DM à rendre la semaine du 2 novembre

Exercice 1. Soit E un ensemble de cardinal supérieur ou égal à 2.

- 1) Quelle est la tribu engendrée par les singletons de E?
- 2) Quelle est la tribu engendrée par l'ensemble des paires, c'est-à-dire la tribu engendrée par la classe $\{x,y\}|\ x,y\in E, x\neq y\}$? On distinguera les cas où Card E=2, et Card E>2.

Exercice 2. Soient X un ensemble, et m la mesure de comptage définie sur $\mathcal{P}(X)$ par $m(A) = \operatorname{Card}(A)$ si A est fini, et $m(A) = +\infty$ sinon. Montrer que $(X, \mathcal{P}(X), m)$ est un espace mesuré.

Exercice 3. 1) Soit f la fonction réelle définie par

$$f(x) = \begin{cases} 1, & \text{si } x = 0, \\ \frac{1}{q}, & \text{si } x = \frac{p}{q}, \text{ avec } p \in \mathbb{Z}^*, q \in \mathbb{N}^*, \text{ et } p \wedge q = 1, \\ 0, & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Montrer que f est continue sur $\mathbb{R} \setminus \mathbb{Q}$, et discontinue sur \mathbb{Q} . f est-elle borélienne?

2) Soit $g: X \to Y$ une application entre deux espaces métriques. On note d la distance sur Y. On définit l'oscillation de g en $x \in X$, par

$$\omega_g(x) = \inf_V \delta(g(V)),$$

où l'inf porte sur tous les voisinages de x dans X, et où

$$\delta(g(V)) = \sup_{y,z \in V} d(g(y), g(z)).$$

- a) Montrer que pour tout $\varepsilon > 0$, l'ensemble des $x \in X$ tels que $\omega_g(x) < \varepsilon$ est un ouvert de X.
- b) Montrer que g est continue en x si et seulement si $\omega_g(x) = 0$.
- c) En déduire que l'ensemble des points de continuité de g est une intersection dénombrable d'ouverts.
- 3) Montrer que $\mathbb{R} \setminus \mathbb{Q}$ est une intersection dénombrable d'ouverts dense dans \mathbb{R} . Indication : Écrire \mathbb{Q} comme l'union de ses singletons.
- 4) Montrer que \mathbb{Q} n'est pas une intersection dénombrable d'ouverts. Indication : Utiliser le théorème de Baire : Dans un espace métrique complet, toute intersection dénombrable d'ouverts denses est dense.
- 5) En déduire qu'il n'existe pas de fonction continue sur \mathbb{Q} et discontinue sur $\mathbb{R} \setminus \mathbb{Q}$.