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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme
scenarios...

François Bachoc Inequality constraints 3 / 54



Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R
x 7→ f (x).

x : tunable simulation parameter (e.g. geometry).

f (x) : scalar quantity of interest (e.g. energetic efficiency).

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x).

=⇒ Black box model.
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Follow-along example : coastal flooding

Figures from [Azzimonti et al., 2019].
Hydrodynamic numerical simulations made by BRGM [Rohmer et al., 2018].

Input x with d = 5.
• : Tide (meter).
• : Surge peak (meter).
• : Phase difference between surge peak and high tide (hour).
• : Time duration of raising part of surge (hour).
• : Time duration of falling part of surge (hour).

Output f (x).
• Maximal flooding area (m2).
• 1 hour simulation time.
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Gaussian process

Gaussian processes (Kriging model)

Modeling the black box function as a single realization of a Gaussian process
x → ξ(x) on the domain X ⊂ Rd .
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Usefulness
Predicting the continuous realization function, from a finite number of observation
points.

Remark : Gaussian processes are widely used in geostatistics as well.
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Gaussian processes

Definition
A stochastic process ξ : X → R is Gaussian if for any x1, ..., xn ∈ X, the vector
(ξ(x1), ..., ξ(xn)) is a Gaussian vector.

Mean and covariance functions
The distribution of a Gaussian process is characterized by :

Its mean function :
x 7→ m(x) = E(ξ(x)).

• Can be any function X → R.
• Will be the zero function throughout this talk !

Its covariance function :

(x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2)).

• Must be symmetric non-negative definite (to provide “valid” covariance matrices).
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Conditional distribution

Gaussian process ξ observed at x1, ..., xn, without noise.

Notation

y = (ξ(x1), ..., ξ(xn))⊤.

R is the n × n matrix [k(xi , xj )].

r(x) = (k(x , x1), ..., k(x , xn))⊤.

Conditional mean
The conditional mean is mn(x) = E(ξ(x)|ξ(x1), ..., ξ(xn)) = r(x)⊤R−1y .

Conditional variance
The conditional variance is kn(x , x) = var(ξ(x)|ξ(x1), ..., ξ(xn)) =
E
[
(ξ(x)− mn(x))2] = k(x , x)− r(x)⊤R−1r(x).

Conditional distribution
Conditionally to ξ(x1), ..., ξ(xn), ξ is a Gaussian process with (conditional) mean
function mn and (conditional) covariance function
(u, v) 7→ kn(u, v) = k(u, v)− r(u)⊤R−1r(v).
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Illustration of conditional mean and variance
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Illustration of the conditional distribution
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Parametric covariance function estimation

Parameterization
Covariance function model {kθ, θ ∈ Θ} for the Gaussian process ξ.

Θ ⊂ Rp .

θ is the multidimensional covariance parameter.

kθ is a covariance function.

Observations
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector y = (ξ(x1), ..., ξ(xn))⊤.

Estimation
Objective : build estimator θ̂(y).
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Maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y .

Maximum likelihood
Define Rθ as the covariance matrix of y = (ξ(x1), ..., ξ(xn))⊤ with covariance function
kθ : Rθ = [kθ(xi , xj )]i,j=1,...,n.
The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

Ln(θ)

with

Ln(θ) = log(pθ(y)) = log

(
1

(2π)n/2|Rθ|
e− 1

2 y⊤R−1
θ

y
)
.
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Outline

1 Gaussian processes (without inequality constraints)

2 Gaussian processes under inequality constraints

3 Theory : maximum likelihood under inequality constraints

4 Computation : finite-dimensional approximation and MaxMod algorithm

5 Theory : convergence of the MaxMod algorithm
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Inequality constraints

We consider a Gaussian process ξ on X = [0, 1]d for which we assume that additional
information is available.

ξ(x) belongs to [ℓ, u] for x ∈ [0, 1]d (boundedness constraints).

∂ξ(x)/∂xi ≥ 0 for x ∈ [0, 1]d and i = 1, . . . , d (monotonicity constraints).

ξ is convex on [0, 1]d (convexity constraints).

Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

Boundedness : computer model output belongs to R+ (energy) or [0, 1]
(concentration, energetic efficiency).

Monotonicity : inputs are known to have positive effects (more input power →
more output energy).
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Coastal flooding : the constraints

Input x .
• : Tide (meter). Output increases when tide increases !
• : Surge peak (meter). Output increases when surge increases !
• : Phase difference between surge peak and high tide (hours).
• : Time duration of raising part of surge (hours).
• : Time duration of falling part of surge (hours).

Output f (x).
• Maximal flooding area (m2).
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Impact of the constraints

Generic form of the constraints :
ξ ∈ E

where E is a set of functions from [0, 1]d → R such that P(ξ ∈ E) > 0.

Impact.

New Bayesian model : The prior on the realization function is P(ξ ∈ .|ξ ∈ E).
New conditional distribution : Conditional distribution of ξ given

• ξ(x1) = y1, . . . , ξ(xn) = yn (data interpolation),
• ξ ∈ E (inequality constraints).

New estimation of the covariance parameters θ in the covariance model
{kθ; θ ∈ Θ}.
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Illustration of constraint benefits

Target function : bounded and monotonic.
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Unconstrained Gaussian process. Constrained Gaussian process.

■ true function • training points
■ predictive mean ■ confidence intervals
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Results on coastal flooding example

Gaussian process predictive score.
Without constraints.
With constraints.

The Q2 (≤ 1) measures the prediction quality,
Q2 = 1 : perfect prediction,
Q2 = 0 : no better than constant prediction.
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An application to nuclear engineering
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Figure – Two-dimensional nuclear engineering example.
Radius and density of uranium sphere =⇒ criticality coefficient.
Monononicity constraints.
• Left : unconstrained Gaussian process models.
• Right : constrained Gaussian process models.
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Outline

1 Gaussian processes (without inequality constraints)

2 Gaussian processes under inequality constraints

3 Theory : maximum likelihood under inequality constraints

4 Computation : finite-dimensional approximation and MaxMod algorithm

5 Theory : convergence of the MaxMod algorithm
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Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for θ is

θ̂cML ∈ argmax
θ∈Θ

LC,n(θ)

with

LC,n(θ) = log(pθ(y |ξ ∈ E))
= log(pθ(y))− log(Pθ(ξ ∈ E)) + log(Pθ(ξ ∈ E|y)).

The additional terms log(Pθ(ξ ∈ E)) and log(Pθ(ξ ∈ E|y)) have no explicit
expressions.
They need to be approximated by numerical integration or Monte Carlo :
[Genz, 1992, Botev, 2017].
We do not address this approximation issue in this theory section (see next
computation section).

Main questions :

θ̂ML ignores the constraints. Is it biased conditionally to the constraints?
• For instance if θ̂ML is the variance estimator, if the true variance is 4 and if the

constraints are ξ ∈ [−1, 1], does θ̂ML underestimate the variance?

Does θ̂cML improve over θ̂ML by taking the constraints into account?
We address these questions asymptotically.
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Fixed-domain asymptotics with fixed constraints

Asymptotics (number of observations n → +∞) is an active area of research.

Mostly without constraints.

There are several asymptotic frameworks because there are several possible
location patterns for the observation points.

Fixed-domain asymptotics

The observation points x1, . . . , xn are dense in a bounded domain.
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Fixed constraints
Fixed constraint set E with

P(ξ ∈ E) > 0.
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Microergodic parameters

Consistent estimation is impossible for some covariance parameters (identifiable
in finite-sample), see e.g. [Zhang, 2004, Stein, 1999].

Covariance parameters that yield equivalent Gaussian measures are called
non-microergodic. They cannot be estimated consistently.
Covariance parameters that yield orthogonal Gaussian measures are called
microergodic. They can be estimated consistently.

For instance, consider the set of covariance functions {kθ, θ ∈ (0,∞)2} on [0, 1]
given by θ = (σ2, α) and kθ(t1, t2) = σ2e−α|t1−t2|.

σ2 is non-microergodic.
α is non-microergodic.
σ2α is microergodic.
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Some initial properties

Let θ0 ∈ Θ such that k = kθ0 (true covariance parameter).

A non-microergodic parameter cannot be estimated consistently conditionally to
the constraints.

Has a short proof using that P (ξ ∈ E) > 0 is fixed.

If θ̂ML − θ0 = OP(n−1/2) then θ̂ML − θ0 = OP|ξ∈E(n−1/2) which means

lim sup
n→∞

P
(√

n∥θ̂ML − θ0∥ ≥ M
∣∣∣ ξ ∈ E

)
−→

M→∞
0.

Holds because

P
(√

n∥θ̂ML − θ0∥ ≥ M
∣∣∣ ξ ∈ E

)
=

1
P (ξ ∈ E)

P
(√

n∥θ̂ML − θ0∥ ≥ M, ξ ∈ E
)

≤
1

P (ξ ∈ E)
P
(√

n∥θ̂ML − θ0∥ ≥ M
)

and P (ξ ∈ E) > 0 is fixed.

=⇒ Rate of convergence is preserved with constraints.
=⇒ What about asymptotic distribution?
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Asymptotic normality result 1 : variance estimation

Setting :

Gaussian process ξ on [0, 1]d .

Monotonicity, boundedness or convexity constraints.

Observation point sequence (xi )i∈N is dense in [0, 1]d .

θ = σ2 and kθ(u1, u2) = σ2k̃(u1, u2), for some fixed k̃ .

True covariance function k = σ2
0 k̃ .

Asymptotic normality without constraints

It is well-known that in this case
√

n
(
σ̂2

ML − σ2
0

)
L−→

n→∞
N (0, 2σ4

0).
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Asymptotic normality result 1 : variance estimation

Notation (convergence in distribution given the constraints) : we write

Xn
L|ξ∈E−→
n→∞

L

when for all bounded measurable function f :

E(f (Xn)|ξ ∈ E) −→
n→∞

∫
f (x)dL(x).

Theorem [Bachoc et al., 2019]
Under technical conditions on k and the sequence (xi )i∈N (see paper), we have

√
n
(
σ̂2

ML − σ2
0

) L|ξ∈E−→
n→∞

N (0, 2σ4
0)

and √
n
(
σ̂2

cML − σ2
0

) L|ξ∈E−→
n→∞

N (0, 2σ4
0).

Same asymptotic distribution as the (unconstrained) maximum likelihood
estimator, in the unconstrained case.

No asymptotic impact of the constraints.
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Asymptotic normality result 2 : Matérn model

Setting :
Gaussian process ξ on [0, 1]d , d = 1, 2, 3, with covariance function k .
Monotonicity, boundedness or convexity constraints.
Observation point sequence (xi )i∈N is dense in [0, 1]d .
θ = (σ2, ρ) ∈ (0,∞)2 and

kθ,ν(x , x ′) = σ2Kν

(
∥x − x ′∥

ρ

)
=

σ2

Γ(ν)2ν−1

(
∥x − x ′∥

ρ

)ν

κν

(
∥x − x ′∥

ρ

)
.

• Γ is the Gamma function.
• κν is the modified Bessel function of the second kind.
• ν > 0 (assumed known) is the smoothness parameter : ν > r =⇒ corresponding

Gaussian process if r times differentiable.

True covariance function k = kθ0,ν , θ0 = (σ2
0 , ρ0).

In this case :
σ2 is non-microergodic
ρ is non-microergodic
σ2/ρ2ν is microergodic and

√
n
(
σ̂2

ML

ρ̂2ν
ML

−
σ2

0

ρ2ν
0

)
L−−−−−→

n→+∞
N
(

0, 2
(

σ2
0

ρ2ν
0

)2)
.

This is shown in [Kaufman and Shaby, 2013] using results from
[Du et al., 2009, Wang and Loh, 2011].
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Asymptotic normality result 2 : Matérn model

Theorem [Bachoc et al., 2019]
Under technical conditions on ν and the sequence (xi )i∈N (see paper), we have

√
n
(
σ̂2

ML

ρ̂2ν
ML

−
σ2

0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(

σ2
0

ρ2ν
0

)2)
and

√
n
(
σ̂2

cML

ρ̂2ν
cML

−
σ2

0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(

σ2
0

ρ2ν
0

)2)
.

Same conclusions as for the estimation of a variance parameter.
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An illustration
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Figure – An example with the estimation of σ2
0 with boundedness constraints.

Distribution of n1/2(σ̂2 − σ2
0). n = 20 (top left), n = 50 (top right) and n = 80 (bottom).

• Green : ML.
• Blue : cML.
• Red : Gaussian limit.
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Some proof ideas : ML for the variance

When kθ = σ2k̃ and for boundedness constraint.

Write the variance estimator as

σ̂2
ML =

σ2
0

n

n∑
i=1

(yi − E[yi |y1, . . . , yi−1])
2

Var(yi |y1, . . . , yi−1)

=
σ2

0

n

m∑
i=1

(yi − E[yi |y1, . . . , yi−1])
2

Var(yi |y1, . . . , yi−1)
+

σ2
0

n

n∑
i=m+1

(yi − E[yi |y1, . . . , yi−1])
2

Var(yi |y1, . . . , yi−1)

:= Am + Bm,n

with fixed m and as n → ∞.

Approximate boundedness event by {yi ∈ [ℓ, u]; i = 1, . . . ,m}.

Am is negligible as n → ∞.

Conditioning by approximated boundedness does not affect Bm,n by
independence so

√
n(Bm,n − σ2

0) → N (0, 2σ4
0) also conditionally.

Conclude by letting m = mn → ∞ as n → ∞ slowly enough.

Same method for monotonicity and convexity.
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Some proof ideas : ML for Matérn

Introduce estimated variance with imposed correlation length

σ̄2
n(ρ) ∈ argmax

σ2∈(0,∞)

Ln(σ
2, ρ).

Then from [Kaufman and Shaby, 2013, Du et al., 2009, Wang and Loh, 2011], for
0 < ρl < ρu < ∞,

sup
ρ1,ρ2∈[ρl ,ρu ]

∣∣∣∣∣ σ̄2
n(ρ1)

ρ2ν
1

−
σ̄2

n(ρ2)

ρ2ν
2

∣∣∣∣∣ = oP(1/
√

n).

We conclude with the previous result for

σ̄2
n(ρ0)

ρ2ν
0

.
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Some proof ideas : cML

For boundedness constraint.

We show that the two added terms in the constrained likelihood are negligible.

For the unconditional constraints :

|log(P(σ1ξ ∈ E))− log(P(σ2ξ ∈ E))| ≤ Constant
∣∣∣σ2

1 − σ2
2

∣∣∣ .
Using Tsirelson’s theorem.

For the conditional constraints :

sup
θ∈Θ

|log(Pθ(ξ ∈ E|y))| = oP|ξ∈E(1).

Because conditional constraint probability → 1. More technical part. Using
Borel-TIS inequality, and RKHS arguments for the Matérn case.
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Outline

1 Gaussian processes (without inequality constraints)

2 Gaussian processes under inequality constraints

3 Theory : maximum likelihood under inequality constraints

4 Computation : finite-dimensional approximation and MaxMod algorithm

5 Theory : convergence of the MaxMod algorithm
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Handling the constraints computationally

For boundedness constraints, it is possible to consider models of the form
yi = T (ξ(xi )) with T bijective from R to [ℓ, u] and ξ a Gaussian process.

• No computational problem.

For monotonicity and convexity constraints, the model P(ξ ∈ .|ξ ∈ E) has become
standard.

• But the constraint ξ ∈ E needs to be approximated.
• ξ ∈ E is replaced by a finite number of constraints on inducing points in

[Da Veiga and Marrel, 2012, Golchi et al., 2015].

(∂iξ)(s) ≥ 0, s ∈ [0, 1]d ≈ (∂iξ)(sj ) ≥ 0, j = 1, . . . , m.

• ξ is replaced by a finite-dimensional approximation ξm in
[López-Lopera et al., 2018, Maatouk and Bay, 2017].

In dimension 1, for x ∈ [0, 1] :

ξm(x) =
m∑

i=1

ξ(ti )ϕi (x)

=
m∑

i=1

ξm(ti )ϕi (x),

0 = t1 < · · · < tm = 1 : knots,

ϕi : hat basis function centered at
ti .
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Finite-dimensional linear inequalities for the constraints

In dimension 1

Boundedness

ξm is bounded in [ℓ, u] on [0,1] ⇐⇒ ξm(ti ) ∈ [ℓ, u] for i = 1, . . . ,m.

Monotonicity

ξm is non-decreasing on [0,1] ⇐⇒ ξm(ti ) ≤ ξm(ti+1) for i = 1, . . . ,m − 1.

In dimension d

Finite-dimensional approximation, for u = (u1, . . . , ud ) ∈ [0, 1]d ,

ξm(u1, . . . , ud ) =

m1∑
i1=1

· · ·
md∑

id=1

ξm(t(1)i1
, . . . , t(d)id

)ϕ
(1)
i1

(u1) · · ·ϕ
(d)
id

(ud ),

• (t (1)i1
, . . . , t (d)id

) : multi-dimensional knot,

• ϕ
(1)
i1

(·) · · ·ϕ(d)
id

(·) : multi-dimensional hat basis function.

For boundedness, monotonicity, component-wise convexity :

ξm ∈ E ⇐⇒ finite number of linear inequalities on [ξm(t(1)i1
, . . . , t(d)id

)]i1,...,id .
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Mode and conditional distribution

In the frame of [López-Lopera et al., 2018, Maatouk and Bay, 2017].

=⇒ Boils down to optimizing/sampling w.r.t. the Gaussian vector
[ξm(t(1)i1

, . . . , t(d)id
)]i1,...,id .

The mode is the “most likely” function for ξm, obtained by quadratic optimization
with linear constraints.

Conditional realizations of ξm can be sampled approximately, for instance by
Hamiltonian Monte Carlo for truncated Gaussian vectors
[Pakman and Paninski, 2014].
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The MaxMod algorithm in 1d

Introduced in [Bachoc et al., 2022].
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Let Ŷ be the mode function with an ordered set of knots :

{t1, . . . , tm}, with 0 = t1 < · · · < tm = 1.

Here, we aim at adding a new knot t (where?).

To do so, we aim at maximising the total modification of the mode :

I(t) =
∫
[0,1]

(
Ŷ+t (x)− Ŷ (x)

)2
dx . (1)

The integral in (1) has a closed-form expression.
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1D example under boundedness and monotonicity constraints

We write the mode Ŷ = Y MAP.

Mode Conditional sample-path

• Observation points + Knots ■ Mode
■ Predictive mean ■ 90% confidence intervals
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2D example under monotonicity constraints

MaxMod in multiD

Adding new active variables or adding new knots to active variables.

Figure – Evolution of the MaxMod algorithm using f (x) = 1
2 x1 + arctan(10x2)
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(e) iteration 4

• training points + knots ■ mode
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MaxMod results on coastal example

En(Y , Ŷ ) : relative square error.
Ŷsquare : regularly spaced knots, identical number per variable.
ŶMaxMod,rect : regularly spaced knots, numbers per variable given by MaxMod.
Ŷ∗ : optimized by hand in a previous study.
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Outline

1 Gaussian processes (without inequality constraints)

2 Gaussian processes under inequality constraints

3 Theory : maximum likelihood under inequality constraints

4 Computation : finite-dimensional approximation and MaxMod algorithm

5 Theory : convergence of the MaxMod algorithm

François Bachoc Inequality constraints 41 / 54



When the sequence of knots is fixed and dense

Setting :

Fixed data set from now on.

I : set of functions interpolating the data set.

For variable j ∈ {1, . . . , d} : sequence of one-dimensional knots t(j)1 , . . . , t(j)mj
and

mj → ∞. The sequence is dense in [0, 1].

The mode Ŷm1,...,md : [0, 1]d → R.

Kernel k with corresponding RKHS H of functions from [0, 1]d to R.

Inequality set C of functions from [0, 1]d to R.

Theorem [Bay et al., 2017, Bay et al., 2016]
Under some technical conditions

Ŷm1,...,md → Yopt,

uniformly on [0, 1]d , with
Yopt = argmin

f ∈H∩C ∩I
∥f∥H.
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Multiaffine extension

Definition
Let F1, . . . ,Fd be (general) closed subsets of [0, 1] containing 0 and 1.
Let f be a continuous function on F = F1 × · · · × Fd .
Then, there exists a unique continuous extension of f on [0, 1]d such that any 1D
marginal cut functions ui 7→ f (ui , t∼i ) is affine on intervals of [0, 1] \ Fi .
Denoted PF→[0,1]d (f ), it is obtained by sequential 1D affine interpolations.

=⇒ PF→[0,1]d (f ) is called the multiaffine extension of f .

x1

x2

f(x)

x1

x2
f(x)

x1

x2

f(x)

Figure – Sequential construction of the multiaffine extension (2D case).
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Multiaffine extension

Properties

The multiaffine extension is expressed with 2d neighbours as

PF→[0,1]d (f )(u1, . . . , ud ) =
∑

ϵ1,...,ϵd∈{−,+}

( d∏
j=1

ωϵj (uj )

)
f (uϵ1

1 , . . . , uϵd
d ),

where u−
j , u+

j are the closest left and right neighbours of uj in Fj ,

ω+(uj ) =
uj−u−

j

u+
j −u−

j
if uj /∈ Fj and 1

2 otherwise, and ω−(uj ) = 1 − ω+(uj ).

It preserves boundedness, monotonicity and componentwise convexity.
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The multiaffine extension for a fixed sequence of knots that is not dense

Setting :

For variable j ∈ {1, . . . , d} : sequence of one-dimensional knots t(j)1 , . . . , t(j)mj
and

mj → ∞. The sequence has closure Fj ⊂ [0, 1].

First approach : can we still find a limit function from [0, 1]d to R?

−→ Not successful to stay on [0, 1]d here.

Instead : Work on F := F1 × · · · × Fd and define

HF RKHS of k restricted to F × F .

CF : set of functions from F to R which multi-affine extensions satisfy inequality
constraints.

IF : set of functions from F to R which multi-affine extensions interpolate the data
set.

François Bachoc Inequality constraints 45 / 54



The multiaffine extension for a fixed sequence of knots that is not dense

Theorem [Bachoc et al., 2022]
Under some technical conditions

Ŷm1,...,md → Yopt,F,

uniformly on F , with
Yopt,F = argmin

f ∈HF ∩CF ∩IF

∥f∥HF .

As a consequence
Ŷm1,...,md → PF→[0,1]d

(
Yopt,F

)
,

uniformly on [0, 1]d .
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Application to convergence of MaxMod

Mode ŶMaxMod,m at iteration m of MaxMod.

We add an exploration reward to MaxMod.

Theorem [Bachoc et al., 2022]
Under some technical conditions, as m → ∞,

ŶMaxMod,m → Yopt,

uniformly on [0, 1]d , with
Yopt = argmin

f ∈H∩C ∩I
∥f∥H.
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Application to convergence of MaxMod

Proof arguments :

=⇒ let us show that sequence of knots is dense.
As is common for algorithms maximizing acquisition functions (EGO,...), two
ingredients :
→ Show that acquisition function is small at points close to existing ones.
→ Show that acquisition function is large at points away from existing ones.

Here :
→ Show that mode perturbation vanishes from ŶMaxMod,m to ŶMaxMod,m+1 −→ previous

convergence result.
→ Acquisition function is large at points away from existing ones −→ the exploration

reward.
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Conclusion

Summary.
Inequality constraints correspond to additional information (e.g. physical
knowledge).
Taking them into account can significantly improve the predictions.
With a computational cost (explicit =⇒ Monte Carlo).
Asymptotically, we do not see an impact of the constraints and ML ≈ cML.
MaxMod algorithm for higher dimension.

Main open question on likelihood theory.
How to analyse asymptotically n-dependent constraints ξ ∈ En with

P(ξ ∈ En) −→
n→∞

0.

• For instance boundedness with tighter and tighter bounds or monotonicity over larger
and larger domains.

• Should yield more impacts of the constraints?
• Previous proof techniques do not apply.

Subsequent and ongoing work on computation.
Additive model and corresponding MaxMod : [López-Lopera et al., 2022].
Block additive models and corresponding MaxMod : in preparation.
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Main references

References.

Constrained Gaussian processes : [López-Lopera et al., 2018].

Constrained Maximum Likelihood : [Bachoc et al., 2019].

MaxMod : [Bachoc et al., 2022].

Extension of MaxMod for additive models : [López-Lopera et al., 2022].

R package LineqGPR : https://github.com/anfelopera/lineqGPR.

Thank you for your attention !
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