lymphoma data set (upper triangle), OFW+SVMandOFW+CART
commonly selected 12 genes among the 50 selected.
The most striking point is the very few number of shared genes between all methods. This highlights the differences

between each ranking method. Generally, as they are constructed with the same classifier, RF and OFW+ CART share a fair
amount of genes (22 and 18 on Lymphoma and Leukemia, Table 2). Table 2 also shows that RF selected more significant
genes (i.e. differentially expressed with F-test) than OFW+ CART/SVM (30 and 11 on Lymphoma and Leukemia). In Table 3,
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Table 2
Number of genes shared by several feature selection algorithms on Leukemia or Lymphoma for a selection of 50 genes.

Leukemia Lymphoma
OFW+ SVM OFW+ CART RF F-test

OFW+ SVM # 12 11 12
OFW+ CART 7 # 22 24
RF 17 18 # 30
F-test 3 6 11 #

Table 3
Number of genes shared by several feature selection algorithms on Brain or SRBCT for a selection of 50 genes.

Brain SRBCT
OFW+ SVM OFW+ CART RF F-test

OFW+ SVM # 25 31 11
OFW+ CART 8 # 29 15
RF 12 22 # 9
F-test 7 2 2 #

where the number of classes is larger than 3 (SRBCT and Brain), the 3 methods RF, OFW+ CART and OFW+ SVM generally
shared more genes together than with the F-test. This highlights the poor relevancy of a selection made with an F-test in
this context.
On all data sets except SRBCT, OFW + CART and OFW + SVM shared very few genes. This can be explained as the

construction of these two classifiers is very different: CART searches the best variable in the feature space and the best
split to divide each node in the tree, while SVM looks for the optimal hyperplane between two classes. Note that the same
tendency was observed if we reduced or increased the size of the selection (e.g. 10 or 100).
The difficulty of the Multiple Tumor data set was strongly highlighted (not shown) as no method shared more than 4

common genes. Given the poor performances of the F-test and OFW+ SVM (Section 4.2.1), this small overlapping result is
to be expected.

4.3. Comparisons of the weighted and non-weighted procedures of OFW

The aim of this section is to compare theweighted and non-weighted versions of OFWonly, as the other rankingmethods
do not share the same weighting procedure.

4.3.1. Performance comparison
In order to compare the internal weighting procedure in OFW + CART or SVM, we computed the e.632+ error rate for

both approaches: weighted (wOFW) or non-weighted (OFW). We recall that the weighted procedure implies an internal
weighted error rate in the gradient.
For the e.632+ computations, the learning of the nb bootstrap samples of wOFW or OFW for each classifier was

performed. Then, during the testing phase, both types of learningwere evaluatedwith aweighted e.632+ . Thiswas necessary
in order to compare the improvement of the performance with the weighting approach. A non-weighting approach in
e.632+ would indeed favor the majority class to the detriment of the minority class and would still give a (wrongly) low
error rate.
Fig. 3 displays the weighted e.632+ error rate of OFW and wOFWwith the application of either CART or SVM for the five

data sets.
There is often a strong difference between the performances of OFW + CART and wOFW + CART, showing that CART

seems affected by unbalanced classes, whereas there is no difference between the two variants of OFW + SVM. The one-
vs-one SVM approach seems therefore extremely well adequate for unbalanced classes. wOFW + CART seems to improve
the error rate compared to OFW + CART on the easy data set Lymphoma (a). For SRBCT (c), all methods perform similarly,
whereas for Multiple Tumor (e), wOFW+ SVM is still affected by the high number of classes.
These graphs show that theweighting procedure in OFW+SVM seems not necessary in themulticlass case as the one-vs-

one SVM aims to classify each class, even minority, as long as the number of classes remains reasonable (≤ 5 here). On the
contrary, for OFW+ CART, the weighting procedure might be needed as by construction, CART tends to favor the majority
classes.

4.3.2. Stability
The comparisons of the Jaccard index for both versions of the algorithm are displayed in Fig. 4. wOFW + SVM seems to

improve the stability of the results of the 3-class data sets Lymphoma (a) and Leukemia (b). When the number of classes is
larger, the non-weighted versions are the most stable. These Jaccard indices are very low as the proportion of the minority
cases is often diminished during the bootstrap sampling and the selected variables that discriminate the minority classes
must strongly depend on each bootstrap sample. This explains the poor results obtained in Multiple Tumor (e).
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Fig. 3. Weighted e.632+ bootstrap error of OFW+ CART and OFW+ SVMwith both procedures weighted and non-weighted with respect to the number
of genes on Lymphoma (a), Leukemia (b), SRBCT (c), Brain (d) and Multiple Tumor (e).

4.3.3. Comparisons of the lists (weighted vs. non-weighted)
We compared the gene lists given by the weighted vs. the non-weighted procedures in OFW+ CART or SVM in Table 4.

There is a difference in the gene selections between the weighted and non-weighted versions of OFW. For example with
Lymphoma, OFW+ SVM and wOFW+ SVM shared 13 genes out of the 50 selected ones. This is surprising as there did not
seem to be a strong difference in the performance of bothmethods (Fig. 3(a)). However, with SRBCTwhere all performances
of the four tested versions were similar (Fig. 3(c)), the number of shared genes was quite high and similar compared to the
other data sets (from 24 to 31 in Table 4).
The less numerous the genes that are shared between OFW and wOFW, the better the improvement of the selection in

terms of relevancy (as wOFW aims to favor minority classes). For example the selections of wOFW + SVM in Lymphoma
might be more informative than the OFW+ SVM selection, the same stands for wOFW+CART vs. OFW+CART in Leukemia
and Brain. However, the high complexity of the Multiple Tumor data set shows the limitation of the algorithm OFW. It also
highlights a strong difference between all proposed versions of OFW.

5. Application and biological interpretation

When developing feature selection algorithms for microarray data, it is useful to check if the actual gene selection is
biologically relevant for the study. The biological interpretation of the results is therefore valuable to show the applicability
of such algorithms.

5.1. The pig folliculogenesis data set

This experiment was designed to compare different sizes of healthy follicle granulosa cells during the last stages of
antral phase. RNA from Large (L), Medium-sized (M) and Small (S) follicles was extracted from three different sows per size
category. The RNA isolated from these cells was used to hybridize 42microarrays including duplicates, resulting in 20 Large,
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Fig. 4. Comparison of the Jaccard index with the weighted and non-weighted versions of OFW+ SVM and OFW+ CART on Lymphoma (a), Leukemia (b),
SRBCT (c), Brain (d) and Multiple Tumor (e).

Table 4
Number of genes commonly selected by the weighted and non-weighted versions of OFW+ SVM or OFW+ CART for each data set (selection of 50 genes).

Lymphoma Leukemia SRBCT Brain Multiple tumor

OFW+ SVM ∩ OFW+ CART 12 7 29 8 0
wOFW+ SVM ∩wOFW+ CART 16 5 24 4 0
OFW+ SVM ∩wOFW+ SVM 13 13 31 18 5
OFW+ CART ∩wOFW+ CART 27 11 25 13 2

14Medium-sized and 8 Small follicle cases (GEO accession number: GSE5798). After a normalization and a pre-process step,
the expression of 1564 clones are left on each microarray for the analysis.
The main characteristic of this data set is the obvious difference between the Large follicles and the others. This is due to

the biological properties of the data, where LH receptors appear between the Medium and Large follicles (Fig. 5). Medium-
sized and Small follicles are still in the growth process whereas the Large follicles are completely differentiated to produce
steroid hormones. Moreover, during the measurements that assign each follicle its class, the diameters of the Small and
the Medium-sized follicles are very similar (1–2 mm and 3 mm) whereas the Large follicles cannot be mistaken (5–6 mm).
Another factor to be considered is the vast majority of regulated clones that are over-expressed in the Large follicles and
hence the minority of regulated clones (from now on referred to as genes) that are over-expressed in the Small follicles.
We are clearly here in the practical case where classes are unbalanced, and where the number of original samples is

extremely small, as some of the microarray experiments were duplicated.

5.2. Results and biological interpretation

The analysis of this data set with Random Forests and F-test was performed in Bonnet et al. (2008) and gave biologically
relevant results. We focus here on the application of OFW+ CART/SVM and their weighted variants.
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Fig. 5. The three follicle classes: Small, Medium-sized and Large.

Fig. 6. Weighted e.632+ bootstrap error of OFW+ CART and OFW+ SVMwith both procedures weighted and non-weighted with respect to the number
of genes on the follicle data set.

5.2.1. Application of OFW
When the number of original samples is extremely small, the e.632+ bootstrap error rate must be considered with

caution and should not be the only argument to favor a feature selection method. Fig. 6 displays the weighted e.632+ error
rate for all approaches. Both OFW+ SVM and wOFW+ SVM seem to give the best performance.
However, our experience shows that the most biologically relevant results do not always give the best statistical

performance (Lê Cao et al., 2007). This is why biological interpretation is a crucial step when analyzing microarray data.

5.2.2. Interpretation of the results
In these four gene lists we identified the genes GSTA1 and Cyp19A3 which are known to be over-expressed during

follicular development (Keira et al., 1994; Slomczynska et al., 2003) and nexin, ACTA2, ATF7, UBC, that were not selected by
F-test and Random Forest in the previous analysis.
Fig. 7 displays the boxplots of the 9 top genes selected either with OFW+ CART or OFW+ SVM for each class (L, M or S).

They show that while a minority of selected genes are over-expressed in the S class with OFW + CART (left), a majority of
them are over-expressed in the S class in the OFW+ SVM selection (right). This tendency can be generalized for a larger list
of genes. It seems here that the construction of the one-vs-one SVM tends to mostly favor genes discriminating the minority
class S rather than the majority class L, as L seems too easy to be classified.
When applyingwOFW+CART andwOFW+SVM, this tendency is still observed,withmore genes that are over-expressed

in S for the wOFW+ CART selection (not shown).
The biological analysis shows that most of the over-expressed genes in the S class code for ribosomic proteins may be

associated with a decrease of proliferation during follicular growth from Small to Medium follicles. The wOFW + SVM
selection seems therefore to give a better discrimination between the S and M classes. We also identified in this selection a
great number of unknown genes that will need further investigation. The wOFW+ CART selection seemed not appropriate
in this study since two negative controls were selected and the OFW + SVM selection missed some known discriminative
genes such as CYP11A3 (Bonnet et al., 2008).
This section shows that depending on the experimental design, as well as the precise biological question, the statistician

might not answer the aim of the study if the conclusions are solely drawn from the statistical results.

6. General remarks

6.1. Computation time

The experimentswere performed inRwith a 1.6 GHz 960MoRAMAMDTurion 64X2 PC for OFW+SVM (implementation
in R) and OFW+CART (implementation in C in a R package). The learning time of OFWmostly depends on the initial number
of variables in the feature space and the step of the stochastic scheme, as well as the size of ω and the number of trees
aggregated for OFW+ CART. For Brain (Lymphoma) that contains 1963 (4026) genes, the learning step took about 1 (1.5) h
for OFW+ SVM for 200 000 iterations. It took 1 (3.5) h for OFW+ CART for 5000 iterations.
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Fig. 7. Boxplots of the 9 top genes selected with OFW+ CART (left) or with OFW+ SVM (right) on the follicle growth data set. Boxplots are displayed for
each class (L, M and S).

6.2. Complexity of OFW

The complexity of themeta-algorithmOFWdepends on two points. The first one is the nature of the algorithm usedwith
SVM. The second point is the convergence speed of the stochastic scheme towards a minimum of the energy E .
The complexity of each algorithm used with OFW (CART, SVM, Multiclass SVM etc.) may be very variable and depends

on the choice of the user. For instance, with this meta-algorithm, each iteration computes a SVMwith Ns samples described
by p variables and the complexity of each step is at most p×N2s , since p > Ns in this study (see the detailed computation of
this complexity in Burges (1998)).
Regarding the second point, the convergence to an optimal state x∗ using a standard (non-averaged) Robbins–Monro

stochastic approximation scheme (Xn)n∈N is described by the following assessment:√
n
log n

(Xn − x?)→ N (0,Λ∗). (5)

This last theoretical derivation can be found in Duflo (1997). In this last statement,Λ∗ is the trace of the Hessian matrix
of E computed on the optimal state x∗. If n iterations are run in the initial version of OFW (Gadat and Younes, 2007), the
convergence speed is bounded by O

( log n
n Tr (Λ

∗)
)
. The interest in the OFWmeta-algorithm is significant since an exhaustive

search of p-uple among N features would require CpN iterations.
The aim of the averaging step introduced in Section 3.2 is to improve the rate of convergence of the stochastic scheme

reducing the variance of the estimate Dn. The theoretical derivations concerning the rate of convergence are at the moment
an open issue but it is likely to reduce the Tr (Λ∗) term introduced in (5).

6.3. General remarks

This study shows that microarray data sets have various levels of difficulty and are quite unpredictable if there is no
solid biological knowledge of the data set. The analysis of several public data sets shows that no data sets exhibit the same
behavior. Without biological expertise, it is extremely difficult to assess the relevancy of the results. Simulating a set of data
would not help givemore insight into the appliedmethodologies. Realistically simulating amicroarray data set is a complex
work, and often, the technical effects on the data are not easily identifiable.
The performance assessment of the methods could be computed, but had sometimes serious limits, either due to the

evaluation method and the applied algorithms, or the small number of samples. This study shows that the evaluation part
has to be considered with caution by the user in search of the ‘‘best’’ method.
Furthermore, although there seemed to be no improvement of the performance of the method when applying wOFW+

SVM instead of OFW + SVM, the resulting gene selection seemed to contain more biological information on the minority
class. Thus, our evaluation performance method might not be adequate in this context, especially for OFW+ CART where a
‘‘double bootstrap sampling’’ is performedduring the evaluation step.We also believe that the performance ofwOFW+CART
could be improved by directly including weights in the construction of the trees.
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Both multicategory classifiers CART and one-vs-one SVM that were applied to OFW seemed to perform better than the
other tested methods, except when the number of classes was very high (here ≥ 5). In this case, aggregating binary one-
vs-one SVMs seemed limited. Lee and Lee (2003) mentioned that the one-vs-rest SVM can also give poor results if several
classes are similar, as is often the casewith biological data. One should investigate instead the implementation of amulticlass
SVM, as was proposed byWeston andWatkins (1999), to solve the multiclass optimization quadratic problem into the SVM
directly.
Regarding the performances, choosing between these two proposed approached seems difficult. If the user is interested

in biological relevancy of the gene selection, or if the number of classes is high, then OFW+ CART might be adequate as the
construction of CART really fits this requirement (i.e. finding genes with differential expression in different classes at each
node of the tree). However, if the interest mostly lies in the classification task and finding predictive genes, then OFW+SVM
might be appropriate. By construction, the SVM searches the best hyperplane between two of the classes. Contrary to CART,
SVM optimizes a cost criterion based on the classification performance.

7. Conclusion

Starting from Lê Cao et al. (2007) that provided interesting results for binary problems, we extended the application of
OFW + CART and OFW + SVM one-vs-one for multiclass microarray problems. These data sets are known to be complex
problems because of their high dimensionality with a small sample size and at least one of the classes that is under
represented. For most classifiers, this often results in a good overall classification accuracy even though theminority classes
are misclassified.
We first compared OFW + CART and OFW + SVM with two other methods, Random Forests and the still widely used

F-test for gene selection. All methods were applied with no weighting procedure. Our results showed that the two proposed
approaches generally gave good results in terms of performance. The filter method F-test seemed not appropriate for
multiclass data sets and the stability of the results tended to be better in OFW+ SVM than CART.
We then compared the weighted version of wOFW+CART or SVM. There seemed to be no difference in the performance

between theweighted and the non-weighted versions of OFW+SVM,which generally performed the best. The performances
of the two versions of OFW+ CART differed largely, due to the extensive use of bootstrap samples during the learning step.
The relevancy of the selected genes with wOFW should however be improved as they aim at discriminating the minority
classes.
In the casewhere the classeswere numerous (≥ 5) andunbalanced, OFW+CART clearly outperformedOFW+SVMwhose

poor results were due to the types of binary SVMs that were aggregated for the multiclass purpose. The implementation of
OFW with a multiclass SVMmight improve these results.
The application and biological interpretation on a real world data set showed that the wOFW + SVM selection gave

relevant results and answered the biological question.
Availability
OFW is implemented in an R package called ofw (see also Lê Cao and Chabrier (2008)).
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