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1. Introduction

Random matrices appear in a wide range of mathematics and theoretical physics,
such as combinatorics, operator algebras, noncommutative probability, quantum
field theory, statistical mechanics. . . They also have many interesting applications
in sciences and engineering, like for instance in telecommunications processing.
They were first introduced in multivariate statistics in the thirties by Wishart [19]
and in theoretical physics in the fifties by Wigner in his fundamental article [18].
This lectures give a brief introduction to one aspect of random matrix theory,
the asymptotic behavior of the eigenvalues of random Hermitian matrices as the
dimension goes to infinity. Let XN be a N×N Hermitian matrix with independent
coefficients (these matrix models are known as Wigner matrices). The spectral
distribution of XN is defined by

µXN =
1

N

N∑
i=1

δλi ,

where λi, 1 ≤ i ≤ N are the (random) eigenvalues of XN . Then, the Wigner
theorem asserts that the measure µXN converges, as the size N of the matrix goes

to infinity, towards the Wigner semicircular distribution 1
2π

√
4− x21[−2,2](x)dx.

This is the macroscopic regime, that is, we look at the convergence of µXN (B),
for a Borel set B of fixed size, and holds on some minimal assumptions on the
coefficients. On the other hand, the microscopic regime can also be investigated,
as in the central limit theorem we make a renormalization of certain probabilistic
quantities to obtain nondegenerate limits, such as NµXN (BN ) where now the size
of BN goes to zero. This regime is more delicate to study, and we will only consider
here the case of matrices with Gaussian coefficients, known as the Gaussian Unitary
Ensemble (GUE), where the distribution of the eigenvalues is explicitly known.

Different techniques are commonly used in random matrix theory, and we will
present the usual ones: the moment method, the Stieltjes transform, and the or-
thogonal polynomials approach. This lecture will try to be self-contained and only
standard notions of probability theory will be needed. To go further, a good refer-
ence is the book by Anderson, Guionnet, and Zeitouni [1], and indeed this lecture
will be mostly inspired by it. The lectures notes [6] and [7] are also a good intro-
duction to random matrix theory, the latter presenting the deep connection with
systems of particles.

The aim of this lectures is to give an introduction to the most standard results
in random matrix theory, but also to present different techniques commonly used
in the field. They are organized as follows. Chapter 2 presents Wigner theorem,

1
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that is the convergence of the spectral distribution of Wigner matrices towards the
semicircular distribution. The proof is achieved by the computation of the moments
of the spectral distribution of Wigner matrices via combinatorics methods. We will
also mention without proof that the extremal eigenvalues converge to the edge of the
support of the semicircular distribution. In Chapter 3, we present a second proof
of Wigner theorem, only in the case of the Gaussian Unitary Ensemble, using the
Stieltjes transform, which is, as the more commonly used characteristic function,
a functional of the measure which characterizes the weak convergence of measures.
Some standard complex analysis tools will be also used and will be recalled. In
chapter 4, using an orthogonal polynomials approach, we will provide a much deeper
analysis of the Gaussian Unitary Ensemble, such as the density of eigenvalues,
correlation functions, and links with the so-called determinantal processes. Using
Laplace method, we will see the local asymptotics of the eigenvalues of the Gaussian
Unitary Ensemble. Chapter 5 briefely presents some applications of random matrix
theory to telecommunications processing. At last, Chapter 6 is an appendix where
we recall some complex analysis tools, and where proofs of some technical results
used in the notes are postponed.

Here are some notations that we are going to use in the sequel.

• HN is the space of Hermitian N ×N matrices.
• The coefficients of a matrix A ∈ MN (C) are denoted A(i, j) or Aij , for

1 ≤ i, j ≤ N .
• We often drop the dependance in the dimension in matrix notation for

readability.
• The cardinal of a set A is denoted either #A or |A|.

2. Global behavior. The Wigner theorem

Random matrix theory has been widely developed since Wigner’s work in the
fifties [18]. In quantum theory, energy levels are given by the eigenvalues of a
Hermitian operator on some Hilbert space, the so-called system Hamiltonian. The
study of such systems can become very tricky when the dimension becomes large.
Wigner’s idea was then to modelize such systems by random Hermitian matrices of
large dimension. We first describe the matrix models that we are going to study.

Definition 2.1. Let XN ∈ HN be a random N × N Hermitian matrix such that
(XN (i, j))1≤i≤j≤N are independent random variables defined on some probability
space (Ω,F ,P), and E(XN (i, j)) = 0. Such matrix models with independent coeffi-
cients are called Wigner matrices.

One of the most important model of Wigner matrices is the following.

Definition 2.2. A Wigner matrix XN is said to be from the Gaussian Unitary
Ensemble (GUE) if

Xii, i = 1, . . . , N,
√

2<Xij ,
√

2=Xij , 1 ≤ i < j ≤ N
are independent random variables, distributed according to the standard normal
distribution N (0, 1).

The GUE(N, σ2) distribution is defined as the Gaussian distribution on HN de-
fined by

2−N/2(πσ2)−N
2/2 exp

(
− 1

2σ2
Tr(M2)

)
dM
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Figure 1. Histogram of the eigenvalues of a 1000 × 1000 GUE
matrix and the semicircular distribution.

where dM is Lebesgue measure on HN defined by

dM =

N∏
i=1

dMii

∏
1≤i<j≤N

d<Mijd=Mij .

We will abbreviate GUE(N, σ2) by GUE when σ2 = 1 and when the size N is clear
from the context.

It is easy to see, using Tr(M2) = Tr(MM∗) =
∑N
i=1M

2
ii + 2

∑
1≤i<j≤N |Mij |2,

that a Wigner matrix from the GUE is distributed according the GUE distribution.

Remark 2.3. The GUE distribution is invariant by unitary conjugation, that is if

X is distributed according to the GUE then UXU∗
(d)
= X for all unitary matrix U .

Indeed, we have
Tr(UXU∗UX∗U∗) = Tr(XX∗),

and one can prove that the determinant of the change of variables X 7→ UXU∗ is
equal to 1.

Figure 1 shows a simulation of the eigenvalues of a large GUE matrix, where one
can see the relationship with the semicircular distribution, which is the following
probability measure.

Definition 2.4. The semicircular distribution µsc,σ2 is the probability measure on
R given by

µsc,σ2(dx) =
1

2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx,

where σ > 0. When σ2 = 1, we will abbreviate µsc,σ2 by µsc.
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In the global regime, we are interested in the convergence of the spectral measure
of Wigner matrices which is the following.

Definition 2.5. Let A ∈ HN , with eigenvalues λ1(A), . . . , λN (A). The spectral
mesure of A, denoted µA, is the probability measure defined by

µA =
1

N

N∑
i=1

δλi(A),

that is, for a Borel set B ⊂ R,

µA(B) =
1

N
#{1 ≤ i ≤ n |λi(A) ∈ B}.

We can now state Wigner theorem.

Wigner theorem. Let HN = 1√
N
XN , where XN is a Wigner matrix such that

such that (XN (i, j))1≤i≤j≤N are independent and identically distributed centered
random variables with variance σ2. Then, the spectral measure of HN , µHN , con-
verges weakly, as N goes to infinity, towards µsc,σ2 , almost surely.

In this section, the proof of Wigner theorem, under some additional assumptions
on the moments of the coefficients will be achieved by some combinatorial inter-
pretation of the Catalan numbers, which are, as we will see, the moments of the
semicircular distribution.

2.1. Combinatorics of Catalan numbers.

Definition 2.6. The Catalan numbers Cn are the numbers defined by C0 = 1 and
for n ≥ 1,

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
.

As the next lemma shows, the Catalan numbers are the moments of the semicir-
cular distribution.

Lemma 2.7. Let µsc,σ2 be the semicircular distribution, i.e.

µsc,σ2 =
1

2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx.

The moments of µsc,σ2 are given by∫
R
x2n+1µsc(dx) = 0,

∫
R
x2nµsc(dx) = σ2nCn.

Proof. By parity, odd moments are clearly zero. Suppose without loss of generality
that σ2 = 1. Now,

m2n :=

∫ 2

−2

x2n 1

2π

√
4− x2dx =

4

π
22n

∫ 1

0

x2n 1

π

√
1− x2dx.

Using the change of variables x = cos(θ), we obtain∫ 1

0

x2n 1

π

√
1− x2dx =

∫ π/2

0

cos2n θ sin2 θdθ =

∫ π/2

0

cos2n θdθ −
∫ π/2

0

cos2n+2 θdθ

This is now a classic calculation of Wallis integrals: Define

W2n :=

∫ π/2

0

cos2n(θ)dθ.
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Using integration by parts with U = − cos2n+1(θ)
2n+1 , U ′ = cos2n(θ) sin(θ), V = sin(θ),

V ′ = cos(θ), we get ∫ π/2

0

cos2n θ sin2 θdθ =
1

2n+ 1
W2n+2,

so one obtains the recurrence formula, for n ≥ 2, (W0 = π/2),

W2n =
2n− 1

2n
W2n−2 =

2n− 1

2n

2n− 3

2n− 2
· · · 3

4

π

2

=
2n

2n

2n− 1

2n

2n− 2

2n− 2

2n− 3

2n− 2
· · · 3

4

2

2

π

2
=

(2n)!

22n(n!)2

π

2
.

Hence,

m2n =
4

π
22n

(
(2n)!

22n(n!)2
− (2n+ 2)!

22n+2((n+ 1)!)2

)
π

2
=

(2n)!

n!(n+ 1)!
. �

We are now going to give some well-known combinatorial interpretations of the
Catalan numbers.

Definition 2.8. A Dyck path with 2n steps is a nonnegative path in N2 starting
from the origin (0, 0), ending at (2n, 0), with steps +1 or −1.

Definition 2.9. A graph G = (V,E) is a set of vertices V and a set of edges E
where an edge ”links” two vertices. A tree is a connected graph with no cycles,
where a cycle is a path connecting the same vertex. A root is a marked vertex.
A tree is oriented if it is embedded in the plane, it inherits the orientation of the
plane.

Lemma 2.10. The set of Dyck paths with 2n steps is in bijection with the set of
rooted oriented trees with n edges.

Proof. It is worth to take a look at Figures 2 and 3 while reading the proof. We
start by replacing the tree by a ”fat tree”, that is every edge is replaced by a double
edge. The union of these double edges define a path that surrounds the tree. To
define a Dyck path, we start from the root, add a +1 when we meet an edge that has
not been visited yet, and a −1 otherwise. Since to add a −1, we must have already
added a +1 corresponding to the first visit of the edge, the path is nonnegative,
that is above the real axis, and since all edges are visited exactly twice, the path
come back at 0 after 2n steps. This defines a Dyck path.

Given a Dyck path, we can recover the rooted oriented tree by first gluing the
couples of steps where one step +1 is followed by a step −1, and representing
each couple of glued steps by one edge. We obtain a path ”decorated” with edges.
Continuing the same procedure until all steps have been glued two by two provides
a rooted oriented tree. �

Lemma 2.11. Let Dn be the number of Dyck paths with 2n steps. Then we have
Dn = Cn where the Cn’s are the Catalan numbers.
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Figure 2. A Dyck path with 18 steps.

Figure 3. The rooted oriented tree corresponding to the Dyck
path of Figure 2. The dashed line corresponds to the walk that
surrounds the tree.

Proof. We prove that the Dn’s satisfy the relations D0 = 1 and

Dn =

n∑
l=1

Dl−1Dn−l,

and show that this relation characterizes the Catalan numbers.
Let Dn,l the number of Dyck paths with 2n steps hiting the real axis for the first

time after 2l steps. Then obviously we have Dn =
∑n
l=1Dn,l. But it is easy to see

that

Dn,l = #{Dyck paths from (0, 0) to (2l, 0) strictly above the real axis}
×#{Dyck paths from (2l, 0) to (2n, 0)}.

By shifting 2l to 0, we have that #{Dyck paths from (2l, 0) to (2n, 0)} = Dn−l.
Now let a Dyck path from (0, 0) to (2l, 0) strictly above the real axis. Since the
first and last steps are prescribed and equal respectively to +1 and −1, by shifting
the real axis by +1, we get that

#{Dyck paths from (0, 0) to (2l, 0) strictly above the real axis} = Dl−1.

Hence,

Dn =

n∑
l=1

Dl−1Dn−l.

We next show that this relation characterizes the Catalan numbers. Define the
series

S(z) =
∑
k≥0

Dkz
k,
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which is absolutely convergent for |z| ≤ 1/4 since Dk ≤ 2k. Then the recurrence
relation above gives

S(z) = 1 +
∑
k≥1

k∑
l=1

Dl−1Dk−lz
k

= 1 +
∑
l≥1

(
Dl−1z

l−1
∑
k≥l

Dk−lz
k−l+1

)
= 1 + z(S(z))2.

Hence we get that S(z) = 1−
√

1−4z
2z , the minus branch being determined by the fact

that S(0) = 1. Now the usual development in Taylor series

(1 + x)α = 1 +
∑
k≥1

α(α− 1) · · · (α− k + 1)

k!
xk

yields that S(z) =
∑
k≥0

(2k)!
k!(k+1)!z

k, thus Dk = Ck. �

The following lemma will be used later in the proof of Wigner theorem.

Lemma 2.12. Let G = (V,E) a connected graph. Then,

|V | ≤ |E|+ 1,

and equality holds if and only if G is a tree.

Proof. We prove the lemma by induction over |V |. This is obviously true for |V | =
1. Now suppose |V | = n. Take a vertex v in V , and let e1, . . . , el be the edges
containing v, for some l ≥ 1. Split the graphG into the graph with edges {e1, . . . , el}
and G1, . . . , Gr connected graph with r ≤ l. Let Gi = (Vi, Ei), for i = 1, . . . , r. By
induction hypothesis, we have |Vi| ≤ |Ei|+ 1. Hence, since

|V | − 1 =

r∑
i=1

|Vi|

|E| − l =

r∑
i=1

|Ei|,

we have

|V | =
r∑
i=1

|Vi|+ 1 ≤
r∑
i=1

|Ei|+ r + 1 = |E| − l + r + 1 ≤ |E|+ 1.

If |V | = |E|+ 1, we claim that G is a tree, that is G does not have any loops. For
this equality to hold, we must have equality in all the previous decomposition. But
if there is a loop in G, we can find a vertex v with r < l. �

2.2. Wigner theorem. LetXN be a Wigner matrix, that isXN = (XN (i, j))1≤i,j≤N
is a N ×N Hermitian random matrix defined on some probability space (Ω,F ,P)
such that the coefficients (XN (i, j))1≤i≤j≤N are independent random variables with

E(Xij) = 0, and E(|Xij |2) = σ2.

We will prove Wigner theorem, under the additional assumption that the coef-
ficients have bounded moments of all order.
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Theorem 2.13. Assume that for all k ≥ 0

sup
N

sup
1≤i≤j≤N

E(|XN (i, j)|k) <∞.

Let HN = 1√
N
XN . Then we have,

lim
N→∞

1

N
Tr(Hk

N ) =

{
0, if k is odd,

σkCk/2, if k is even,

where the convergence holds in expectation and almost surely, and where the Ck’s
are the Catalan numbers.

Proof. Without loss of generality we can suppose that σ2 = 1. We first prove the
convergence in expectation. We drop the dependance in N in all matrix notations
to simplify the readability. We have that,

E
( 1

N
Tr(Hk)

)
=

1

N
E(

N∑
i1,...,ik=1

Hi1i2Hi2i3 · · ·Hiki1)

=
1

Nk/2+1

N∑
i1,...,ik=1

E(Xi1i2Xi2i3 · · ·Xiki1). (1)

Let I = (i1, . . . , ik), and put P (I) = E(Xi1i2Xi2i3 · · ·Xiki1). Then, since by as-
sumption supN supi,j E(|Xij |k) <∞, we have by Hölder’s inequality that

P (I) ≤ ak,

where ak is a constant independent of N . But from the independence and centering
of the entries, we have

P (I) = 0,

unless to any edge (ip, ip+1) (with the convention that ik+1 = i1) there exists
l 6= p such that (ip, ip+1) = (il, il+1) or (il+1, il), since a single edge gives a zero
contribution. We next show that the set of indices I giving a non zero contribution
is described by trees.

To I we associate the connected graph G(I) = (V (I), E(I)), where the vertices
V (I) = {i1, . . . , ik} and the edges are given by E(I) = {(i1, i2), . . . , (ik, ik+1)},
with ik+1 = i1. Note that G(I) may contain cycles. The skeleton of G(I) is the

connected graph given by G̃(I) = (Ṽ (I), Ẽ(I)), where Ṽ (I) is the set of distinct

points of V (I), and Ẽ(I) the corresponding undirected edges without multiplicities,

that is G̃(I) is the graph G(I) where multiplicities and orientation have been erased.
Let I such that P (I) > 0, then each undirected edge appears at least twice,

hence |Ẽ(I)| ≤ bk/2c, where bxc denotes the integer part of x, and by lemma 2.12,

we have |Ṽ (I)| ≤ bk/2c + 1. Since indices vary from 1 to N , there are at most
Nbk/2c+1 indices contributing to the sum (1), so we have

E
( 1

N
Tr(Hk)

)
≤ akNbk/2c−k/2.

In particular, if k is odd, we have

lim
N→∞

E
( 1

N
Tr(Hk)

)
= 0.
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Suppose now k is even. Since the only indices I that contribute to the limit of (1)

are those for which |Ṽ (I)| is exactly equal to k
2 + 1, Lemma 2.12 implies that G̃(I)

is a tree and |Ẽ(I)| = k
2 . Then, since |E(I)| = k, we have that each undirected edge

appears exactly twice in E(I), indeed once in each orientation, since we can explore
G(I) by the path i1 → i2 → · · · → ik → i1. Thus, G(I) appears as a fat tree, and

G̃(I) is an oriented rooted tree, the root is given by the directed edge (i1, i2) and the
order of the indices induces a cyclic order on the fat tree that uniquely prescribed
an orientation. Hence, for these indices I, we have

P (I) =
∏

e∈Ẽ(I)

(E|Xe|2)k/2 = 1.

Since there is N(N − 1) · · · (N − k/2) choices for the distinct k/2 + 1 vertices for
the same geometry of the rooted oriented tree, we get that

E
( 1

N
Tr(Hk)

)
=
N(N − 1) · · · (N − k/2)

Nk/2+1
×#{rooted oriented trees with k/2 edges}.

Hence, since N(N − 1) · · · (N − k/2) ∼ Nk/2+1, we deduce that

lim
N→∞

E
( 1

N
Tr(Hk)

)
= #{rooted oriented trees with k/2 edges} = Ck/2,

which proves the convergence in expectation.
To prove the almost sure convergence, we prove that the variance of 1

N Tr(Hk)

is of order N−2, the Borel-Cantelli lemma will thus gives the result. We have,

Var
( 1

N
Tr(Hk)

)
= E

(( 1

N
Tr(Hk)

)2
)
−
(
E
( 1

N
Tr(Hk)

))2

=
1

Nk+2

∑
I,I′

(
P (I, I ′)− P (I)P (I ′)

)
,

where as before I = {i1, . . . , ik}, I ′ = {i′1, . . . , i′k}, and

P (I, I ′) = E(Xi1i2 · · ·Xiki1Xi′1i
′
2
· · ·Xi′ki

′
1
).

We also denote G(I, I ′) = (V (I, I ′), E(I, I ′)) the graph with vertices V (I, I ′) =
{i1, . . . , ik, i′1, . . . , i′k}, and corresponding edges. To give a non zero contribution,
the graph must be connected, otherwise E(I) ∩ E(I ′) = ∅ so P (I, I ′) = P (I)P (I ′)
by independence. Moreover, as before, each edge must appears at least twice and
thus |E(I, I ′)| ≤ k, so |V (I, I ′)| ≤ k + 1 by Lemma 2.12 and the same hold for

G̃(I, I ′) the skeleton of G(I, I ′). This first shows that the variance is at least of
order N−1, since (P (I, I ′)− P (I)P (I ′)) is bounded by Holder’s inequality.

To improve to that this bound is actually of order N−2, we show that the case

where |Ṽ (I, I ′)| = |Ẽ(I, I ′)|+1 cannot occur. In this case, by Lemma 2.12, G̃(I, I ′)

is a tree, and |Ẽ(I, I ′)| = k implies that each edge appears exactly twice. But

G̃(I, I ′)∩G(I) and G̃(I, I ′)∩G(I ′) must share one edge, since otherwise P (I, I ′) =

P (I)P (I ′). This is a contradiction. Indeed, G̃(I, I ′) is explored by the path i1 →
i2 → · · · → ik → i1, so either each visited edge appears twice, which is impossible if

G̃(I, I ′)∩G(I) and G̃(I, I ′)∩G(I ′) share one edge, or this path make a loop, which

is also impossible since G̃(I, I ′) is a tree. Therefore, for all contributing indices
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we have |Ṽ (I, I ′)| ≤ k, which implies that Var( 1
N Tr(Hk

N )) = O(N−2). Thus,
Chebyshev’s inequality implies that

P
(∣∣ 1

N
Tr(Hk

N )− E
( 1

N
Tr(Hk

N )
)∣∣ > ε

)
≤ cste

ε2N2
,

so Borel-Cantelli implies that∣∣ 1

N
Tr(Hk

N )− E
( 1

N
Tr(Hk

N )
)∣∣ −→

N→∞
0, almost surely,

which yields the result using the previous convergence in expectation. �

Theorem 2.14 (Wigner theorem). Let XN be a Wigner matrix such that for all
k ≥ 0,

sup
N

sup
1≤i≤i≤N

E(|XN (i, j)|k) <∞,

and let HN = 1√
N
XN . Then, the spectral distribution of HN , µHN , converges

weakly almost surely, as N goes to infinty, towards the semicircular distribution
µsc,σ2 , that is, for all bounded continuous function f , we have

lim
N→∞

∫
R
f(x)µHN (dx) =

∫
R
f(x)µsc,σ2(dx) a.s. (2)

Proof. We use a standard Weierstrass polynomial approximation argument to pass
from the convergence in moments of Theorem 2.13 to the convergence (2).

Let B > 2σ and δ > 0. By Weierstrass approximation theorem, we can find a
polynomial P such that

sup
x∈[−B,B]

|f(x)− P (x)| ≤ δ.

Then,∣∣∣ ∫
R
f(x)µHN (dx)−

∫
R
f(x)µsc,σ2(dx)

∣∣∣
≤
∣∣∣ ∫

R
f(x)µHN (dx)−

∫
R
P (x)µHN (dx)

∣∣∣
+
∣∣∣ ∫

R
P (x)µHN (dx)−

∫
R
P (x)µsc,σ2(dx)

∣∣∣
+
∣∣∣ ∫

R
P (x)µsc,σ2(dx)−

∫
R
f(x)µsc,σ2(dx)

∣∣∣
≤ 2δ +

∣∣∣ ∫
R
P (x)µHN (dx)−

∫
R
P (x)µsc,σ2(dx)

∣∣∣
+
∣∣∣ ∫
|x|>B

f(x)µHN (dx)−
∫
|x|>B

P (x)µHN (dx)
∣∣∣

where we use the fact that µsc,σ2 has support [−2σ, 2σ] and B > 2σ. By the
convergence in moments of Theorem 2.13, we have

lim
N→∞

∣∣∣ ∫
R
P (x)µHN (dx)−

∫
R
P (x)µsc,σ2(dx)

∣∣∣ = 0
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Moreover, since f is bounded, if we denote by p the degree of P , we can find a
constant K such that∣∣∣ ∫

|x|>B
f(x)µHN (dx)−

∫
|x|>B

P (x)µHN (dx)
∣∣∣ ≤ K ∫

|x|>B
|x|pµHN (dx)

≤ KB−p−2q

∫
R
|x|2(p+q)µHN (dx),

writing p = 2(p+q)−(p+2q), for all q ≥ 0. Hence, since
∫
R |x|

2(p+q)µHN (dx)→N→∞∫
R |x|

2(p+q)µsc,σ2(dx) using again Theorem 2.13, we have that

lim sup
N

∣∣∣ ∫
|x|>B

f(x)µHN (dx)−
∫
|x|>B

P (x)µHN (dx)
∣∣∣ ≤ KB−p−2q(2σ)2(p+q).

Since B > 2σ, letting q goes to infinity gives that

lim sup
N

∣∣∣ ∫
|x|>B

f(x)µHN (dx)−
∫
|x|>B

P (x)µHN (dx)
∣∣∣ = 0.

Finally, since δ is arbitrary, we have that

lim sup
N

∣∣∣ ∫
R
f(x)µHN (dx)−

∫
R
f(x)µsc,σ2(dx)

∣∣∣ = 0,

which proves the theorem. �

The condition of boundedness of the moments in Wigner’s theorem can be weak-
ened, as stated in the beginning of this section, and we refer to [1] for the proof.
It relies on an approximation of the Wigner matrix HN by a matrix with bounded
coefficients.

2.3. Noncrossing partitions. We give in this section the following comment. A
standard proof of Wigner’s theorem, using the moment approach, can be done
via the combinatorics of noncrossing partitions instead of that of Dyck paths and
trees. We refer to [9] for a detailed proof, and only present below the definition of
noncrossing partitions.

Definition 2.15. A partition π of the set {1, . . . , n} is called crossing if there exists
(a, b, c, d) with 1 ≤ a < b < c < d ≤ n such that a, c belong to one block of π while
b, d belong to another block. A partition which is not crossing is called a noncrossing
partition.

Figure 4 shows an example which enlightens the terminology of noncrossing.
We put the points 1, . . . , n on the circle and draw for each block of the partition
the convex polygon whose vertices are the points of the block. The partition is
noncrossing if and only if the polygons do not intersect.

Proposition 2.16. The number of noncrossing partitions of the set {1, . . . , n} is
equal to the Catalan number Cn.

Proof. Denote by NCn the set of noncrossing partition of {1, . . . , n} and let π ∈
NCn. Let j the largest element of the block of π containing 1. Then, since π
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Figure 4. The noncrossing partition {1, 4, 5} ∪ {2} ∪ {3} ∪ {6, 8} ∪ {7}.

is noncrossing, it induces a noncrossing partition of the set {1, . . . , j − 1}, and a
noncrossing partition of the set {j + 1, . . . , n}. Therefore, we have

#NCn =

n∑
j=1

#NCj−1 ×#NCn−j ,

which characterizes, as we have already seen in the proof of Lemma 2.11, the
Catalan numbers. �

2.4. Extremal eigenvalues. In view of Wigner theorem, one can suspect the
following proposition.

Proposition 2.17 ([2]). Let HN = 1√
N
XN where XN is a Wigner matrix such

that E(|XN (i, j)|4) < ∞. Then, the largest eigenvalue λmax(HN ) converges to 2σ
almost surely.

Let fε be a continuous bounded non-negative function supported on [2 − ε, 2],
positive on [2 − ε′, 2] with 0 < ε′ < ε. Using Wigner theorem, and the fact that∫
fεdµsc > 0, one can see that

lim inf
N≥0

λmax(HN ) ≥ 2, almost surely.

Unfortunately, the corresponding upper bound on lim supN λmax does not follow
directly from Wigner theorem, and requires sharp combinatorial techniques. We
refer to [2] for the proof of the necessary and sufficient condition for the extremal
eigenvalues to converge to the edge of the support of the semicircular distribution,
i.e. coefficients of Wigner matrices must have finite moment of order 4.

3. The Stieltjes transform approach

We present in this section a second proof of Wigner theorem in the case of
the Gaussian Unitary Ensemble, following the presentation of [12]. We start by
recalling properties of the Stieltjes transform of a measure.
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Definition 3.1. Let m be a probability measure on R. The Stieltjes transform of
m is the function

gm(z) =

∫
R

1

x− z
m(dx),

defined for z ∈ C \ R (in fact for z ∈ C \ supp(m)).

Proposition 3.2. Let gm be the Stieltjes transform of a probability measure m.
Then the following holds.

(i) The function gm is analytic on C \ R, and gm(z̄) = gm(z).
(ii) =(z)=(gm(z)) > 0 for =(z) 6= 0.
(iii) limy→∞−iygm(iy) = 1.
(iv) If g is a function satisfying (i)-(iii), then there exists a probability measure

µ such that g is the Stieltjes transform of µ.
(v) Inversion formula: If I is an interval such that m does not charge both

endpoints, then,

m(I) = lim
ε→0

1

π

∫
I

=(gm(x+ iε))dx.

Proof. Parts (i)-(iii) are easy and left as an exercise.
Part (iv): Since g is analytic from C+ to C+, where C+ is the positive half-plane,

we have using Nevanlinna’s representation theorem (see Appendix Corollary 6.4),

g(z) = az + b+

∫
R

1 + uz

u− z
σ(du),

for some constants a, b ∈ R, a ≥ 0, and σ a finite measure. Hence, for z = iy, one
has

−iyg(iy) = ay2 +

∫
y2(1 + u2)

u2 + y2
σ(du)− iby − iy

∫
u(1− y2)

u2 + y2
σ(du).

By hypothesis (iii), letting y goes to infinity yields a = 0 and
∫
R(1 + u2)σ(du) = 1,

and b =
∫
R uσ(du). Hence,

g(z) =

∫
R
uσ(du) +

∫
R

1 + uz

u− z
σ(du) =

∫
R

1 + u2

u− z
σ(du),

which yields the result setting µ(du) = (1 + u2)σ(du).
Part (v): Observe that

1

π

∫
I

=(gm(x+ iε))dx =

∫
I

∫
R

1

π

ε

(x− t)2 + ε2
m(dt)dx = E(1{εY+T∈I}),

where Y has Cauchy distribution 1
π

1
1+y2 dy, T is distributed according to m and

Y and T are independent. The dominated convergence theorem then gives the
result. �

The last item in the above proposition allows one to reconstruct a measure
from its Stieltjes transform. Moreover, we have the following characterization of
convergence.

Proposition 3.3. Let (µn)n≥1 be a sequence of probability measure. One has,

(i) If (µn)n≥1 converges weakly to a probability measure µ, then gµn(z) con-
verges to gµ(z) for each z ∈ C \ R.
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(ii) If gµn(z) converges for each z ∈ C \ R to some limit g(z), then g is the
Stieltjes transform of a sub-probability measure µ, and (µn)n≥1 converges
vaguely to µ.

Recall that a sequence (µn)n≥1 of bounded measure converges vaguely to µ if
for all continuous function f that goes to zero at infinity, one has

∫
fdµn →

∫
fdµ.

Proof. Item (i) follows from the definition of the weak convergence of measure and
the fact that x 7→ 1

x−z is continuous and bounded since
∣∣ 1
x−z

∣∣ ≤ 1
|=z| .

For item (ii), let (nk)k≥1 be a subsequence on which µnk converges vaguely to
some sub-probability measure, say µ (recall that the set of bounded measures is
compact for the vague topology). Then, since x 7→ 1

x−z is continuous and decays

to zero at infinity, one has gnk(z) → gµ(z). Hence by hypothesis, it follows that
g(z) = gµ(z) for all z ∈ C \ R. Applying the inversion formula of Proposition 3.2,
one has that every subsequence that converges vaguely converges to the same µ,
hence µn converges vaguely to µ. �

Remark 3.4. Suppose that m has compact support. Then its Stieltjes transform
gm writes, using the series development of 1/(x− z), for z ∈ C \ supp(m),

gm(z) = −1

z

∫
R

1

1− x/z
m(dx) = −1

z

∑
k≥0

z−k
∫
R
xkm(dx) = −1

z

∑
k≥0

mkz
−k,

where mk is the kth moment of m. For the semicircular distribution µsc, one gets,
recalling that odd moments are zero and even moments are given by the Catalan’s
numbers Ck,

gµsc(z) = −1

z

∑
k≥0

Ckz
−2k = −1

z
S(1/z2),

where S is the generating function for the Catalan numbers, as defined in the proof
of Lemma 2.11. Hence, we have, for z ∈ C \ [−2, 2],

gµsc(z) =
1

2

(
− z +

√
z2 − 4

)
.

Definition 3.5. Let M ∈ HN . The resolvent of M is defined as the matrix
GM (z) = (M − zI)−1 for z ∈ C \ R.

Note that if µM = 1
N

∑N
i=1 δλi(M) is the spectral distribution of the matrix M ,

then for z ∈ C \ R,

gµM (z) =

∫
R

1

x− z
µM (dx) =

1

N

N∑
i=1

1

λi(M)− z
=

1

N
TrGM (z).

The above remark informally explains why the Stieltjes transform appears naturally
in the context of random matrix theory.

The next proposition gives the usual properties of the resolvent. We denote by
|| · || the operator norm, that is

||M || = sup{|Mv| ; v ∈ CN , |v| = 1}.

Proposition 3.6. Let M ∈ HN with resolvent GM (z). Then, for z ∈ C \ R,

(i) ||GM (z)|| ≤ 1
|=z| ,

(ii) |GM (i, j)(z)| ≤ 1
|=z| , for all i, j = 1, . . . , N ,
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(iii) dGM (z)·H = −GM (z)HGM (z), for all H ∈ HN , where d is the differential
with respect to M .

Proof. (i) This follows from the bound
∣∣ 1
x−z

∣∣ ≤ 1
|=z| .

(ii) Follows from (i).
(iii) Using (M +H − z)−1(M +H − z) = I, we have

(M +H − z)−1H + (M +H − z)−1(M − z) = I,

hence multiplying on the right by (M − z)−1, we obtain

GM+H(z) = −GM+H(z)HGM (z) +GM (z).

Thus,

GM+H(z) = −GM (z)HGM (z) +GM (z) +GM+H(z)HGM (z)HGM (z),

and using (i), we obtain

GM+H(z)−GM (z) = −GM (z)HGM (z) + O(||H||2). �

We now establish an integration by parts formula for the GUE, which generalizes
the well known formula for the Gaussian distribution,

E(f ′(X)) =
1

σ2
E(f(X)X), where X ∼ N (0, σ2).

Proposition 3.7. Let XN be a matrix distributed according the GUE distribution,
and let HN = 1√

N
XN . Let Φ be a C1 function on HN with bounded differential.

Then for all A ∈ HN ,

E(dΦ(HN )·A) = NE(Φ(HN ) Tr(HNA)).

Proof. Since the Lebesgue measure on HN is invariant by translation, we have

I =

∫
HN

Φ(M) exp
(
− N

2
Tr(M2)

)
dM

=

∫
HN

Φ(M + εA) exp
(
− N

2
Tr((M + εA)2)

)
dM.

Hence, d
dε

∣∣
ε=0

I = 0, and since d
dε

∣∣
ε=0

Tr((M + εA)2) = 2 Tr(MA), we have

d

dε

∣∣
ε=0

I =

∫
HN

dΦ(M) exp
(
− N

2
Tr(M2)

)
dM

+

∫
HN

Φ(M) exp
(
− N

2
Tr(M2)

)
(−N Tr(MA))dM,

which yields the result. �

Proposition 3.8. Let HN = 1√
N
XN , where XN is distributed according to the

GUE, and define for z ∈ C \ R,

gN (z) =
1

N
Tr(GHN (z)),

the Stieltjes transform of the spectral distribution of HN . Then, we have

E(gN (z)2) + zE(gN (z)) + 1 = 0.
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Proof. We apply the integration by parts formula of Proposition 3.7 to the func-
tion Φ(M) = (GM (z))ij . Put G = GHN for simplicity. Then, using dG(z) ·A =
−G(z)AG(z), Proposition 3.7 writes

−E((GAG)ij) = NE(Gij Tr(HNA))

for all A ∈ MN (C) by linearity. Take A = ekl the matrix with only 1 at coefficient
(k, l), and 0 elsewhere. We get

E(GikGlj +NE(Gij(HN )lk) = 0.

Now taking k = i, l = j, and summing over i, j, we obtain, dividing by N2,

1

N2
E((Tr(G))2) +

1

N
E(Tr(GHN )) = 0.

But, GHN = (HN − zI)−1HN = (HN − zI)−1(HN − zI + zI) = I + zG, thus

E
(( 1

N
Tr(G)

)2)
+ 1 + zE

( 1

N
Tr(G)

)
= 0,

that is

E(gN (z)2) + zE(gN (z)) + 1 = 0. �

The next proposition shows that the Gaussian measure on Rn satisfies a concen-
tration inequality. Informally, this means that a random variable which depends in
a Lipschitz way on many independent random variables (but not too much on any
of them) is concentrated around its mean, and therefore is essentially constant. We
refer to the book by Ledoux [11] for a complete treatment of the concentration of
measure phenomenon.

Proposition 3.9. Let γn,σ2 be the Gaussian measure on Rn, centered, with covari-
ance σ2I. Let f a Lipschitz function on Rn with constant c. Then, there exists a
positive constant κ independent of n such that for all δ > 0,

γn,σ2(|f −
∫
fdγn,σ2 | ≥ δ) ≤ 2 exp

(
− κδ2

c2σ2

)
.

We postpone the proof to Appendix, section 6.2. Note that the above inequality
is dimension free.

For a function F : R → R, we define its extension to HN , still denoted F , by
F (M) = UDiag(F (λ1), . . . , F (λN ))U∗, if M = UDiag(λ1, . . . , λN )U∗. We have the
following property.

Lemma 3.10. Let F : R → R be a Lipschitz function with constant c. Then its
extension to HN is Lipschitz with constant c, for the Frobenius norm ||M ||2 =√

Tr(M2). In particular, the function M 7→ 1
N Tr(F (M)) is c√

N
-Lipschitz.

Proof. Let A,B ∈ HN with eigenvalues λ1(A), . . . , λN (A) and λ1(B), · · · , λN (B)
respectively and consider the spectral decompositions

A = UDiag(λ1(A), . . . , λN (A))U∗

B = VDiag(λ1(B), . . . , λN (B))V ∗,

with U, V unitary matrices. Then, we have

||A−B||22 = Tr
(
(A−B)2

)
= Tr(A2) + Tr(B2)− 2 Tr(AB),
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with Tr(A2) =
∑N
i=1 λi(A)2, Tr(B2) =

∑N
i=1 λi(B)2, and

Tr(AB) =

N∑
i,j=1

λi(A)λj(B)|Wij |2,

withW = U∗V , which is still a unitary matrix. Using
∑N
j=1 |Wij |2 =

∑N
i=1 |Wij |2 =

1, since W is unitary, we obtain

||A−B||22 =

N∑
i,j=1

(λi(A)− λj(B))
2 |Wij |2,

and since by definition F (A) and F (B) have spectral decompositions

A = UDiag(F (λ1(A)), . . . , F (λN (A)))U∗

B = VDiag(F (λ1(B)), . . . , F (λN (B)))V ∗,

respectively, we get

||F (A)− F (B)||22 =

N∑
i,j=1

(F (λi(A))− F (λj(B)))
2 |Wij |2.

Hence, since F : R→ R is c-Lipschitz, we obtain

||F (A)− F (B)||22 ≤ c2
N∑

i,j=1

(λi(A)− λj(B))
2 |Wij |2 = c2||A−B||22,

so F is c-Lipschitz. This yields for M 7→ 1
N Tr(F (M)), using Cauchy-Schwarz

inequality,

| 1

N
Tr(F (A))− 1

N
Tr(F (B))| ≤ 1

N

√
N ||F (A)− F (B)||2 ≤

c√
N
||A−B||2,

which proves the second assertion of the lemma. �

We can now prove an estimate on the variance of the Stieltjes transform of the
spectral measure of HN .

Proposition 3.11. Let HN = 1√
N
XN , where XN is distributed according to the

GUE. Let gN denote the Stieltjes transform of the spectral measure of HN . Then,
there exists a constant K independent of N and z, such that for all z ∈ C \ R,

Var(gN (z)) ≤ K

N2|=z|4
.

Proof. Using the fact that x 7→ 1
x−z is Lipschitz with constant 1

|=z|2 , Lemma 3.10

and the concentration inequality of the Gaussian measure of Proposition 3.9 (iden-

tifying HN with RN2

and the distribution of HN with γN2, 1
N

), we have

P
(
|gN (z)− E(gN (z))| ≥

√
δ
)
≤ 2 exp

(
− κδ|=z|4N

2/N

)
= 2 exp

(
− κδ|=z|4N2

2

)
,

for all δ > 0. Using the formula Var(Y ) =
∫ +∞

0
P(|Y − E(Y )|2 ≥ δ)dδ (exercice),

integrating the above inequality over δ gives the result. �

We can now give an alternative proof of the Wigner theorem for the Gaussian
Unitary Ensemble.
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Theorem 3.12 (Wigner theorem). Let XN be a GUE random matrix, and HN =
1√
N
XN . Then, the spectral measure µHN of HN converges weakly almost surely, as

N goes to infinity, towards the semicircular distribution.

Proof of Wigner theorem: Put fN (z) = E(gN (z)). Since E(gN (z)2) + zE(gN (z)) +
1 = 0 by proposition 3.8, we have

Var(gN (z)) = −fN (z)2 − zfN (z)− 1,

hence by the above estimate on the variance of gN (z), we get

|fN (z)2 + zfN (z) + 1| ≤ K

N2|=z|2
.

Furthermore, we have |fN (z)| ≤ 1
|=z| , thus the sequence (fN (z))N≥1 is uniformly

bounded and analytic on compact sets of C(2) = {z ∈ C | |=z| > 2}. Hence by the
classical Montel’s theorem, see Theorem 6.1 in the Appendix, there exists a sub-
sequence (fNk(z))k≥1 which converges uniformly on compact sets to some analytic
function f . Passing to the limit, one can easily see that f satisfy properties (i)-(iii)
of Proposition 3.2, as well as the equation

f(z)2 + zf(z) + 1 = 0.

Hence, f is the Stieltjes transform of a probability measure, and by the above
equation we get f(z) = 1

2 (−z +
√
z2 − 4), the sign of the square root being deter-

mined by condition (ii) of Proposition 3.2. Hence f is uniquely determined, that
is does not depend on the choice of the subsequence of (fN (z))N≥1, and is equal
to the Stieltjes transform of the semicircular distribution µsc as we have seen in
Remark 3.4. Thus, (fN (z))N≥1 converges uniformly on compact sets of C(2) to f .
Now, using Markov inequality and Proposition 3.11, we have

P(|gN (z)− fN (z)| ≥ ε) ≤ 1

ε2
Var(gN (z)) ≤ K

N2ε|=z|2
.

Hence, Borel-Cantelli lemma implies that for all z ∈ C(2),

fN (z)− gN (z)→N→∞ 0 a.s.,

so gN (z)→ f(z) a.s., as N goes to infinity.
Let z0 ∈ C(2). There exists a measurable set Ω0 such that P(Ω0) = 1, such

that gN (z0) converges to f(z0) on Ω0. We continue the same procedure for points
z1, z2, . . . such that (zj)j≥0 has an accumulation point in C(2), that is there exists
(Ωj)j≥0 such that P(Ωj) = 1 for all j ≥ 0, and gN (zj) converges to f(zj) on Ωj .
Hence, Vitali’s theorem (see Appendix Theorem 6.2) asserts that gN converges to

f uniformly on compacts of C(2) on Ω̃ = ∩j≥0Ωj which has probability one, and
this ends the proof of the theorem using Proposition 3.3. �

Remark 3.13. The Stieltjes transform approach can be used to prove Wigner the-
orem for the so-called Gaussian Orthogonal Ensemble (GOE), which are Wigner
symmetric (instead of Hermitian) matrices with independent real Gaussian coef-
ficients. The term orthogonal comes from the fact that the distribution of such
matrices are invariant by conjugation by orthogonal matrices.

This proof of Wigner theorem using Stieltjes transform can also be adapted to
more general Wigner matrices. Indeed, the intregration by parts formula can be



INTRODUCTION TO RANDOM MATRICES 19

generalized using a cumulant development for a random variable X,

E(XΦ(X)) =

p∑
l=0

κl+1

l!
E(Φ(l)(X)) + εp,

where κl are the cumulants of X, defined using the moment-generating function

of X as logE(et·X) =
∑
l≥1 κl

tl

l! , and where |εp| ≤ supx Φ(p+1)(x)E|X|p+2 (see for

instance [10]). Note also that concentration of measure phenomenon can also be
used for Wigner matrices such that the entries are i.i.d. and satisfy a log-Sobolev
inequality, using Herbst argument (see [1]).

4. Local behavior

We start this section by briefly recalling the notion of orthogonal polynomials.

4.1. Orthogonal polynomials.

Definition 4.1. Given a weight w : R → R+, that is a nonnegative function such
that

∫
R |x|

kw(x)dx <∞, for all k ≥ 0, the orthogonal polynomials (qk(x))k≥0 with
respect to w are defined by

(i) qk(x) is a polynomial of degree k, qk(x) = ukx
k + · · · , with leading term

uk > 0,
(ii) they satisfy the orthonormality condition,

〈qk, ql〉 :=

∫
R
qk(x)ql(x)w(x)dx = δk,l.

Note that the orthogonalization procedure of Gramm-Schmidt enables to con-
struct such a sequence of polynomials.

Every sequence (qk(x))k≥0 of orthogonal polynomials satisfies a three terms re-
currence relation of the form

qn(x) = αnxqn−1(x) + βnqn−1(x) + γnqn−2(x). (3)

Indeed, since qn(x) = unx
n + · · · , it follows that

qn(x)

un
− xqn−1(x)

un−1

is a polynomial of degree n− 1, thus

qn(x)

un
=
xqn−1(x)

un−1
+

n−1∑
k=0

akqk(x), where ak =
〈 qn
un
− Xqn−1

un−1
, qk

〉
,

where X : x 7→ x. Using 〈Xq, p〉 = 〈q,Xp〉, we get

ak =
1

un
〈qn, qk〉 −

1

un−1
〈qn−1, Xqk〉 = 0, for k = 0, . . . , n− 3.

Moreover,

an−2 = − 1

un−1
〈qn−1, Xqn−2〉 = −un−2

u2
n−1

,

since we can write xqn−2(x) = un−2

un−1
qn−1(x) + polynomial of degree n− 2. There-

fore, putting αn = un/un−1, βn = an−1un, and γn = −unun−2/u
2
n−1, gives the

three terms relation

qn(x) = αnxqn−1(x) + βnqn−1(x) + γnqn−2(x).
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This recurrence relation is useful to prove the following formula.

Proposition 4.2 (Christoffel-Darboux formula). Let (qk(x))k≥0 be a sequence of
orthogonal polynomials. Then we have,

n−1∑
k=0

qk(x)qk(y) =


un−1

un

qn(x)qn−1(y)− qn−1(x)qn(y)

x− y
, if x 6= y,

un−1

un
(q′n(x)qn−1(x)− q′n−1(x)qn(x)), if x = y.

Proof. We just have to prove the x 6= y case, since the formula for x = y is obtained
by taking the limit y → x. By the three terms recurrence relation (3), we have for
k ≥ 1,

qk+1(x)qk(y)− qk(x)qk+1(y) =
(
(αk+1x+ βk+1)qk(x) + γk+1qk−1(x)

)
qk(y)

− qk(x)
(
(αk+1y + βk+1)qk(y) + γk+1qk−1(y)

)
= αk+1qk(x)qk(y)(x− y) + γk+1(qk−1(x)qk(y)− qk(x)qk−1(y)).

Hence, dividing by (x − y)αk+1, we get, noticing that 1
αk+1

= uk
uk+1

and γk+1

αk+1
=

−uk−1

uk
,

qk(x)qk(y) = Sk+1(x, y)− Sk(x, y),

where

Sk(x, y) =
uk−1

uk

qk(x)qk−1(y)− qk−1(x)qk(y)

x− y
.

The proposition follows by taking the telescopic sum

n−1∑
k=0

qk(x)qk(y) = q0(x)q0(y) + Sn(x, y)− S1(x, y),

and noticing that q0(x) = u0 and S1(x, y) = u0u0 = q0(x)q0(y). �

The Hermite polynomials (Hn)n≥0 are defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

They are orthogonal for the weight w(x) = e−x
2

, and satisfy the orthogonality
relation ∫

R
Hk(x)Hl(x)e−x

2

dx =
√
π2kk!δk,l,

and the three terms recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

and also H ′n(x) = 2nHn−1(x). The coefficient of the leading term of Hn(x) is 2n.
They are well known, and a standard reference on orhtogonal polynomials is the
book of Szegő [14].



INTRODUCTION TO RANDOM MATRICES 21

4.2. Eigenvalues’ distribution.

Proposition 4.3. Let XN ∈ HN be a random matrix distributed according to the
GUE, and denote λ1, . . . , λN its eigenvalues. The joint distribution of (λ1, . . . , λN )
has density with respect to Lebesgue measure given by

pN (x1, . . . , xN ) =
1

ZN
|∆(x)|2 exp

(
− 1

2

N∑
i=1

x2
i

)
where ∆(x) =

∏
1≤i<j≤N (xj − xi) is the Vandermonde determinant, and ZN is a

normalization constant equal to ZN = πN/22−N(N−1)/2
∏n
j=2 j!.

We refer to [1] for a proof of this proposition. Its relies on an integration for-

mula due to Weyl. Heuristically, the term exp(− 1
2N

∑N
i=1 x

2
i ) comes from the term

exp(− 1
2 Tr(M2)) in the GUE distribution, and the Vandermonde ∆ comes from the

Jacobian of the map M 7→ UDiag(λ1, . . . , λN )U∗.
Note that ∆ is actually a determinant, and indeed one has

∆(x) = det(xj−1
i )1≤i,j≤N .

This claim is proved by induction on N . This is clearly true for N = 2. By
multilinearity of the determinant, making the operation Ci → Ci−x1Ci−1, starting
from column CN until column C2, we get∣∣∣∣∣∣∣∣∣

1 x1 · · · xN−1
1

1 x2 · · · xN−1
2

...
...

. . .
...

1 xN · · · xN−1
N

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0 · · · 0

1 x2 − x1 · · · xN−2
2 (x2 − x1)

...
...

. . .
...

1 xN − x1 · · · xN−2
N (xN − x1)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
x2 − x1 · · · xN−2

2 (x2 − x1)
...

. . .
...

xN − x1 · · · xN−2
N (xN − x1)

∣∣∣∣∣∣∣
= (xN − x1) · · · (x2 − x1)

∣∣∣∣∣∣∣
1 x2 · · · xN−2

2
...

...
. . .

...

1 xN · · · xN−2
N

∣∣∣∣∣∣∣ ,
hence the claim follows by induction hyptohesis.

4.3. Correlation functions of the GUE eigenvalues.

Definition 4.4. The n-point correlation functions of the GUE eigenvalues λ1, . . . , λN
are defined by

ρ
(n)
N (x1, . . . , xn) =

N !

(N − n)!

∫
RN−n

pN (x1, . . . , xN )dxn+1 · · ·xN ,

for n = 1, . . . , N , where pN is the density distribution of (λ1, . . . , λN ).

The n-point correlation functions are, up to a constant, the marginal distribu-
tions of pN . Heuristically, they are the probability of finding an eigenvalue at each
of the position x1, . . . , xn, but note that it is not fixed which eigenvalue is at which
position. Note also that we can define in the same way correlation functions of N
particles evolving according to some symmetric density distribution pN .



22 INTRODUCTION TO RANDOM MATRICES

The next goal is to compute the correlation functions of the GUE eigenvalues.
Before doing this, let us see what kind of probabilistic quantities correlation func-
tions enable to compute.

Let f be a Borel function on R. Then,

E
( N∏
i=1

(1 + f(λi))
)

= E
( N∑
k=0

∑
1≤i1<···<ik≤N

f(λi1) · · · f(λik)

)

=

N∑
k=0

1

k!

∑
i1,...,ik

all different

E(f(λi1) · · · f(λik))

=

N∑
k=0

1

k!

N !

(N − k)!
E(f(λ1) · · · f(λk))

=

N∑
k=0

1

k!

∫
Rk
f(x1) · · · f(xk)ρ

(k)
N (x1, . . . , xk)dx1 · · · dxk.

Now, let f = −1B where B is a Borel set of R. Then the gap probability is expressed
as

P(no eigenvalues lies in B) =

N∑
k=0

(−1)k

k!

∫
Bk
ρ

(k)
N (x1, . . . , xk)dx1 · · · dxk.

In particular, if B =]s,+∞[,

P(λmax ≤ s) =

N∑
k=0

(−1)k

k!

∫
]s,+∞[k

ρ
(k)
N (x1, . . . , xk)dx1 · · · dxk.

Also, the density of states is defined as

E
(

1

N

N∑
k=1

f(λi)

)
=

1

N

N∑
i=1

∫
RN

f(xi)pN (x1, . . . , xN )dx1 · · · dxN =

∫
R
f(x)

1

N
ρ

(1)
N (x)dx,

that is, the measure 1
N ρ

(1)
N (x)dx represents the expectation of the spectral distri-

bution of XN .
The next proposition expresses the n-point correlation functions as a determinant

of some kernel, giving a structure of a so-called determinantal process to the GUE
eigenvalues.

Proposition 4.5. The n-point correlation functions of the GUE eigenvalues are
given by

ρ
(n)
N (x1, . . . , xn) = det

(
KN (xi, xj)

)
1≤i,j≤n,

where the kernel KN is given by

KN (x, y) =
√
w(x)

√
w(y)

N−1∑
k=0

qk(x)qk(y),

where w is the weight w(x) = exp(−x2/2) and (qk(x))k≤0 are orthonormal polyno-
mials with respect to the weight w, given by

qk(x) =
1√
2kk!

1

(2π)1/4
Hk

( x√
2

)
,
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where (Hk)k≥0 are the Hermite polynomials.

Proof. By multi-linearity of the determinant, and since qk has degree k, we have

∆(x) = det(xj−1
i )1≤i,j≤N = cN det(qj−1(xi))1≤i,j≤N ,

where cN is a constant. Since w(x) = exp(− 1
2x

2), the density of the GUE eigen-
values writes

pN (x1, . . . , xN ) = cN
1

ZN
(det(qj−1(xi))1≤i,j≤N )2

N∏
i=1

w(xi)

=
cN
ZN

det

(
N∑
k=1

qk−1(xi)qk−1(xj)

)
N∏
i=1

w(xi),

using (detAtA) = detA det tA. Hence, from the definition of the Kernel KN , we
obtain

pN (x1, . . . , xN ) = cN det
(
KN (xi, xj)

)
1≤i,j≤N

and,

ρ
(n)
N (x1, . . . , xn) = cN

N !

(N − n)!

∫
RN−n

det
(
KN (xi, xj)

)
1≤i,j≤Ndxn+1 · · · dxN .

We need then to integrate N −n times, each step being similar. First observe that
KN satisfy the following two equalities:∫

R
KN (x, x)dx = N (4)∫

R
KN (x, y)KN (y, z)dy = KN (x, z). (5)

Indeed, since (qk(x))k≥0 are orthonormal with respect to the weight w, we have∫
R
KN (x, x)dx =

N−1∑
k=0

∫
R
w(x)qk(x)qk(x)dx =

N−1∑
k=0

〈qk, qk〉 = N,

and,∫
R
KN (x, y)KN (y, z)dy =

N−1∑
k,l=0

√
w(x)

√
w(z)qk(x)ql(z)〈qk, ql〉 = KN (x, z).

Now, for m ≤ N , we develop the determinant along the last column to get

det
(
KN (xi, xj)

)
1≤i,j≤m = KN (xm, xm) det

(
KN (xi, xj)

)
1≤i,j≤m−1

+

m−1∑
k=1

(−1)m−kK(xk, xm) det

((
KN (xi, xj)

)
1≤i,j≤m−1,i6=k(

KN (xm, xj)
)

1≤j≤m−1

)
= KN (xm, xm) det

(
KN (xi, xj)

)
1≤i,j≤m−1

+

m−1∑
k=1

(−1)m−k det

( (
KN (xi, xj)

)
1≤i,j≤m−1,i6=k(

K(xk, xm)KN (xm, xj)
)

1≤j≤m−1

)
.
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Hence, using the two equalities (4) and (5), we have∫
R

det
(
KN (xi, xj)

)
1≤i,j≤mdxm = N det

(
KN (xi, xj)

)
1≤i,j≤m−1

+

m−1∑
k=1

(−1)m−k det

((
KN (xi, xj)

)
1≤i,j≤m−1,i6=k(

K(xk, xj)
)

1≤j≤m−1

)
= N det

(
KN (xi, xj)

)
1≤i,j≤m−1

+

m−1∑
k=1

(−1)m−k det
(
KN (xi, xj)

)
1≤i,j≤m−1

= (N −m+ 1) det
(
KN (xi, xj)

)
1≤i,j≤m−1

,

since
∑m−1
k=1 (−1)m−k = −m + 1. Applying this result to m = N,N − 1, . . . , n + 1

using Fubini theorem, we obtain

ρ
(n)
N (x1, . . . , xn) = cNN ! det

(
KN (xi, xj)

)
1≤i,j≤n.

It remains to determine cN . Since cN depends only on N , we can compute it for

the n = 1 case. By the above computation, we have ρ
(1)
N = cNN !KN (x, x). Since∫

R ρ
(1)(x)dx = N

∫
RN pN (x)dx = N , and

∫
RKN (x, x)dx = N , we get cN = 1/N !,

which yields the proposition. �

4.4. Asymptotic of GUE eigenvalues, the local regime. Let XN be a GUE
random matrix, and consider as usual the renormalized matrix HN = 1√

N
XN . Note

that the eigenvalues of HN are given by λi/
√
N , i = 1, . . . , N , where the λi’s are

the eigenvalues of XN . Let us denote, for a Borel set B

νN (B) = #
{
i ∈ {1, . . . , N}

∣∣ 1√
N
λi ∈ B

}
= NµHN (B).

By Wigner theorem, we have, as N goes to infinity, νN (B) ∼ N
∫
B
fsc(x)dx, where

fsc is the density of the semicircular distribution. In the local regime asymptotic,
we are looking at Borel sets whose size goes to zero. Hence, two cases have to be
considered.

(i) Inside the bulk: Let BN = [u−εN , u+εN ], where u is such that fsc(u) > 0,
that is u ∈]− 2, 2[. Then νN (BN ) ∼ NεNfsc(u), so it has order of a con-
stant for εN ∼ 1/N . This suggests to study the renormalized eigenvalues
inside the bulk µ1, . . . , µN defined by

λi√
N

= u+
µi

Nfsc(u)
, i = 1, . . . , N,

(that is λi/
√
N ∈ [u− 1/N, u+ 1/N ]⇔ µi ∈ [−fsc(u), fsc(u)]).

(ii) At the edge of the spectrum: Let u = 2 or −2. Then fsc(u) = 0, and

νN ([2− εN , 2]) ∼ N 1

2π

∫ 2

2−εN

√
4− x2dx ∼ Nε3/2

N ,

so the renormalization at the edge of the spectrum is εN ∼ 1/N2/3.
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4.5. Inside the bulk. To simplify the readability, we will only consider the local
asymptotics of the GUE eigenvalues inside the bulk at u = 0.

Theorem 4.6. Let λ1, . . . , λN be the eigenvalues of a random matrix distributed
according the GUE distribution. Then for all compact A ⊂ R one has,

lim
N→∞

P
(√

Nλ1 6∈ A, . . . ,
√
NλN 6∈ A

)
= 1+

∞∑
k=1

(−1)k

k!

∫
Ak

det (S(xi, xj))1≤i,j≤k dx1 · · · dxk,

where S is the sine kernel defined by

S(s, t) =
sin(s− t)
π(s− t)

.

Recall that we have seen that the gap probability is expressed as

P(no eigenvalues lies in B) =
N∑
k=0

(−1)k

k!

∫
Bk
ρ

(k)
N (x1, . . . , xk)dx1 · · · dxk,

where ρ
(k)
N are the n-point correlation functions of the GUE eigenvalues, and con-

sider the rescaled eigenvalues inside the bulk defined by

µi =
√
Nλi, i = 1, . . . , N.

Then a simple change of variables shows that the correlations functions ρ
(n,bulk)
N of

(µ1, . . . , µN ) are given by

ρ
(n,bulk)
N (y1, . . . , yk) =

1

Nn/2
ρ

(n)
N

(
y1√
N
, . . . ,

yn√
N

)
.

Hence using the determinantal form of ρ
(n)
N given in Proposition 4.5, we have to

find the limit of
1√
N
KN

(
x√
N
,
y√
N

)
.

The above theorem will then follow immediately using the uniform convergence
of the following proposition.

Proposition 4.7. One has

lim
N→∞

1√
N
KN

(
x√
N
,
y√
N

)
=

1

π

sin(x− y)

x− y
,

uniformly for (x, y) in a compact set.

The proof of this proposition is done using Laplace method described in the next
subsection.

4.6. Laplace method. Laplace method deals with the asymptotic evaluation, as
s→∞, of integrals of the form ∫

f(x)sg(x)dx,

where f achieves a global maximum. To illustrate the method, suppose that f
achieves a global maximum at a, f(a) > 0 and g is a nice function. Using Taylor’s
expansion, we have

f(x) = f(a) +
1

2
f ′′(a)(x− a)2 + o((x− a)2),
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hence

√
sf(a)−s

∫
f(x)sg(x)dx ≈

√
s

∫ (
1 +

1

2

f ′′(a)

f(a)
(x− a)2

)s
g(x)dx

≈
√
s

∫
exp

(
s

2

f ′′(a)

f(a)
(x− a)2

)
g(x)dx

≈
∫

exp

(
1

2

f ′′(a)

f(a)
y2

)
g

(
a+

y√
s

)
dy

≈

√
−2πf(a)

f ′′a)
g(a),

as s goes to infinity, using Gauss integral. Intuitively, this means that as s goes

to infinity, ( f(x)
f(a) )s near x = a looks at the microscopic level more and more like

a Gauss curve, whereas f(x)s becomes negligible elsewhere. Along the same lines,
one can prove the following (see [1] for details).

Theorem 4.8 (Laplace method). Let f : R→ R+ be a function such that, for some
a ∈ R and positive constant ε′, c, the following hold.

(i) f(x) ≤ f(y) if either a− ε′ ≤ x ≤ y ≤ a or a ≤ y ≤ x ≤ a+ ε′,
(ii) for all 0 < ε < ε′, sup|x−a|>ε f(x) ≤ f(a)− cε2,

(iii) f is twice continuously differentiable in ]a− 2ε′, a+ 2ε′[,
(iv) f ′′(a) < 0.

Then, for any measurable bounded function g, locally Lipschitz near a, such that∫
f(x)s0 |g(x)|dx <∞ for some s0 > 0, we have

lim
s→∞

√
sf(a)−s

∫
f(x)sg(x)dx =

√
−2πf(a)

f ′′(a)
g(a),

the convergence being uniform over such g.

We are now ready to prove Proposition 4.7 which describes the local asymptotics
of the GUE eigenvalues inside the bulk.

Proof of Proposition 4.7. Define

ψn(x) = e−x
2/4qn(x) = e−x

2/4
2−n/2Hn

(
x√
2

)
(2π)1/4

√
n!

,

where Hn are the Hermite polynomials. Let

SN (x, y) =
1√
N
KN

( x√
N
,
y√
N

)
,

and recall that by Proposition 4.5, the kernel KN is given by

KN (x, y) =

N−1∑
k=0

qk(x)qk(y)e−(x2+y2)/4 =

N−1∑
k=0

ψk(x)ψk(y).

Thanks to Christoffel-Darboux formula (Proposition 4.2), we can express this kernel
as

SN (x, y) =
ψN
(
x√
N

)
ψN−1

(
y√
N

)
− ψN−1

(
x√
N

)
ψN
(
y√
N

)
x− y

,
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the leading coefficients of qn being un = 1√
n!(2π)1/4

. Writing

f(x)− f(y)

x− y
=

∫ 1

0

f ′(tx+ (1− t)y)dt,

hence,

f(x)g(y)− f(y)(x)

x− y
=
f(x)− f(y)

x− y
g(y)− f(y)

g(x)− g(y)

x− y

= g(y)

∫ 1

0

f ′(tx+ (1− t)y)dt− f(y)

∫ 1

0

g′(tx+ (1− t)y)dt,

for differentiable functions f, g, we get

SN (x, y) = ψN−1

( y√
N

) ∫ 1

0

ψ′N

(
t
x√
N

+ (1− t) y√
N

)
dt

− ψN
( y√

N

) ∫ 1

0

ψ′N−1

(
t
x√
N

+ (1− t) y√
N

)
dt.

Recall that Hermite polynomials satisfy H ′k(x) = 2kHk−1(x). Hence, ψ′k(x) =√
kψk−1(x)− x

2ψk(x), so we have

SN (x, y) = ψN−1

( y√
N

) ∫ 1

0

[√
NψN−1(z)− z

2
ψN (z)

]
z=t x√

N
+(1−t) y√

N

dt

− ψN
( y√

N

) ∫ 1

0

[√
N − 1ψN−2(z)− z

2
ψN−1(z)

]
z=t x√

N
+(1−t) y√

N

dt.

Now we use the following lemma, whose proof is deferred at the end of the proof.

Lemma 4.9. Let ν = N − k, where k is independent of N . Then, one has∣∣∣∣N1/4ψν

( x√
N

)
− 1√

π
cos
(
x− πν

2

)∣∣∣∣→ 0,

as N →∞, uniformly for x in a compact interval.

Since

SN (x, y) = N1/4ψN−1

( y√
N

) ∫ 1

0

[
N1/4ψN−1(z)−N−1/4 z

2
ψN (z)

]
z=t x√

N
+(1−t) y√

N

dt

−N1/4ψN
( y√

N

) ∫ 1

0

[
N−1/4

√
N − 1ψN−2(z)−N−1/4 z

2
ψN−1(z)

]
z=t x√

N
+(1−t) y√

N

dt,

using the lemma, one gets

SN (x, y) ∼
+∞

1

π
cos

(
y − π(n− 1)

2

)∫ 1

0

cos

(
tx+ (1− t)y − π(n− 1)

2

)
dt

− 1

π
cos
(
y − πn

2

)∫ 1

0

cos

(
tx+ (1− t)y − π(n− 2)

2

)
dt.

Using the trigonometric formulas cos(p+ π
2 ) = − sin(p) and sin(p−q) = sin p cos q−

cos p sin q, one obtains

SN (x, y) ∼
+∞

1

π

sin(x− y)

x− y
,

uniformly in x, y, which yields the result. �
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It remains to prove Lemma 4.9, which is done using Laplace method of Theo-
rem 4.8.

Proof of Lemma 4.9. To use Laplace method, we use the following integral repre-
sentation of Hermite polynomials,

Hν(x) =
1

2
√
π
ex

2

∫
R

(iξ)νe−ξ
2/4−iξxdξ,

which follows from the formula for the characteristic function of a normal random
variable (with variance 2)

e−x
2

=
1

2
√
π

∫
R
e−ξ

2/4−iξxdξ,

and differentiating under the integral sign using the definition of Hermite polyno-

mials, Hν(x) = ex
2

(−1)ν dν

dxν e
x2

. This yields to

ψν

( x√
N

)
= e−

x2

4N

2−ν/2Hν

(
x√

2
√
N

)
(2π)1/4

√
ν!

=
e−

x2

4N

(2π)3/4
√
ν!

∫
R
(iξ)νe−ξ

2/2−iξx/
√
Ndξ.

Making the change of variable ζ = ξ√
N

, we get

N1/4ψν

( x√
N

)
=

N1/4e
x2

4N

(2π)3/4
√
ν!
iν
√
N
ν+1

∫
R
ζνe−Nζ

2/2−iζxdζ

=
N1/4e

x2

4N

(2π)3/4
√
ν!
iν
√
N
ν+1

∫
R

(
ζe−ζ

2/2
)N

e−iζxζν−Ndζ.

Recall Stirling’s formula

ν! =
√

2πν
(ν
e

)ν
(1 + o(1)).

Therefore, the term before the integral in the last expression of N1/4ψν( x√
N

) be-
comes

N1/4e
x2

4N

(2π)3/4
√
ν!

√
N
ν+1

=
N1/4e

x2

4NNν/2+1/2

(2π)3/4(2π)1/4ν1/4(νe )ν/2
(1 + o(1))

=
1

2π

(
N

ν

)ν/2(
N

ν

)1/4

eν/2
√
Ne

x2

4N (1 + o(1))

=
1

2π

√
NeN/2(1 + o(1)),

where for the last equality, recalling that N − ν is a constant independent of N ,

we use that N
ν ∼ 1,

(
N
ν

)ν/2 ∼ e(N−ν)/2 and e
x2

4N → 0, uniformly in x since x is in
bounded interval. Hence, we get, uniformly in x in a bounded interval,

N1/4ψν

( x√
N

)
=

√
NeN/2

2π
iν
∫
R

(
ζe−ζ

2/2
)N

e−iζxζν−Ndζ (1 + o(1))
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Furthermore, since ψν is real, we have

N1/4ψν

( x√
N

)
∼
√
NeN/2

2π

∫
R

∣∣ζe−ζ2/2∣∣N< [(isign(ζ))νe−iζx
]
|ζ|ν−Ndζ

=

√
NeN/2

π

∫ +∞

0

(
ζe−ζ

2/2
)N
<
[
iνe−iζx

]
ζν−Ndζ

=

√
NeN/2

π

∫ +∞

0

(
ζe−ζ

2/2
)N

cos
[
ζx− νπ

2

]
ζν−Ndζ.

Now we are ready to use Laplace method. Let

f(ζ) = ζe−ζ
2/2, g(ζ) = cos

(
ζx− νπ

2

)
ζν−N .

Note that f admits a global maximum at 1 such that f(1) = e−1/2, f ′(1) = 0, and
f ′′(1) = −2e−1/2. Recall that N − ν does not depend on N . There are four ways
such that g does not depend on N according to the parity of N and N − ν, each of
them is treated in the same way using Laplace method, which yields to

N1/4ψν

( x√
N

)
∼ 1√

π
cos
(
x− πν

2

)
,

as N →∞, uniformly for x in a bounded interval, and proves the lemma. �

4.7. At the edge of the spectrum. Using for instance the steepest descent
method, which is a general, more elaborate version of Laplace method, one can
prove along the same lines than in the previous section but in a more tricky way,
the following asymptotic behavior of the rescaled eigenvalues at the edge of the
spectrum, see [1] for details.

Proposition 4.10. Consider the rescaled eigenvalues at the edge of the spectrum
γ1, . . . , γN defined by

λi√
N

= 2 +
γi

N2/3
, i = 1, . . . , N,

where the λi’s are the eigenvalues of a GUE matrix. Denote by ρ
(n,edge)
N , for n =

1, . . . , N , the n-point correlation functions of (γ1, . . . , γN ). Then we have,

lim
N→∞

ρ
(n,edge)
N (y1, . . . , yn) = det (A(yi, yj))1≤i,j≤n ,

where A is the Airy kernel defined by

A(x, y) =
Ai(x)Ai ′(y)−Ai ′(x)Ai(y)

x− y
,

where Ai is Airy’s function, defined as the solution of the differential equation

y′′(t)− ty(t) = 0,

with asymptotic behavior Ai(t) ∼
+∞

(2
√
π)−1t−1/4e−

2
3 t

3/2

.

Corollary 4.11 ([16]). The fluctuations of the largest eigenvalues λmax of the GUE
distribution are given by

lim
N→∞

P(N1/6(λmax − 2
√
N) ≤ t) = F2(t),
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where F2 is the Tracy-Widom distribution given by

F2(t) =

+∞∑
k=0

(−1)k

k!

∫
]t,+∞[k

det (A(yi, yj))1≤i,j≤k dy1 · · · dyk.

The distribution F2 has the following representation

F2(t) = exp

(
−
∫ +∞

t

(x− t)q(x)2dx

)
,

where q is the solution of the Painlevé II equation

q′′(t) = tq(t) + 2q(t)3,

with q(t) ∼
+∞

Ai(t).

4.8. Remarks. An alternative proof of the convergence of the correlation functions
of the GUE eigenvalues both inside the bulk and at the edge of the spectrum can
be done using the well known asymptotics of Hermite polynomials given in the
following proposition.

Proposition 4.12 (Plancherel-Rotach formulas [14]). Let (Hn(x))n≥0 denote the
Hermite polynomials. Let ε > 0. We have,

(i) If x =
√

2n+ 1 cos θ, with ε ≤ θ ≤ π − ε,

e−x
2/2Hn(x) = 2n/2+1/4(n!)1/2(πn)−1/4(sin θ)−1/2

×
(

sin

[(n
2

+
1

4

)
(sin 2θ − 2θ) +

3π

4

]
+O(n−1)

)
.

(ii) If x =
√

2n+ 1− 2−1/23−1/3n−1/6t, with t ∈ C bounded,

e−x
2/2Hn(x) = 31/3π−3/42n/2+1/4(n!)1/2n−1/12

(
A(t) +O(n−2/3)

)
,

where A(t) = πAi(−t/31/3), where Ai is Airy’s function, defined as the
solution of the differential equation

y′′(t)− ty(t) = 0,

with asymptotic behavior Ai(t) ∼
+∞

(2
√
π)−1t−1/4e−

2
3 t

3/2

.

In all these formulas the O-terms hold uniformly.

We refer for instance to [12] for the proof of the local asymptotics of the GUE
eigenvalues using Plancherel-Rotach formulas.

One of the important ideas of the theory is that of universality. This idea, which
is a conjecture, is that the statistical properties of the eigenvalues in the local regime
do not depend asymptotically on the ensemble, that is the sine kernel is ”universal”
and appears in other models of Hermitian random matrices. This has been shown
for a class of Hermitian Wigner matrices and for unitary invariant ensemble of the
form

PN (dM) = CN exp(−N Tr(V (M)))dM

for a general potential V satisfying some assumptions (one recovers the GUE for
V (x) = |x|2/2), which is largely motivated by applications in physics. The main
difficulty for general V is to derive the asymptotics of orthogonal polynomials associ-
ated to V , which are not known explicitly. This can be done using Riemann-Hilbert
techniques (see [5]).
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Figure 5. Histogram of the singular values of a 1000×5000 Gauss-
ian random matrix and the Marchenko-Pastur distribution.

5. Some generalizations and applications

In telecommunications processing, one is naturally led to study matrix models
known as the Wishart ensemble, which are Hermitian positive random matrices
of the form AA∗, for A a rectangular random matrix with i.i.d. coefficients. The
following theorem extend the Wigner law to the case of Wishart ensemble.

Theorem 5.1 ([3]). Let AN be a N × p (N ≤ p) rectangular random matrix
with i.i.d. complex centered Gaussian coefficients, with variance E|Aij |2 = 1. Let
WN = 1

NAA
∗. Suppose that as N, p → ∞, we have p

N → c, c ∈ [1,+∞[. Then,
the spectral measure µWN

of WN converges weakly almost surely to the probability
measure

µMP,c(dx) =
1

2π

√
(x− c−)(c+ − x)

cx
1[c−,c+](x)dx,

where c± = (1 ±
√
c)2. The measure µMP is called the Marčenko-Pastur distribu-

tion.

Remark 5.2. One can easily see that if X is a random variable distributed ac-
cording the semicircular distribution µsc, then X2 is distributed according the
Marčenko-Pastur distribution µMP,1.

Figure 5 shows a simulation of the eigenvalues of a large random Gaussian matrix
of the Wishart ensemble. Moreover, one has the following.
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Proposition 5.3. Let AN be a N×p (N ≤ p) rectangular random matrix with i.i.d.
complex centered Gaussian coefficients, with variance E|Aij |2 = 1, and E|Aij |4 <
∞. Suppose that as N, p → ∞, we have p

N → c, c ∈ [1,+∞[. Then almost surely,
one has

λmax(AA∗)→ (1 +
√
c)2,

as N goes to infinity.

Such matrix model can be seen as the sample covariance matrix of a random
vector, indeed if one considers for instance a system with N receivers, the signal
received at time p will be given by a matrix of the form A. We refer for instance
to the book [17] or to the different works of Hachem, Loubaton, Najim. . . (see
for instance [8] and references therein) for such development of random matrix
theory for applications to telecommunications. A maybe more useful matrix model
in applications to telecommunications is the so-called spiked model. Consider a
system with N receivers and r sources, such as antennas. We assume that the
number of sources is r � N . At time p, such a system can be modelized by the
matrix

ΣN = AN + PN ,

where A is N × p random matrix with Gaussian coefficients which represents the
noise of the system, and P is N × p fixed r-ranked deterministic matrix, which is
the signal actually transmitted. This is a fixed ranked perturbation of a Gaussian
random matrix. One can prove that such perturbation does not perturb the system
in the global regime of the eigenvalues. That is,

Theorem 5.4. With the notations above, if µN denotes the spectral measure of
ΣNΣ∗N , we have almost surely

µN → µMP ,

weakly as N, p go to infinity such that N
p → c ∈]0, 1], where µMP is the Marčenko-

Pastur distribution.

However, ΣNΣ∗N might have isolated eigenvalues, that is some eigenvalues will
converge outside the support of the Marčenko-Pastur distribution. This is the
content of the following proposition.

Proposition 5.5 ([4]). Let r be independent of N . Consider the perturbed ma-
trix model ΣN = AN + PN , where AN is a N × p random matrix with complex
Gaussian coefficients, and PN is a deterministic r-ranked matrix with eigenvalues

π
(N)
1 , . . . , π

(N)
r such that π

(N)
i → θi as N → ∞, for i = 1, . . . , r. Assume that

N
p → c ∈]0, 1], as N → ∞. Denote K = max{1 ≤ i ≤ r|θi >

√
c} and let λi,N be

the eigenvalues of ΣNΣ∗N . Then, we have for i = 1, . . . ,K,

λi,N →
(c+ θi)(1 + θi)

θi
,

while λK+1,N → (1 +
√
c)2, as N goes to infinity, almost surely.

Note that (c+θi)(1+θi)
θi

> (1 +
√
c)2 when θi >

√
c.

The study of the spikes, that is the eigenvalues outside the support of the
Marčenko-Pastur distribution, is very useful in applications to telecommunications,
for instance in passive signal detection, source localization. . .
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6. Appendix

6.1. Complex analysis tools. In what follows, we denote by C+ the half-plane
C+ = {z ∈ C | =(z) > 0}, and by D(0, ρ) the disk centered at 0 with radius ρ.

Theorem 6.1 (Montel’s theorem). Let U ⊂ C be an open set. Let F be a family
of holomorphic functions on U . Suppose that F is uniformly bounded on every
compact sets of U . Then every sequence of F admits a subsequence which converges
uniformly on compact sets of U .

Sketch of the Proof (see [13]): F uniformly bounded on every compact sets of U
says that for all K ⊂ U compact, there exists M(K) > 0 such that ∀f ∈ F ,
∀z ∈ K, |f(z)| ≤ M(K). Let (Kn)n a sequence of compact sets in U such that
U =

⋃
nKn, and Kn is included in the interior of Kn+1, for all n. From this last

property, we can find a sequence (δn)n such that

D(z, 2δn) ⊂ Kn+1, for z ∈ Kn.

Let x, y ∈ Kn such that |x−y| < δn. Denote γ the circle, with positive orientation,
centered at x of radius 2δn. Then, Cauchy’s formula gives

f(x)− f(y) =
1

2iπ

∫
γ

f(ξ)
( 1

ξ − x
− 1

ξ − y

)
dξ =

x− y
2iπ

∫
γ

f(ξ)

(ξ − x)(ξ − y)
dξ.

For ξ in the image of the contour γ, we have |ξ − x| = 2δn, and |ξ − y| > δn, hence

|f(x)− f(y)| ≤ M(Kn+1)

δn
|x− y|,

for all f ∈ F , and all x, y ∈ Kn such that |x − y| < δn. Thus, for all Kn the
restrictions of elements of F to Kn are an uniformly bounded equicontinuous family,
and by Ascoli’s theorem a pre-compact family in C(Kn). A classical diagonal
extraction procedure gives the result. �

Theorem 6.2 (Vitali’s theorem). Let U ∈ C be a connected open set. Let (zp)p≥0

be a sequence in U which admits an accumulation point in U . Let (fn)n≥0 be
a bounded sequence of the set of analytic functions endowed with the topology of
uniform convergence on compact sets and suppose that (fn(zp))n≥0 converges for
every p ≥ 0. Then (fn)n≥0 converges uniformly on compact sets of U .

Proof. Suppose, to the contrary, that there is a compact set K ⊂ U such that (fn)
is not uniformly Cauchy on K. Then for some ε > 0, we can find subsequences
mj and nj such that m1 < n1 < m2 < n2 < · · · and for each j, |fmj − fnj | ≥ ε.
Put gj = fmj and hj = fnj . By Montel’s theorem applied to gj , one obtains a
subsequence gjr converging uniformly on compact subsets of U to some analytic
function g, and the same holds for hjr denoting the limit by h. Hence we have
|h−g| ≥ ε. But since (fn(zp))n≥0 converges for every p ≥ 0, we have g(zp) = h(zp),
and since (zp)p≥0 has an accumulation point in U and U is open and connected,
g = h on U which yields a contradiction. �

Theorem 6.3 (Herglotz formula). Let f be an holomorphic function on the unit
disk such that <(f) ≥ 0. Then, there exists a positive measure σ with

∫
R dσ =

<(f(0)) such that, for |z| < 1,

f(z) = i=(f(0)) +
1

2π

∫ π

−π

eiθ + z

eiθ − z
σ(dθ).
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Proof. Let 0 < R < 1. Then, one has, for |z| < R,

Reiθ + z

Reiθ − z
= 1 + 2

∞∑
n=1

zn

Rneinθ
.

Since f is holomorphic in the disk with radius R, f admits a Taylor series develop-
ment

f(z) =

∞∑
n=0

anz
n.

Hence,

Reiθ + z

Reiθ − z
<(f(Reiθ)) =

(
1+2

∞∑
n=1

R−ne−inθzn
)(
<(a0)+

∑
m≥1

1

2
(amR

meimθ+amR
me−imθ)

)
.

Integrating the last expression over θ, using the fact that
∫ π
−π e

ikθdθ = 2πδk,0, gives

f(z) = i=(f(0)) +
1

2π

∫ π

−π

Reiθ + z

Reiθ − z
<(f(Reiθ))dθ.

Letting R going to 1 yields the result. �

Corollary 6.4 (Nevanlinna’s representation theorem). Let f be a holomorphic
function on C+ such that =(f) ≥ 0. There exists a positive finite measure µ and
constants a ≥ 0, b ∈ R such that,

f(z) = az + b+

∫
R

1 + uz

u− z
µ(du).

Proof. We consider the conformal mappping (that is holomorphic and bijective)

C+ → D(0, 1)

z 7→ z − i
z + i

.

By Herglotz theorem, we have

−if
(z − i
z + i

)
= =(f(0)) +

−i
2π

∫ π

−π

z(eiθ + 1) + i(eiθ − 1)

z(eiθ − 1) + i(eiθ + 1)
σ(dθ).

Let µ be the pushforward by the map [−π, π]\{0} 3 θ 7→ u = i 1+eiθ

1−eiθ = −i cot θ2 ∈ R,

of the restriction to [−π, π] \ {0} of σ. Then we get,

−if
(z − i
z + i

)
= =(f(0)) + σ({0})z +

1

2π

∫
R

1 + uz

u− z
µ(du),

which gives the result letting a = σ({0}) and b = =(f(0)). �

6.2. Proof of the concentration inequality for the Gaussian measure of
Proposition 3.9. We follow the argument of Maurey and Pisier as in Tao’s book
[15]. First recall Jensen’s inequality.

Lemma 6.5. Let X be a real random variable and ϕ a convex function. Then one
has,

ϕ (EX) ≤ Eϕ(X).
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Without loss of generality, we can suppose that σ2 = 1, and that f is Lipschitz
with constant 1. Also, by subtracting a constant from f , we can suppose that∫
fdγn = 0, denoting γn = γn,1. By symmetry, it then suffices to prove that

P(f(X) ≥ δ) ≤ Ce−κδ
2

,

where X is distributed according to γn. Moreover, it suffices to prove that

E
(

exp(tf(X))
)
≤ exp(Ct2),

since using Markov’s inequality and optimizing in t will yield the result. Using some
regularization argument, we can also suppose that f is smooth. Now, the Lipschitz
bound on f implies the gradient estimate

|∇f(x)| ≤ 1, for all x ∈ Rn.

Let Y be an independent copy of X. Since Ef(Y ) = 0, by Jensen’s inequality, we
get that

E
(

exp(−tf(Y ))
)
≥ 1,

and since X and Y are independent,

E
(

exp(tf(X))
)
≤ E

(
exp(t(f(X)− f(Y )))

)
.

Now, write

f(X)− f(Y ) =

∫ π/2

0

d

dθ
f(Y cos θ +X sin θ)dθ.

As an exercice, one can prove that Xθ := Y cos θ + X sin θ and its derivate X ′θ :=
−Y sin θ+X cos θ are independent Gaussian variables with variance 1. Using again
Jensen’s inequality, we get

exp
(
t(f(X)− f(Y ))

)
≤ 2

π

∫ π/2

0

exp
(2t

π

d

dθ
f(Xθ)

)
dθ,

and Fubini’s theorem gives

E exp
(
t(f(X)− f(Y ))

)
≤ 2

π

∫ π/2

0

E exp
(2t

π
∇f(Xθ) ·X ′θ

)
dθ.

Since Xθ and X ′θ are independent, conditioning by Xθ gives that 2t
π∇f(Xθ) · X ′θ

is a Gaussian variable with variance bounded by 4t2

π2 since |∇f(x)| ≤ 1. Thus one
obtains

E
(

exp
(2t

π
∇f(Xθ) ·X ′θ

))
≤ exp(Ct2),

for some absolute constant C, and the proposition follows.
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