Interro n°3 – 5 mai 2009 (durée 2h)

Aucun document autorisé.

Exercice 1. Soit $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ un vecteur gaussien de \mathbb{R}^3 d'espérance $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ et de matrice de covariance

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ -1 & 2 & 3 \end{pmatrix}.$$

- 1) Donner les loi de X_1 , X_2 , X_3 , $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$, $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ et de $\begin{pmatrix} X_2 \\ X_3 \end{pmatrix}$.
- 2) Etudier l'indépendance entre X_1 , X_2 et X_3 .
- 3) Dire si X admet une densité et la calculer si la réponse est oui.

Exercice 2. Soit $X=\begin{pmatrix} X_1\\ X_2\\ X_3 \end{pmatrix}$ un vecteur gaussien de \mathbb{R}^3 centré et de matrice de covariance :

$$Q = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}.$$

- 1) Dire si le vecteur $\begin{pmatrix} X_1 + 2X_2 X_3 \\ 2X_1 X_2 + X_3 \end{pmatrix}$ est gaussien et donner sa loi.
- 2) Trouver une matrice carré d'ordre 3 A telle que le vecteur gaussien AX ait des composantes indépendantes.
- 3) Trouver une matrice carré d'ordre 3 B telle que $B^2 = Q$.

Exercice 3. Soient $x \in \mathbb{R}$, et $(Y_{n,x})_n$ une suite de variables aléatoires d'espérance x et de variance $v_n(x)$. On suppose que v_n converge vers 0 quand $n \to \infty$ uniformément sur [a,b], i.e. $\sup_{x \in [a,b]} v_n(x) \to 0$, quand $n \to \infty$.

- 1) Soit f une fonction continue bornée. Montrer que $\mathbb{E}(f(Y_{n,x})) \to f(x)$, quand $n \to \infty$, uniformément sur [a,b]. Rappel: Une fonction continue sur un compact est uniformément continue (théorème de Heine).
- 2) Montrer alors qu'une fonction continue sur [0, 1] est la limite uniforme de la suite de polynômes

$$P_n(x) = \sum_{k=0}^n f(\frac{k}{n}) C_n^k x^k (1-x)^{n-k}.$$

Exercice 4. Soit X une variable aléatoire réelle. On note φ_X sa fonction caractéristique. Soit g la fonction continue bornée et positive, définie par

$$g(x) = \begin{cases} 1 - \frac{\sin x}{x}, & \text{si } x \neq 0, \\ 0, & \text{si } x = 0. \end{cases}$$

1) Soit $\delta > 0$. Montrer que

$$\frac{1}{\delta} \int_0^{\delta} (1 - \operatorname{Re} \varphi_X(t)) dt = \mathbb{E} (g(\delta X)).$$

2) Pour tout $\varepsilon > 0$, on pose $I_{\varepsilon} = \inf_{|x| > \varepsilon} g(x)$. Montrer que

$$\mathbb{P}(|X| > \varepsilon) \le \frac{1}{I_{\delta\varepsilon}\delta} \int_0^\delta (1 - \operatorname{Re} \varphi_X(t)) dt = \frac{1}{2I_{\delta\varepsilon}\delta} \int_{-\delta}^\delta (1 - \varphi_X(t)) dt.$$

- 3) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires.
 - a) On suppose qu'il existe $\delta > 0$ tel que la suite $(\varphi_{X_n}(t))_{n \geq 1}$ converge vers 1 pour tout $t \in [-\delta, \delta]$. Montrer que X_n converge en probabilité vers 0.
 - b) Montrer alors que X_n converge en loi vers 0 si et seulement si il existe $\delta > 0$ tel que la suite $(\varphi_{X_n}(t))_{n\geq 1}$ converge vers 1 pour tout $t\in [-\delta,\delta]$.
- 4) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On pose $S_n = \sum_{k=1}^n X_k$, et on suppose que S_n converge en loi vers une v.a. S.
 - a) Montrer que la suite S_n est de Cauchy pour la convergence en probabilité, i.e. pour tout $\varepsilon > 0$

$$\lim_{n,m\to\infty} \mathbb{P}(|S_n - S_m| > \varepsilon) = 0.$$

b) Montrer alors que S_n converge en probabilité vers S.

Indication : On pourra utiliser sans démonstration le fait que si S_n est de Cauchy pour la convergence en probabilité, alors il existe une sous-suite n_j telle que S_{n_j} converge en probabilité.