Interro n°2 – 17 mai 2010 (durée 2h)

Tous documents interdits. Soyez concis, mais justifiez scrupuleusement ce que vous faites.

Question de cours. Soit X un vecteur gaussien de \mathbb{R}^3 , centré, de matrice de covariance

$$K_X = \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix}.$$

Donner l'expression de la fonction caractéristique de X en fonction des composantes de K_X .

Exercice 1. Soit $X = {}^t(X_1, X_2, X_3)$ un vecteur gaussien de \mathbb{R}^3 , centré, de matrice de covariance

$$K_X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & -2 & 3 \end{pmatrix}.$$

1) Soit U le vecteur de \mathbb{R}^2 donné par

$$U = \begin{pmatrix} 2X_1 - X_2 \\ X_1 + X_2 + X_3 \end{pmatrix}.$$

Justifiez le fait que U soit un vecteur gaussien. Possède-t-il une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^2 ? Si oui, donner son expression.

- 2) Trouver une matrice A de $M_3(\mathbb{R})$ telle que les composantes du vecteur gaussien AX soient indépendantes.
- 3) Trouver une matrice B de $M_3(\mathbb{R})$ telle que X = BN, où N est un vecteur gaussien de loi $\mathcal{N}(0, I_3)$, I_3 étant la matrice identité de $M_3(\mathbb{R})$.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi exponentielle de paramètre $\lambda > 0$. Pour tout $n \geq 1$, on pose $S_n = X_1 + \cdots + X_n$.

- 1) Calculer la loi de (S_1, \ldots, S_n) .
- 2) Montrer que S_n admet pour densité

$$\lambda^n e^{-\lambda t} \frac{t^{n-1}}{(n-1)!} \mathbb{1}_{[0,+\infty[}(t).$$

Indication: On pourra commencer par montrer que

$$\int \mathbb{1}_{\{0 < s_1 < \dots < s_{n-1} < s\}} ds_1 \cdots ds_{n-1} = \frac{s^{n-1}}{(n-1)!}.$$

- 3) La v.a. $\frac{S_n}{n}$ converge-t-elle? En quel sens?
- 4) Soit f une fonction continue bornée sur $[0, +\infty[$. On définit la transformée de Laplace de f par

$$(\mathcal{L}f)(s) = \int_0^{+\infty} e^{-st} f(t)dt$$
, pour $s > 0$.

Montrer que $\mathcal{L}f$ est C^{∞} sur $]0, +\infty[$, et exprimer sous la forme d'une intégrale la dérivée k-ième $(\mathcal{L}f)^{(k)}$ de $\mathcal{L}f$, pour tout $k \geq 1$.

5) En considérant une suite de v.a. exponentielle de paramètre 1/x indépendantes, montrer la formule d'inversion de la transformée de Laplace

$$f(x) = \lim_{n \to +\infty} \frac{(-1)^{n-1} n^n}{(n-1)! \, x^n} (\mathcal{L}f)^{(n-1)} \left(\frac{n}{x}\right).$$

Exercice 3.

Question préliminaire : Soit X une v.a. de carré intégrable. Montrer que pour tout a>0, on a

$$\mathbb{E}(|X - \inf(X, a)|) \le (\mathbb{E}(X^2)\mathbb{P}(X \ge a))^{1/2}.$$

Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et identiquement distribuées, de loi de Poisson de paramètre 1, i.e. $\mathbb{P}(X_1=k)=\frac{1}{k!}e^{-1}$, pour tout $k\geq 0$. On définit, pour tout $n\geq 1$, les v.a.

$$S_n = \sum_{i=1}^n X_i$$
, et $Y_n = \frac{S_n - n}{\sqrt{n}}$.

On pose, pour tout $x \in \mathbb{R}$,

$$x^{-} = \sup(-x, 0) = -x \mathbb{1}_{\{x < 0\}}.$$

En particulier, $x^- \geq 0$, pour tout $x \in \mathbb{R}$, et $x \mapsto x^-$ est continue.

- 1) Justifiez que S_n suit une loi de Poisson de paramètre n, et calculer $\mathbb{E}(Y_n^2)$.
- 2) Montrer que pour tout a > 0, on a

$$\mathbb{P}(Y_n^- \ge a) \le \frac{1}{a^2}.$$

- 3) Soit N une v.a. de loi gaussienne centrée réduite. Montrer que Y_n^- converge en loi vers N^- , quand $n \to +\infty$.
- 4) a) Montrer que pour tout a > 0, on a

$$\mathbb{E}\left(\inf(Y_n^-,a)\right) \underset{n \to +\infty}{\longrightarrow} \mathbb{E}\left(\inf(N^-,a)\right).$$

b) Montrer, à l'aide de la question préliminaire, que

$$\mathbb{E}(Y_n^-) \xrightarrow[n \to +\infty]{} \mathbb{E}(N^-).$$

Indication : Majorer $|\mathbb{E}(Y_n^-) - \mathbb{E}(N^-)|$ par la somme de trois termes faisant intervenir les quantités de la question a).

5) Calculer $\mathbb{E}(Y_n^-)$, $\mathbb{E}(N^-)$, et en déduire la formule de Stirling :

$$n! \underset{+\infty}{\sim} \sqrt{2\pi n} \, n^n e^{-n}.$$