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A brief introduction

The ingredients of this book are three: the abelian topological quantum field
theory (TQFT), the reciprocity between discriminant quadratic functions
and the Weil representation.

A TQFT in dimension 3 is roughly speaking a functor from the category
of oriented 3-cobordisms between surfaces to the category of finite dimen-
sional unitary linear operators. Hence to a 3-cobordism M such that M =
—Y_[]X+, a TQFT 7 assigns a unitary operator 7(M) : T(X_) —» T(X4).
Introduced in 1989 by E. Witten [66], TQFTSs turned out to be a fascinating
framework to produce topological invariants of 3-manifolds [53], [37], [1] at
the crossroads of representation theory, physics and combinatorics.

Abelian TQFT is algebraically simpler than its nonabelian versions. It has
been studied from several combinatorial viewpoint. The common proce-
dure is formally the same as in the nonabelian case: it consists in using a
surgery presentation of a 3-cobordism M and by a combinatorial count on
the presentation, one defines the operator 7.

Our goal in this book is to unify the Abelian TQFTs. Our Abelian TQFT
depends on a fixed quadratic form ¢ : G — Q/Z on a finite Abelian group
G. We describe it thoroughly from classical topological invariants of 3-
manifolds, especially from the linking pairing of 3-manifolds and its various
refinements. In particular, our description is intrinsic in the sense that it is
independent of the surgery presentation. We also establish that the invari-
ants produced by this machinery classify linking pairings with prescribed
elements.

The main tool to achieve our goal is a reciprocity identity between discrim-
inant quadratic functions. A linking pairing is a symmetric bilinear pairing
on a finite abelian group. Any such pairing can be lifted to a bilinear lattice
A. The map A — ) is known as the discriminant map and plays a funda-
mental role in this book. The properties of discriminant pairings and their
quadratic refinements have been thoroughly studied and applied (see for in-
stance [36], [64], [46], [18]). A key observation here is that the discriminant
preserves orthogonal sums but not tensor products. The reciprocity mea-
sures how far the discriminant is from preserving tensor products, in the
framework of the Witt group of quadratic functions.

Reciprocity is also used in this book to classify pointed linking pairings
and pointed quadratic functions over abelian groups. See 3, Theorems 3.1
and 3.2. In particular, it answers a question raised independently by C.
Gille and myself in [8] regarding the classification of pointed linking pairings
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6 A BRIEF INTRODUCTION

(called isometries by C. Gille) by the invariant 7 of links in closed oriented
3-manifolds. See 3.1.

In turn, many of these results rely on the tensor product of linking pair-
ings and the construction of an order 2 characteristic element (§2.9). Of
the realization of this element by a certain G-valued 1-cycle 8 depends the
non-vanishing of the invariant 7(M, ) and the explicit construction of its
extension to a full TQFT.

The last ingredient is the Weil representation. This is a projective repre-
sentation introduced in the sixties by A. Weil (and also by Shale and Segal)
of the symplectic group Sp(A). This representation arises when one mod-
ifies the (irreducible) Heisenberg representation by a symplectomorphism.
By the Stone-Weyl theorem, the original and the modified Heisenberg rep-
resentation are equivalent and related by a new projective representation,
which is the Weil representation. The Weil representation appears in the
context of 3-TQFTs as follows. A fundamental feature of 3-TQFTs is a
projective representation of the mapping class group of surfaces (when one
restricts the TQFT functor to cobordisms that are cylinders over a sur-
face). The Abelian TQFT representation factors through the symplectic
group Sp(H, e) of the surface ¥, where H = H;(X) is the 1-homology of the
surface and e is the symplectic intersection pairing on H. It turns out that
the Abelian TQFT representation is the Weil representation. This fact has
been known for some time (see for instance Funar, Manoliu), especially in
connection with the computation of the gluing formula (the composition of
TQFT operators is only projectively well defined) which involves the Leray-
Maslov index. See [44] and [40, p. 205] and others. It also appears in the
context of conformal field theory, see for instance [21, §3]. Here we give a
new description of the Weil representation based on computations of link-
ing pairings (or intersection pairings on surfaces) in cylinders over surfaces.
This gives a topological interpretation of the Weil representation which does
not rely on the combinatorics of the TQFT. The topological interpretation
consists, roughly speaking, in viewing the Weil representation as an action
on C[G ® A], where A is a Lagrangian of H: the action counts a certain
weighted sum of G-valued cycles (which are identified to a basis of C[GRA]).
The weights are topological invariants (linking numbers) and are identified
using the reciprocity.

TBC
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CHAPTER 1

Linking pairings and finite quadratic functions

1. e-symmetric bilinear pairings

Let S, T and U be three sets. A pairing between S and T with values in U
isamap p:S xT — U. The left and right adjoint map associated to p are
respectively the maps S — U7, s+ p(s,—) and T — U®, t > p(—,t). A
pairing p is left (resp. right) nondegenerate if the left (resp. right) adjoint
map is injective. A pairing is left (resp. right) nonsingular if its left (resp.
right) adjoint map is bijective. A pairing p : S x S — U is said symmetric
if p(z,y) = p(y,x) for all z,y € S. Assume that U is an abelian group.
The pairing p : S x S — U is said antisymmetric (resp. symplectic) if
p(z,y) = —p(y,x) for all z,y € S (resp. if p(z,z) = 0 for all z € S). Let
e € {£1}. A pairing is an e-symmetric pairing if it is either symmetric
(e = 1) or antisymmetric (¢ = —1).

LEMMA 1.1. A symplectic pairing p : S x S — U is antisymmetric.

PROOF. 0 = p(x +y,z +y) = p(z,z) + p(z,y) + p(y,z) + ply,y) =
p(z,y) +ply, z). O

Conversely if p : S xS — U is antisymmetric, then 2p(z,z) = 0 for all z € S.
In particular, if U has no 2-torsion, then p is symplectic.

Clearly a e-symmetric pairing is nondegenerate (resp. nonsingular) if and
only if one of its adjoint maps is injective (resp. bijective). If p is symmetric
then the left adjoint map coincides with the right adjoint map and we denote
it p: S — US. If p is antisymmetric then the left adjoint map, still denoted
D, is the opposite to the right adjoint map.

Let p: S x S — U be an e-pairing. The orthogonal V' of a subset V < S
is defined as the set

Vi=1{seS|p(s,v)=0foralveV}.

For any subset V, V < (V1)L If V. € W < S then Wt < V. Two
subsets V, W of S are orthogonal if p(v,w) = 0 for all v € V and w € W.
Equivalently V < W,

Suppose that S, T and U are abelian groups. A pairing p: S xT — U is
bilinear if p(s + §',t) = p(s,t) + p(s',t) and p(s,t +t') = p(s,t) + p(s,t’) for
all s, € S and t,t' € T. Tt follows that the left (resp. right) adjoint map is
a homomorphism S — Hom(T,U) (resp. T'— Hom(S, U)).

9



10 1. LINKING PAIRINGS AND FINITE QUADRATIC FUNCTIONS

Two bilinear pairings p: S xS —> U and q: T xT — V are isomorphic if
there exists an isomorphism ¢ : S — T such that q(¢(s), p(s')) = p(s,s’)
for all s,s’ € S. We write: ¢*q = p.

If p: S xS — U is an e-symmetric bilinear pairing, then V= is a subgroup of
S for any subset V € S. It is also the orthogonal of the subgroup generated
by V. For any subgroups V, W of S,

(1.1) ViAWt =(V+w)t

Since St = Ker P, an e-symmetric bilinear pairing p : S x § — U is
nondegenerate if and only if S+ = 0. A subgroup V of S is said isotropic
if V< V+. A subgroup V of S is a Lagrangian if V = V1. Any isotropic
subgroup V induces a quotient e-symmetric bilinear pairing p on V=-/V.
The opposite of a bilinear pairing p : S x T' — U is the bilinear pairing
—p: S xT — U defined by (—p)(s,t) = —p(s, ).
Let p: Sx S — Uandp : S8 xS — U be two bilinear pairings, both
symmetric (resp. both antisymmetric). The orthogonal sum of p and p' is the
symmetric (resp. antisymmetric) bilinear pairing p@p’ : (S®S’) x (S®S’) —
U defined by

pop) =+ y+y) =ply) +p@y), zyes 2 yes.
Clearly S = S®0 and S’ = 0@ S are mutually orthogonal in S @ 5, i.e.
S+ =5 and §'t = S. If the pairings on S and S’ are implicitly understood,

then we denote the orthogonal sum of the pairings (S,p) and (S’,p') by
Sas.

Conversely if p” : §” x §” — U is an e-symmetric pairing such that there
exist subgroups S and S’ such that S+ = S’ and St = S, then p” splits as
an orthogonal sum

p/l = p|S><S @p|S’><S’-

LEMMA 1.2. Let p: S xS — U be a nonsingular e-symmetric pairing. Let
V' be a subgroup of S. The following statements are equivalent:

(1) plvxyv : V xV — U is nonsingular;
(2) S=VaV:andplyigyr : VI x VI = U is nonsingular.

A subgroup V satisfying one of the properties stated in Lemma 1.2 is an
orthogonal summand of S.

PROOF. See [64, Lemma (1)]. O

Let p: SxS > Uand q: T xT — V be two bilinear pairings. The

respective adjoint maps p : S — Hom(S,U) and ¢ : T — Hom(T, V) induce

a homomorphism

(12) S@T 2% Hom(S,U) ® Hom(T, V) — &> Hom(S @ T,U ® V).

DEFINITION 1.1. The tensor product of p and ¢ is the bilinear pairing
pRq: (SRT)x (SRT) > URV

whose left adjoint map is the homomorphism above.



2. e-LINKING PAIRINGS 11

Alternatively, the tensor product of p and ¢ can be regarded as the bilinear
pairing induced by the multilinear map p x ¢ : (S xT) x (S xT) > UQ®V
defined by (p x q)(s,t;8',t') = p(s,8') ®q(t, '), s,s' € S, t,t' e T.

If p and ¢ are both symmetric or both antisymmetric, then p® g is symmet-
ric. If p is symmetric (resp. antisymmetric) and ¢ is antisymmetric (resp.
symmetric), then p ® ¢ is antisymmetric.

The tensor product of two bilinear pairings take value in the tensor product
U ®V of the groups where the respective pairings take their values. Here
are two examples.

ExXAMPLE 1.1. The tensor product of an antisymmetric bilinear pairing p :
S xS — 7Z on a free abelian group S and a symmetric bilinear pairing
q: T xT — Q/Z on a torsion group T is an antisymmetric bilinear pairing
PRq: (S®T)x (S®T) — Q/Z. The tensor product is induced by pointwise
product Z x Q/Z — Q/Z:

PRy, 2’ ®Y) = plx,2') - q(y,y).

EXAMPLE 1.2. Let 7, s be positive integers and let ¢ be their greatest common
divisor. There is a canonical isomorphism

Z)rZ QL)L ~ ZJtZ, (1 mod r, 1 mod s) — 1 mod ¢.

The tensor product of two symmetric bilinear pairings p : S x S — Z/rZ
and g : T'xT — 7Z/sZ on torsion groups S and T respectively is a symmetric
bilinear pairing p®q : (SQ®T) x (SQ®T) — Z/tZ. In the particular case
r = s, the tensor product is induced by pointwise product.

REMARK 1.1. It is sometimes convenient to simplify the notation and write
S for an e-symmetric bilinear pairing A : S x § — U when the underlying
pairing A is implicitly understood. In this case, we write —S for the opposite
pairing, S @ T for orthogonal sum, etc.

2. e-linking pairings

Let G be a finite abelian group. The dual group G* of G is Hom(G, Q/Z).
Let € € {£1}.

DEFINITION 2.1. An e-linking pairing is an e-symmetric bilinear pairing on
a finite abelian group.

The definition forces the value group to be a finite subgroup of Q/Z. So
a linking (resp. finite symplectic) pairing can be defined as a symmetric
(resp. symplectic) bilinear pairing A : G x G — Q/Z. Alternatively, A can
be defined via its left adjoint map as a homomorphism A : G —» G*.

It is sometimes convenient to take a smaller subgroup of values rather than

the whole group Q/Z. For any integer n, the cyclic group Z/nZ canonically
embeds in Q/Z by the map

1
Jn  Z/nZ — Q/Z, (1 mod n) — — mod 1.
n



12 1. LINKING PAIRINGS AND FINITE QUADRATIC FUNCTIONS

For a finite group G, let eq € N* be the period of G, that is the smallest
positive integer n such that n x = 0 for all x € G.

LEMMA 2.1. Any e-linking pairing A : G x G — Q/Z factors through an

e-linking pairing N' : G x G — ZL/ecZ:

N
LjeqZ

A

GxG Q/Z

LEMMA 2.2. An e-linking pairing is nonsingular if and only if it is nonde-
generate.

ProoOF. It suffices to see that nondegenerate implies nonsingular. The
adjoint map G — G* is injective. Since G is finite, the dual group G* is
also finite with |G*| = |G|. Hence the adjoint map is bijective. O

LEMMA 2.3. Let A : GxG — Q/Z be a nondegenerate e-linking pairing. For
any subgroup H of G,

(2.1) |G| = |H|-|H*| and (HY)* =H.

PrOOF. There is a short exact sequence

0 H+ G H* 0,

where by definition 3\|H(h) = A(h,—) € H* for all h € H. Hence G/H+ ~
H*. Therefore

Gl = |H] - |1
This equality is true for any subgroup H of G. Applying this equality to the
subgroup H+, we obtain |G| = |HY|-|(H+)*|. It follows that |(H+)*| = |H]|.
Since H € (H*)*, the equality follows. O

We define a tensor product for e-linking pairings. The general definition 1.1
does not apply here since Q/Z ® Q/Z = 0. Instead we resort to the ideas of
Lemma 2.1 and of Example 1.2.

Set G = Hom(G,Z/egZ). Let A\ : G x G - Q/Z and N : G' x G' — Q/Z
be two e-linking pairings given by their left adjoint maps. They induce a
homomorphism

XN . -
(2.2) P GRG—GRG —GRG.

DEFINITION 2.2. The tensor product A @ X of two e-linking pairings \ :
GxG—>Q/Zand N : G x G > Q/Z is the bilinear pairing defined by

A@N)(z,y) = 2(x)(y), 2,yeGRG".

The tensor product is symmetric if both pairings are symmetric or both
pairings are antisymmetric. The tensor product is antisymmetric (resp.
symplectic) if one of the pairings is symmetric and the other one is antisym-
metric (symplectic).



3. DECOMPOSITION OF e-LINKING PAIRINGS 13

The natural map GG’ — C:”@;)\G’, f®f — f(—)®f'(—) is an isomorphism.
As a consequence of this and functoriality, we record

LEMMA 2.4. If X and N are nondegenerate, then A @ X' is nonsingular.
3. Decomposition of e-linking pairings

Let A : A x A — Q/Z be an e-linking pairing on a finite abelian group A.
We assume throughout this section that X\ is nondegenerate. Recall that this
is equivalent to A+ = 0.

LEMMA 3.1. For any subgroup B € A, |B|-|B*| = |A| and (B+)* = B.

PROOF. By definition, B is the kernel of the surjective map
A — Hom(B,Q/Z), a+— Aa)|s.

Thus |A/B*| = |Hom(B,Q/Z)| = |B|, the first equality follows. Apply-
ing the first equality to B and B~ respectively yields |B||Bt| = |A] =
|B+||B++], so |B| = |B+*|. Since B € B+, the second equality follows.

(]

LEMMA 3.2. There exists a canonical orthogonal splitting

(A>)\): @ (Ap’)‘p)
p prime

where A, = {vr € A | pNz = 0 for some N € N}. In particular, each
orthogonal summand Ay is a p-group.

DEFINITION 3.1. Each linking pairing (A, Ap) is the p-component of (A, \).

PROOF. Let A, denote the subgroup of all elements in A of order a
power of p. Clearly, A = @p primedp. We claim that A\(A,, A;) = 0 for
any two distinct primes p,q. Let x € A, and y € A,. By definition, we
have 0 = A(pFz,y) = p* A(z,y) for some integer k. Similarly, we have
0 = Mx,¢'y) = ¢" Xz,y). Thus A(z,y) is annihilated in Q/Z by both p*
and ¢' which are coprime. It follows that A(z,y) = 0. [ | O

LEMMA 3.3. Let x € A and let B the subgroup generated by x. Let n be the
order of B. The following assertions are equivalent:

(1) X, z) has order n in Q/Z;
(2) AlBxB is nonsingular;
(3) A= BO®B' and gL, gL is nonsingular.

PROOF. The equivalence (2) <= (3) follows from Lemma 1.2. Let us
prove (1) < (2). Suppose that \(z,x) has order n. Let y = k x € B.
The equation 0 = A(z,y) = k A(x, z) implies that k is a multiple of n hence
y = 0. Thus \|pxp is nondegenerate, hence nonsingular. Conversely, let m
be the order of A(z,x). Since nA\(z,z) = A(nz,z) = 0, m divides n. Now
0 = Az,mx) so 0 = AN(kxz,mz) = 0 for all k > 0. Thus mz € Ker . Since
A Bxp is nonsingular, maz = 0. This implies that n divides m. Therefore
m=n. (]



14 1. LINKING PAIRINGS AND FINITE QUADRATIC FUNCTIONS

COROLLARY 3.1. Let x € A. Suppose that X is antisymmetric. The following
assertions are equivalent:

(1) x generates a nontrivial orthogonal summand;
(2) x generates an orthogonal summand of order 2;
(3) Mz, ) has order 2 in Q/Z.

PROOF. (2) = (1) is clear and (2) <= (3) follows from Lemma 3.3.
Suppose (1) holds. By Lemma 3.3, x generates a nontrivial subgroup B of
the same order as the order of A\(x,z) in Q/Z. Since 2A(z,x) = 0, B has
order 2. U

3.1. Symmetric linking pairings. The paragraph is devoted to sym-
metric linking pairings.

PROPOSITION 3.1 (Symmetric linkings). Let (A, \) be a nondegenerate sym-
metric linking pairing on a finite p-group. There exists an orthogonal split-
ting (A, \) = Ok(Ag, \x) where each (Ag, \;) is a nondegenerate bilinear
pairing such that Ay is

(i) either a cyclic p-group,
(ii) or a direct sum of two copies of a cyclic group of order 2™. In this

—n
case, A\, 1is represented by a matriz of the form [ 29n 20 ] or
21771 9"
[ 9" 21771 :|
Furthermore, if p is odd, only the case (i) may occur.

PRrOOF. The proof goes by induction on |A|. If |A| = p then A is cyclic
and the assertion holds. Let now p™ denote the period of A. We distinguish
two cases:

p odd: we claim that there exists € A such that A(z,x) has order exactly
p" in Q/Z. Otherwise, the order of A\(z, ) divides p"~! for all z; then the
order of 2 A(x,y) = Mz +y,x +y) — Mz, 2) — Ay, y) also divides p"~! (for
all z,y); thus p"~'A = A, contradicting nondegeneracy. So pick up z € A
so that the order of \(x, x) is p™. The cyclic subgroup B generated by x has
order p". By Lemma 3.3, B is an orthogonal summand of A: A = B® B*.
We apply the induction hypothesis to B+ c A.

p even: if an element = exists such that A\(z,x) has order 2", the argument
above applies. Consider the case when no such elements exists in A. Then
nondegeneracy of A ensures that there exist x,y € A, both of order 2", such
that A\(z,y) has order exactly 2. So there exist even integers r and s such
that A(z,z) = 57 (mod 1) and A(y,y) = 5% (mod 1). Let B denote the
subgroup generated by = and y. Let a x +b y € B n B+. We have

b

ar Zﬂ—i-— mod 1.
AL 2n 2n

0 = Aaz + by, z) = a\(z,z) + bA(z,y) +
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It follows that ar + b = 0 mod 2". Similarly the equality A(az + by,y) = 0
leads to a+bs = 0 mod 2". We deduce that a = b = 0 mod 2". Therefore, B
is the direct sum of the cyclic groups generated by z and y and B n B+ = 0.
We conclude by again applying induction to B+,

The statement about the matrix representatives of Ay is a consequence of
Lemma 3.4 below. |

O

Denote by Syma(Z/2"Z) the algebra of two by two matrices with coefficients

in Z/2"7Z and by GL2(Z/2"Z) the group of two by two matrices with coef-

ficients in Z/2"Z that are invertible over Z/2"Z. For 1 < k < n, define an

equivalence relation ~ in Symy(Z/2"Z) by A ~ B if there exists C' €
Z/2%7, Z/2k7,

GLo(2Z/2%7Z) such that *CAC = M mod 2F.

LEMMA 3.4. Let n > 1. We have

2r wu N 2 1 . 0 1
u 28 |zpn| 1 2 © 1 0
for any r;s,u € Z with u odd.

PROOF. Note that for all n > 1,

2r u 2r —u
(3.1) [ u 28 ] Z/;"Z [ —u  2s ]
and

2r wu 2s wu
(32) [ u 28 ] Z/;"Z [ u 2r ]

We proceed inductively on n. For n = 1, the result is trivial.
For n = 2:

- If 2r £ 2s mod 4, then by (3.2), we may assume that 2r = 0 mod
4 and 2s = 2 mod 4. Then

O w| |0 u 10w |01
uw 2 |zuz| v 2420 | | u 0 |zuz| 1 0

(the last relation is either an equality or follows from (3.1.)
- If 2r = 2s mod 4, then applying (3.1) if necessary, we have

2r wu 2r 1| [ 21 01
w 2 || 1 25|12 % 1o

Now the result follows by repeated applications of the lemma 3.5. |
O

LEMMA 3.5 (A version of Hansel’s lemma). Letn > 2 and A, B € Symy(Z/2"Z)N

GLo(Z/2"Z). Suppose that A /~k B for some 2 < k < n—1. Then
z/2+z

Z/2k+1z
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PRrOOF. There is M}, € GLo(Z/2%) such that ‘M, AM;, = B mod 2*. We
expect a solution My to the equation

(3.3) ‘Myy1 AMy, 1 = B mod 2F+L,

We look for a solution of the form My,1 = My + Xiy1 where Xiyq is a
matrix with coefficients in Z/2"*! such that X;,; = 0 mod 2¥. Plugging
this expression in (3.3) and expanding, we find that a necessary condition
is that

(3.4) ‘MpAXyi1 + ' Xp1 AMy, = B — "M, AM;, mod 281,

This equation is of the form UX + {(UX) = H, with U = 'MA and
H = B — 'MyAM,. A formal solution is X = U 'H. Note that U is
invertible over Z/2FZ, hence over Z/2¢7'7. Further, H = B — 'M,AM, is
0 mod 2* by hypothesis. Thus, Xj.1 = %U_IH is a solution of (3.4) and
M1 = My, + X4 is a solution of (3.3). Since My, is invertible mod 2%,
it is also invertible mod 2¥*!, which concludes the proof. ] U

The proof of Lemma 3.5 contains more than the statement of Proposition

3.1. Denote by > the same equivalence relation but defined over the 2-adic
2

integers Zs.

COROLLARY 3.2. Any symmetric matriz M with coefficients in Zo is equiv-
alent (for Zw) to a block-diagonal matriz with each block of one of the three
2

[a] (anQ),[(l’ é][; f]

REMARK 3.1. Although Proposition 3.1 is fundamental and will be used sys-
tematically, in practice one needs to know how to deal with linking pairings
that are not canonically split.

following types:

ExXaAMPLE 3.1. Let p,q,r be three pairwise coprime integers. Consider the
cyclic linking pairing (;—q) defined on Z/pq sending (1,1) to r/pg mod 1. By
Proposition 3.1, this linking pairing must be isomorphic to an orthogonal
sum of two cyclic pairings on Z/p and Z/q respectively. Let (o, 3) € Z2 be a
Bezout pair for (p,q) so that ap + B¢ = 1. There is an isomorphism

Z/p x Z/q = Z/pq, (u,v) = uaq + vBp mod pq
whose inverse is

Z/pq — Z/p x Z/q, x — (x mod p, y mod q).
Using the fact that ap + Bg = 1, we see that

(uag + vBp)? = vdaq + v2Bp mod pq.

It follows that
r ro rf3

(3.5) (;q) ~ (;) D ( .

Applying (3.5) to (2—11) for instance, we obtain
1

()= (2)e(5) - ()= ()

).
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More generally, let p1,...,p, be pairwise coprime integers. For each 1 <
1 < n,set M; = ]_[]-*i pj and let p; be an integer such that p;M; = 1 mod
p;. The map

n n n
i=1 i=1 i=1

is an isomorphism whose inverse is

n n
Z/Hpi — HZ/I% x — (x mod p1,...,x mod p,).
i=1 i=1

Using the fact that u; M; = 1 mod p;, we see that

n 2 n n
(Z UzMzMz> = Z u? M;p; mod npi-
i=1 i=1 i=1

It follows that

(3.6) (H”llp) N él? (g) '

For instance, applying (3.6) to (8%1) (861 = 3 x 7 x 41) yields

(1)~ (s)2(3)e (a)

DEFINITION 3.2. Let A : Ay x Ay — Q/Z be an e-linking pairing on a 2-group
Ay of period 2%. The summand evaluation map is the map € : Ay — Z/27
defined by e(x) = 1 if x generates an orthogonal summand of order 2* in A
and e (x) = 0 otherwise.

LEMMA 3.6. The summand evaluation map is a homomorphism.

PROOF. Assume that A is symmetric. Let x,y € A. The order of x + y
in A is the L.c.m. of the orders of x and y. Assume that e(z) = e(y) = 1.
By Lemma 3.3, A(x,z) = 5% mod 1 and Ay, y) = b mod 1 where a and b

2F
are odd integers. Then

Mz +y,z+y) =Nz, z) + 2z, y) + Ay, y)
a 2c
TR TR TR
a+2c+b

= i (mod 1).

Since a + 2c + b is even, A(x + y,z + y) has order strictly less than 2F.

By Lemma 3.3 again, we conclude that x4y does not generate an orthogonal
subgroup of order 2. Hence e(x + ) = 0.

Assume that e(z) = 1 and €(y) = 0. By Lemma 3.3, A(z,z) = g5 mod 1

and A(y,y) = 2% mod 1, where a is an odd integer, b € Z and [ is a natural
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number distinct from k. Since k is maximal, k > [ then x + y has order 2*,
hence generates a subgroup of maximal order 2¥. Furthermore,

Mz +y,x+y) =Mz, x) + 2\ (z,y) + My, y)

a2 b
ToR Ty Ty
a+ 2kl 4 2k—lp
= o (mod 1).
Since a 4 2F*1c 4+ 281 is odd, A(x + y,z + y) has order exactly 2¢. By
Lemma 3.3 again, we conclude that e(x + y) = 1. The case when \ is
antisymmetric is similar (¢ = 0 above). O

COROLLARY 3.3. If X is antisymmetric, the summand evaluation map is
nontrivial only on groups of period 2.

Proor. Apply Cor. 3.1. O

By Lemma ?7, the summand evaluation map extends to a map A x A —
Z,/27. for any e-linking pairing.

LEMMA 3.7. The summand evaluation map is an invariant of isomorphism
classes of e-linking pairings.

The precise meaning of the Lemma is the following. If A : G x G — Q/Z and
N 1 G x G' > Q/Z are two e-linking pairings related by an isomorphism
¢ : G — G’ such that X 0 ¢®2 = ), then the respective summand evaluation
maps are related by ex o @ = €y.

PROOF. O

3.2. Antisymmetric linking pairings. This paragraph is devoted to
the decomposition of antisymmetric linking pairings. According to Lemma
1.1 and the remark thereafter, the only difference between symplectic and
antisymmetric linking pairings occurs on 2-groups. We begin with three
examples of antisymmetric linking pairings: the first one is symplectic, the
last two are antisymmetric nonsymplectic.

EXAMPLE 3.2 (symplectic linking pairing). Let p be a prime number and &
a positive number. Let A and B be two copies of a cyclic group of order
p¥. Choose a generator x € A and a generator y € B. There is a uniquely
defined symplectic linking pairing h defined on A @ B by

1
(@, y) = ok mod 1,  h(z,z) = h(y,y) = 0.
ExXAMPLE 3.3. The assignment

1
(1 mod 2,1 mod 2) 5 mod 1

determines an antisymmetric linking pairing Z/2Z x Z/2Z — Q/Z. 1t is both
symmetric and antisymmetric, but not symplectic. We denote it by (%)
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EXAMPLE 3.4 (a noncyclic antisymmetric nonsymplectic linking pairing).
Let p be a prime number and k£ a positive number. Let A and B be two
copies of a cyclic group of order 2¥. Choose a generator z € A and a
generator y € B. There is a uniquely defined antisymmetric linking pairing
eg defined on A@ B by

1 1
ek’(xvx) =0, €k(l’,y) = 27 mod 1, ek(yay) = 5 mod 1.

With respect to the system of generators (x,y) for A@® B, e, is represented

: 0  1/2*
by the matrix [ _12k 12 ] .

It turns out that any symplectic linking pairing occurs as a finite orthogonal
sum of pairings of the type of Example 3.2.

PROPOSITION 3.2 (Symplectic linking pairings). Let (A, \) be a nondegener-
ate symplectic linking pairing on a finite p-group. There exists an orthogonal
splitting (A, \) = Sk(Ag, \x) where each (Ag, i) is a nondegenerate bilinear
pairing such that Ay is the direct sum of two copies of cyclic p-groups and
p—n

0 for some positive

Ak is represented by a matriz of the form [ _]?—”

natural number n.

ProOOF. We proceed by induction on the exponent p™ of A. Let x € A
have maximal order p”. Let G be the subgroup generated by z. Since A
is nondegenerate, there exists y € A such that A(z,y) = ]% mod 1. In
particular, y has also order p™. Since A is symplectic, the subgroup H
generated by y does not intersect nontrivially G. Thus G and H form a
direct sum B in A. We claim that A|pxp is nondegenerate. Indeed, let
z=da z+b ye Bsuchthat AN(a x+by,z) =0 for all a,b e Z. We find that

, , abl —a'b
0=MXNax+by,z)=ab'Xx,y) + ba'\y,x) = T mod 1.
Hence ab’ — a’b = 0 mod p" for all a,b € Z. This implies that a’ = =0
mod p", thus z = 0. We conclude by Lemma 1.2 that A = B@ B*. The

proof is now completed by applying the induction to B*. O

The following corollary will be used in the theory of the Weil representation.

COROLLARY 3.4. Given a symplectic linking pairing A : Ax A — Q/Z, there
exists a bilinear pairing B : A x A — Q/Z such that

(3.7) Mz,y) = B(z,y) — B(y,x), for any x,y € A.

PROOF. Decompose (A4,\) = Sp(Ag, \x) where each component is a
symplectic linking pairing of the form described in Prop. 3.2. It suffices to
construct a form [ satisfying (3.7) on A = A. Let x,y be two generators
of Aj. Define

B(x,y) Az, y)
Bz, z) = PBly,y) =0
Bly,z) = 0

and extend § to a bilinear map on Ay. O
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4. Quadratic functions

We keep notations from the previous section.

DEFINITION 4.1. Let GG be an abelian group. A quadratic function on G is
amap q: G — Q/Z such that

by : (2, y) = by(x,y) = q(x +y) —q(x) —q(y)

is Z-bilinear on G. The (symmetric) linking pairing b, is called the linking
pairing associated to g; the map ¢ is said to be a quadratic function over by.

Given a linking pairing A : G x G — Q/Z, a quadratic refinement (or en-
hancement) of A is a quadratic function ¢ : G — Q/Z such that b, = A. The
quadratic function ¢ is said to be nondegenerate if the associated bilinear
pairing b, is nondegenerate. The set Quad(\) of quadratic function over a
nondegenerate linking pairing A : G x G — Q/Z is freely and transitively
acted on by G via the formula

41) g-x=q+MNz,—)=q+ X(x) € Quad()), q¢e€ Quad()), z€edG.

A quadratic function ¢ on G is homogeneous if g(n z) = n? g(z) for all z € G.
Two quadratic functions ¢ : G — Q/Z and ¢’ : G' — Q/Z are isomorphic if
there exists a group isomorphism ¢ : G — G’ such that ¢'(¢(x)) = q(z) for
all z € G. If two quadratic functions are isomorphic, then their associated
linking pairings are isomorphic.

The set Quad(G) of all quadratic functions (including degenerate quadratic

functions) defined on G is an additive group for the operation defined by
(@+d)(x) =q(2) +d(2), z€GC.

The map g — b, defines a projection onto the additive group Link(G) of all

linking pairings defined on G. Note that Quad(G) contains as a subgroup

the group Quad’(G) of all homogeneous quadratic functions. These groups

fit into the following diagram with exact rows

J ]

(4.2) 0 —— Hom(G, Q/Z) —— Quad(G) —— Link(G) ——0
0 — Hom(G, 3Z/Z) — Quad®(G) — Link(G) ——

0.

We shall use repeatedly the following basic result.
PROPOSITION 4.1. The following assertions are equivalent:

(1) G has odd order.

(2) Multiplication by 2 in G is an automorphism.
(3) The second row of (4.2) is split.

(4) The first row of (4.2) is split.

PROOF. (1) = (2): Since the finite homomorphism G — G,z — 2z
has trivial kernel, it must be an automorphism.
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(2) = (3): The map s : Link(G) — Quad®(G), A — s(\) defined by
sO)(z) = %)\(x,x), red
is a section.

(3) = (4): Any section Link(G) — Quad®(G) composed with the inclusion
Quad®(G) c Quad(G) is a section.

(4) = (1): Assume that G has even order. We show that there exists no
section for the first row of (4.2). Let x € G of order 2¥ with k£ maximal (i.e.,
the 2-valuation of the order of z is maximal among those of all elements of
G). Then z generates a direct summand {(x) of G, say G = {x) ® B. Let
A: G x G - Q/Z be the (degenerate) linking pairing defined by

Amz,ny) = % mod 1, for m,ne€Z and A(z,B) =0.

Since A is as the orthogonal sum of a cyclic linking pairing and a trivial
linking pairing, the decomposition G = {(z)@® B is an orthogonal decomposi-
tion. Suppose by contradiction that there does exist a section s : Link(G) —
Quad(G) splitting the first row (4.2). Then there exists h € Hom(G, Q/Z)
such that

s(\)=q+h

where
2

g(m x +b) = mod 1, for any meZ, be B.

ok+1
But

0 = s(0) = s(2 \) = 28 s(\) = 2% + 2Fh.
Hence 2Fh = —2%g + 0 and 2¥+t1h = —2F+1g = 0. It follows that h has
order 2¢*1 exactly. This contradicts that the 2-valuation of the order of
is maximal. (]

5. Decomposition of finite quadratic functions

The decomposition results for finite quadratic functions on a finite abelian
group parallel those for linking pairings.

LEMMA 5.1. Let ¢ : G — Q/Z be a nondegenerate quadratic function. For
any x € G and n € 7Z,

(5.1) qg(n x) =n q(z) + n(n2—1) b

If x has odd (resp. even) order n in G, then the order of q(x) divides n
(resp. divides 2n) in Q/Z.

q(z, ).






CHAPTER 2

Reciprocity

1. Witt groups

As the reciprocity formula is best understood as an identity in an appropriate
Witt group, we include in this section some material about Witt groups.
Throughout this section, we deal with nondegenerate e-symmetric bilinear
pairings.

1.1. The Lagrangian category. The notion of Lagrangian was intro-
duced in Chap. 1, §1.

LeEMMA 1.1. Let A, B, C be three nonsingular -symmetric bilinear pairings
on finitely generated abelian groups such that the map V — V= is involutive
on subgroups. Let A be a Lagrangian in —A® B and let A’ be a Lagrangian
in —B&C. The subset

(1.1)
AN oA = {(a,c) € —A®DC | there is b € B such that (a,b) € A and (b,c) € A’}

is a Lagrangian in —A S C.

DEFINITION 1.1. Given any pair of e-symmetric bilinear pairings A, the
diagonal Lagrangian is defined as Diag(A) = {(a,a) | ae A} € —AS A.

PROOF. Denote by a dot a e-symmetric bilinear pairing. Let (a,c) and
(d', ) be two elements in A’ o A. There exist b, b’ € B such that (a,b) € A
and (b,c) € A, such that (a’,b') € A’ and (¥',) € A’. Then

(a,¢)-(d',dy=—-a-d +c-=-a-ad +b-b —b-b +c-
= (a,b) - (', V) + (b,c) - (V, )
=040
= 0.

Hence A’ o A € (A o A)*. Let us prove the converse. We consider the
orthogonal sum —AG B&—B&C. In this group lies the isotropic subgroup
H = 0@Diag(B)&0 with orthogonal H' = A®Diag(B)®C. The canonical
projection —AOBEBOC — (—ASBOB&C)/H restricts to a projection
p: H+ — H*/H which preserves orthogonality. Consider the subgroup

G=(AoN + H)nH+c H..

23
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We have p(G) = A’ o A. Since p preserves orthogonality, p(G1) = (A’ o A)L.
We compute

Gt = (AN + H)n HH?E
= (AN~ HY + HH
=A®ONNH"+H
=AON nH*
=G.

O

ExaMmPLE 1.1 (Lagrangian associated to an isomorphism). Let ¢ : A —» B
be an isomorphism of nondegenerate e-symmetric bilinear pairings. If L is
a Lagrangian of A then the graph

Graph(p) = {(a,¢(a)) |a € A}

is a Lagrangian in —A & B. The case when ¢ = ida gives the diagonal
Lagrangian.

The composition of Lagrangians is associative. The diagonal Lagrangian
plays the role of the identity.

DEFINITION 1.2. The category of Lagrangians Lag®(U) over U is defined
as follows. An object is a nondegenerate e-symmetric bilinear pairing on a
finitely generated abelian group A with values in U. A morphism between
two objects A and B is a triple (A, A, B) where A is a Lagrangian in —A®B.
The composition of two morphisms (A, A, B) and (A, B, C) is the morphism
(Ao A, A, C) defined by Eq. (1.1).

For more details, see for instance [30], [61, IV, §3]. We now fix such a
category of Lagrangians.

DEFINITION 1.3. A Lagrangian A in —A & B is decomposable if A = (A N
A)& (A n B).

A general Lagrangian may not be decomposable: for instance, the diago-
nal Lagrangian Diag(A) is not decomposable. The orthogonal sum of two
Lagrangians is always decomposable.

DEFINITION 1.4. Two Lagrangians L and L' are transverse in Aif L+ L' =
A.

REMARK 1.1. If L and L' are two transverse Lagrangians in A then Ln L' =
0.

Proor. Recall that the underlying e-symmetric bilinear pairing is non-
degenerate. We have

0=At=L+LYV =LAt =LnL.
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LEMMA 1.2. Let A, B be two objects in Lag®(U). Let L, L' be a Lagrangian
in —A® B. If L is transverse to L' and if L' is decomposable, then L is
decomposable.

PRrROOF. The inclusion (L n A) + (L n B) < A always holds. To see the
other inclusion, let z € L. Since L + L' = —A @ B, there exists w € L'
and (a,b) € A x B such that z + w = a + b. Since L' is decomposable,
there exists a decomposition w = w' + w” with w' € A,w” € B. Thus
z=(a—w')+ (b—w") is a decomposition for z. O

The two cases we have in mind are U = Z (the category of Lagrangians in
e-lattices) and U = Q/Z (the category of Lagrangians in e-linking pairings).

DEFINITION 1.5. A Lagrangian category is involutive if for any object A
and any subgroup V € A, V- =V,

If a Lagrangian category Lag®(U) is involutive then for any e-symmetric
bilinear pairing .S and for any subgroups V, W of S,

(VAaWw)y-=vt+w-
(This identity is the direct result of taking the orthogonal of the identity

(1.1).)

LEMMA 1.3. The Lagrangian categories Lag®(Z) and Lag®(Q/Z) are involu-
tive.

In the rest of this paragraph, we now restrict ourselves to involutive La-
grangians categories.

LEMMA 1.4. Two Lagrangians L and L' are transverse if and only if L0 L' =
0.

ProoOF. We have L + L' = L* + L't = (L n L')*. We use the involutive
property to conclude. O

LEMMA 1.5. Given a Lagrangian L in A, there exists a Lagrangian L' trans-
verse to L.

ProoF. Consider the set of all isotropic subgroups that intersect triv-
ially with L. This set is not empty since it contains the trivial subgroup.
Choose a maximal element L’ with respect to the inclusion. First, A =
(L L)t = L+ + L't = L+ L'*+. Second, we claim that L’ is Lagrangian.
Otherwise there is « € L' such that = ¢ L’. Then x + L' is isotropic and
intersects trivially with L, contradicting maximality. O

Given a pair of transverse Lagrangians L, L' in A, the e-symmetric bilinear
pairing on A induces a bilinear pairing L x A/L" — U.

PROPOSITION 1.1. Let A be a nonsingular e-symmetric bilinear pairing. The
group O(A) of automorphisms of A acts transitively on pairs of transverse
Lagrangians.
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The following observation is a preparation for a suitable refinement of Lag®(U).

LEMMA 1.6. For an object A € Lag®(U), we denote by L4 a Lagrangian in
A. Let (A,Ly),(B,Lp),(C, Lc) be three pairs where A, B,C" are objects in
Lag®(U). Let A be a Lagrangian in —A & B and let A’ be a Lagrangian in
—B®C. If A is transverse to Ly & L and if A’ is transverse to Lg & L¢,
then A o A is transverse to Lo @® L.

In short, the composition of transverse Lagrangians is transverse.

ProoOF. We have to prove that Ayopr N Lo = Ayos N Ly = 0. We
prove that Ayon o Lo, the other case is similar. Let x € Aoy N Lo. Write
x = (a,c) as an element in —ADC'. Since (a,¢) € Lo € C,a=0and c€ L¢.
Since x = (0, ¢) € Anonr, there exists b € B such that (b,c) € Ay. Since Ay
is transverse to the decomposable Lagrangian Lp & Lo, by Lemma 1.2, Ay
itself is decomposable. Hence c € Ay n C. So finally ce Ay n Lo =0. O

DEFINITION 1.6. The category of transverse Lagrangians Lagg.,,o(U) over
U is defined as follows. An object in Lagg.,(U) is a pair (A, L4) where A
is an object in Lag®(U) and Lj4 is a Lagrangian in A. A morphism between
two objects A and B is a Lagrangian A in —A & B such that A is transverse
to Lo Lg.

There is a faithful forgetful functor Lagg,,(U) — Lag®(U) that “forgets”
the extra Lagrangians and the transversality property.

1.2. Witt groups of e-symmetric pairings.

2. The discriminant construction

2.1. Lattices. A lattice is a finitely generated free abelian group.

DEFINITION 2.1. An e-symmetric bilinear lattice is an e- symmetric bilinear
form f:V xV — Z on a lattice V.

REMARK 2.1. We will use the short term e-lattice, or even lattice, if the
e-symmetric bilinear pairing is implicit.

A lattice V' generates over Q a vector space Vo = V®Q. An e-lattice (V, f)
extends to an e-symmetric bilinear form fg : Vo @ Vg — Q. The form fy
is nonsingular if and only if f is nondegenerate. An e-lattice (V, f) is said
unimodular if f is nonsingular. The dual lattice is defined as

Vi={zeVy| fole,V) S 2}

A subgroup of a lattice V is finitely generated and free abelian and is called
a sublattice of V. More generally, given a sublattice S € V', the dual lattice
is defined as

St = {xe Vo | f@(l‘,S) c Z}.

The map fQ . — fo(z,—) restricts to a map between S¥ and S* =
Homgz(S,Z). This map is an isomorphism if f is nondegenerate. It follows
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that S* = S for any sublattice S of V if and only if f is nondegenerate.
One observes that if S,T € V are sublattices, then

(2.1) ScT = TPc S, (S+T) =5 nT"

A sublattice S € V is primitive if the quotient group V/S is a lattice. Let
(V, f) be a bilinear lattice.

ExAMPLE 2.1. The annihilator Ker f C V is a primitive sublattice of V.
This is equivalent to

LEMMA 2.1. The quotient V =V /Ker f s a lattice.

ProOOF. Clearly V is finitely generated. Let [z] = = + Ker f eV such
that n [x] = 0. Then n z € Ker f. Thus

0=f(nz,V)y=n f(z,V).

Since f(x,V) € Z and Z has no torsion, it follows that f(x,V) = 0. Hence
x € Ker f and [z] = 0. O

For a given sublattice S € V, there is smallest primitive sublattice Scv
containing S. This lattice is called the primitive hull of S. The primitive
hull of S has the same rank as S. The following observation is useful.

REMARK 2.2. An isomorphism ¢ : S — S’ between sublattices of V' and V'
does not necessarily extend to an isomorphism @ : S — S between their
respective primitive hulls. For instance, take V = V' = Z@®Z, S = Z®0
and S’ = 2Z @ 0. Clearly the map x — 2z defines an isomorphism between
S and S’. However, this map does not extend to an isomorphism between
S=8=Zand § = 7.

LEMMA 2.2. An isomorphism ¢ : S — S’ between primitive sublattices of V
extends to an automorphism of V.

PROOF. Since V/S is free, the short exact sequence
055>V ->V/S—->0
splits. Choose a section s: V /S — V so that the map
V:S@V/S =V, (z,y) = (,5(y))

is an isomorphism. Similarly there is a section s’ : V/S" — V such that
V' (z,y) — (2,8 (y)) is an isomorphism from S’ @V /S’ onto V.
Since S and S’ are isomorphic primitive sublattices, there is an isomorphism
g:V/S ~V/S" of lattices.
Then ¢ o (f @ g) o9~ ! is an automorphism of V extending . O
COROLLARY 2.1. An isomorphism ¢ : S — S’ between sublattices of V

extends to an automorphism of V if and only if it extends to an isomorphism
S — 57 between their primitive hull.
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PROOF. In one direction, use Lemma 2.2. For the converse, let @ : V —
V be the automorphism extending ¢. We have to show that 3(S) = 3.
An element y lies in S if and only if there is some n € Z such that ny € S.
Let y € S such that z = ny € S. We have ¢(z) = 3(ny) = np(y) € 5.
Thus ¢(y) € §'. Tt follows that $3(S) € 5. The reverse inclusion is proved
similarly using ¢~. O

Let G be a finitely generated abelian group. The quotient group FG =
G/Tors G is a lattice. Let S © FG be a lattice. A partial section s : S — G
(that is, a map s : S — F'G such that p o s|g = idg) does not necessarily
extend to a full section F'G — G.

LEMMA 2.3. If S is primitive, then any partial section s : S — G extends to
a section s : S — G.

PROOF. Since V/S is free, the short exact sequence 0 — S — V —
V/S — 0 gives rise to an exact sequence

0 — Hom(V/S,G) —— Hom(V, G) — Hom(S, G) — 0.
U

2.2. Discriminant e-linking pairings. An e-lattice (V, f) is unimod-
ular if f is nonsingular. It follows from the previous paragraph that (V, f) is
unimodular if and only if V = V. We are interested in studying the failure
of f to be unimodular. A natural invariant is provided by the following

DEFINITION 2.2. To an e-lattice (V, f), one associates an e-linking pairing,
called the discriminant pairing, Ay : Gy x Gy — Q/Z by the formula:

(2.2) Gy =VHV, Ap([a]. [y]) = folz,y) mod 1.

The discriminant pairing (G, Af) is symmetric (resp. antisymmetric, resp.
symplectic) if and only if (V, f) is symmetric (resp. antisymmetric, resp.
symplectic). The discriminant construction arises from a particular class of
free resolutions of length 1.

LEMMA 2.4. (Gy, Af) is nonsingular if and only if (V, f) is nondegenerate.

A basic result asserts that almost any nondegenerate e-linking pairing can
be produced by this construction [64, Theorem (6)]:

THEOREM 2.1. The assignment (V, f) — (G, \f) is surjective onto the
monoid of nondegenerate symmetric (resp. symplectic) linking pairings on
finite abelian groups.

As an example, any unimodular lattice (V! = V) yields the trivial linking
pairing. Clearly the discriminant construction preserves (orthogonal) sum.
It follows from these two observations that the discriminant pairing is unaf-
fected by adding orthogonal summands of unimodular lattices. A converse
is known since the work of Puppe. To state it in our setting, it is convenient
to introduce some definitions about maps between lattices.
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A bilinear lattice map between two bilinear lattices (V, f) and (W, g) is
amap « : V. — W such that g(a(x),a(y)) = f(z,y) for all z,y € V.
This is also denoted a*g = f in the sequel. If « is injective, then we say
that « is an embedding of bilinear lattices. If « is bijective, then « is an
isomorphism of bilinear lattices. Two bilinear lattices (V, f) and (W, g)
are stably equivalent if there exist unimodular bilinear lattices (U, h) and
(U', h') such that (V, f)@ (U, h) and (W, g)@® (U’, h') are isomorphic bilinear
lattices. Any bilinear lattice map « extends in a unique fashion to a map
ag : Vg — Wy and thus restricts to a map V¥ — W# and therefore induces
amap [o] : Gy = V#/V — WHW = G,,. It follows that a stable equivalence
induces an isomorphism on the induced discriminant linking pairings. The
converse is also true:

THEOREM 2.2. Two nondegenerate linking pairings are isomorphic if and
only if they lift to stably isomorphic bilinear lattices.

For a proof, see e.g., [14].

Our goal consists in recovering the product of two linking pairings from the
discriminant of their lattices.

Let (V, f) and (W, g) be nondegenerate bilinear lattices. Set Z =V Q W
and define a (symmetric nondegenerate) bilinear pairing f®g: Z x Z — Z
by

(f@9(®y,2'®Y) = f(z,2") g(y,y) forz,2a’eV, y,y' e W.
LEMMA 2.5. There is a natural isomorphism ViQwt » Zt,
There are also natural inclusion maps VEQW — (V@ W)! and VWt —
(V@ W)# (where the dual lattice of the target space refers to the bilinear

pairing f ®g) which we shall use freely without further notice. In particular,
we verify directly the fact that

(2.3) (fo®go)(VIQW,V@WF) c Z

More precisely:

LEMMA 2.6.

(2.4) VEQW)Y =VeW* and (VWH =ViQW.

The inclusion V@ W < (VI @ W)! is just the equality (2.3). The lemma
asserts that this is an equality.

PRrROOF. It suffices to prove the first equality since one deduces the sec-
ond one by using the fact that Z% = Z (since f ® g is nondegenerate). The
desired equality will result from the following commutative diagram:

VWt (VEQW)?
fosia) | @

Homy(V*, Z) ® Homg (W, Z) =—— Homz (VI @ W, Z).
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The top horizontal arrow is the natural inclusion. The vertical arrows are the
tensor product of adjoint maps and the adjoint map of the tensor product of
pairings respectively (and they can be identified once Vg ® Wy is identified
to (V® W)g). We claim that the vertical arrows are bijective maps. Since
the map adjoint to fo ® gg is bijective, it is sufficient to check that

(fo®Go)(V ® W¥) = Homy(V¥, Z) ® Homy (W, Z)

and
fo ® go(VF @ W)?) = Homy (VF @ W, Z).
Both identities follow from the nondegeneracy of fg and gg. O

We now consider the linking pairing
M@y : Grog % Grog = Q/Z.
The natural inclusion map V@ W — (V ® W) induces a homomorphism
Jy: Gy ®@W — Grgg by
Jr(x(mod V)®y) =2 ®y (mod 2)

where z € V1, y € W. Similarly, define a homomorphism Jg : V®Gy — Gy
by

Jg(x®y(mod W)) =2 ®y (mod 2)
where z € V,y € W¥.

LEMMA 2.7. We have
Mg ©JF" =X ®g
and
Aew o I = 1@,
The following observation is a consequence of f, g being nondegenerate.

LEMMA 2.8. The maps jr and j, are injective.

Set A = jf(Gf ®W) c Gf®g and B = jg(V®Gg) c Gf®g.
LEMMA 2.9. The subgroups A and B are mutually orthogonal in G tgg: At =
B.

ProoF. Consequence of definitions and (2.4). O

Let H = A n AL, We record the following consequence:

COROLLARY 2.2. Afgg|mrxm = 0.

Assume that f and g are both nondegenerate. We now describe H in more
details.

LEMMA 2.10. There are exact sequences

Jg

OH‘/@GQ Gf®g Gf®Wﬁ*>0

and
Jf

OHG‘,“@W Gf®g Vﬁ®Gg*>0.
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PRrROOF. Let us identify Coker j:

i
. G Z zt Vi Ww? Wt
TN T Vea,) T Vew T VigWw T VigW Oy = V80
The identification of Coker j, is similar. O

LEMMA 2.11. There is a natural isomorphism H* ~ Gy ®Gy and a short
exact sequence

OHHL$G}"®§HG}C®G9HO‘

PROOF. On the one hand, there is a short exact sequence
0— H" — Gygy — H* — 0.
On the other hand, H+ = (A n A+)L = A + AL, Thus
H* = Gay/(A + AY).

There remains to see that the latter group is isomorphic to Gy ® Gy4. There
is a natural epimorphism

Grog = G ®Gy.
Indeed, this map can be defined in two ways
b2op1 =qg2°4q1

as the following commutative diagram with exact rows and columns indi-
cates:

0 0
Vea, VG, ——0
04>Gf®W Gf®g 1 Vﬁ®G94>0
OHGf@WHGf@WﬁLGfG?GgHO

0 0
It follows that the kernel of the epimorphism is

Ker(paop1) = p; ' (jg(V®G,)) = jif(Gr@W)+jy(VRG,) = q;, ' (i (G;@W)) = Ker(gzoq1).
Thus the quotient map
(2.5) ) Ggg/(A+AT) S G @Gy

is an isomorphism. O
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Remark. The isomorphism between Gy ® Gy and H* is the composition

Y=t 1y *
Gr®Gy — Grgg/(A+ A7) - H,
where the isomorphism on the right is

l:xzmod (VW)= Agg(x, —)|u.

Here is an alternative argument to show that Gy ® G, and G g,/(A + AL)
are isomorphic. Define a natural map

G @Gy — Grgg/(A+ A%)
by
(x mod V) ® (y mod W) - [(z ®y) mod (V& W)]

where [—] denotes the element in Gjg, considered modulo 4 + At. It
follows also from A = Im j; and At = TIm Jg that this map is injective.
(Suppose that u € Gy ® G, is sent to 0 € Gygy/(A + AL). Then the image
of u is represented by a sum of elements in A + A, Since A = Im j ¢ and
At =Tm jg, all these elements are of the form (z ® y) mod (V ® W) where
either x € V or y € W. Therefore u = 0 € Gy®G,.) Surjectivity also follows
from the definitions. It is easily seen to be ).

LEMMA 2.12. The map j; : Gy @ W — Ggg restricts to an isomorphism

lia(syag * Ker(hy @) = .

Similarly, the map j, : W @ Gy — G gy restricts to an isomorphism

j9|Ker(f®>\AQ) :Ker(f®Ag) 5 H.

PrROOF. We prove the first isomorphism — the second one is similar.
Since jy is injective, it suffices to prove that j;(Ker(A\f ®g)) = H.

First jf(Ker(X} ®9)) € jr(Gr@W) = A. Next, let u € Ker(X} ® g) and
Jr(v) € A. We have

Areg(Jr (), i (v) = Agg 0 jr(u,v) = (Af ® g)(u,v) = 0.
Hence j f(Ker(S\} ®g)) and A are orthogonal, that is,
jr(Ker(\; ®@3)) < A"
Therefore,
jr(Ker(\; ®3)) € An AT = H.

Conversely, let j; () = j,(y) € An At = H. Let 2 € Gy @ W. Then

(g ®9)(#,2) = A (7(2),5(2)) = Aoy Uig ()5 (2)) = 0.
(The first equality results from Lemma 2.7 and the third one from Lemma

2.9.) This proves that x € Ker(X} ®g). Hence H < jf(Ker(X} ®g)). This
achieves the proof. O
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Remark. The following diagram with exact rows and columns is commuta-
tive:

~

Ker(f ® idy ) Ker(xf ® idyyx)
r

Ker(f ®idg, )
r
| |

\
v v v
VWV W* V®Ga,

v*®W<—>v*®W* V*®RG,
|

4 4 4
Coker(f@ idy ) Coker(:\f ®idys) — Coker(f@ idg,)

According to the “snake lemma”, there is a Bockstein map

IO Ker(f@idgg) — Coker(f ®idy)
connecting Athe exact sequence made of the maps of the first and the last row.
Since Ker(Af ®idy+) = 0, the Bockstein map j is injective. Hence there is
an exact sequence 0 — Ker(f®idg,) — Coker(f®idy ) — Coker(\;®idy = ).
Since G W = Coker(f ®idw ), £ induces an isomorphism

B Ker(f @ Xg) = Ker(f ®idg,) — Ker(idg, ® §) = Ker(As ®9).

It follows from definitions that

> —1 .
B = Jr |H OJg|Ker(f®ing)-

2.3. Tensor product of linkings. Denote by [ the bilinear pairing
G/HY x H — Q/7 defined by I([z],y) = A\jgy(x,y) for all z € G,y € H.
The goal of this section is to relate this bilinear pairing ! to the linking
pairing Ay ® Ay defined in §77.

VigwH
VIQW+VQWE"
Our first goal is to define an isomorphism between Gy ® G4 and H.

It will be convenient in this paragraph to identify G/H" and

VieWo

Let K = prgwvewe -

We first define a map
VixW - K
by the assignment
m:(gw) o €@,
where n is the smallest nonnegative integer such that n £ € Z.
LEMMA 2.13. This map induces a homomorphism m : Gy @ W — K.

PROOF. We show that m is Z-bilinear. Note that any element & € V* can
be written as £ = % where ¢ € V and n € Z. We further require ¢ to be
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indivisible: & ¢ k V for all k > 1. This condition is equivalent to n being
the smallest nonnegative integer such that n £ € V. We have

Gow) =55
m|=—w)]=|——]|.
n n

It follows that

! ! !/
m <§,w —i—w') =m (g,w> +m (g,w’> )
n n n
We now verify linearity on the left: let ¢ € V* that we write as ¢ = % where

¢ € V is indivisible. Write
n==k-n', p=k-p, with k = ged(n,p).

Then
él Q/ B p & n' ¢ B '(plé-l +nl<~1)®w
m(n + p’w - n'p'k + n’p’k"w 1 n'p'k
_ _pl £I®w +n/ <I®w
- i n'p'k n'p'k
[
| n p

:m(gw)+m(9w)
n p

(We used in the second equality the fact that n’ and p’ are coprime, so that
p & +n' (' is again indivisible in V.) Therefore m induces a group homo-
morphism (still denoted m) V¥ @ W — K.

It follows from the definition that V @ W < Ker(m). Hence m actually
induces a homomorphism Gy @W — K. O

LEMMA 2.14. Ker(:\f ® g) = Ker(idg, ® g) is generated by all elements
r@we Gy W such that g(w) € nW* with n x =0 for some n € Z.

PROOF. The subgroup identifies to Tor{ (G, Gy). In particular, it is
independent of (G, Af) and (Gg, Ag) and depends only on Gy and G,. The
result is clear if G is a finite cyclic group. In the general case, Gy is a
sum of finite cyclic groups and we use the fact that Tor}(4 @ B,G,) ~
Torf (A, Gy) @ Torf (B, G). O

LEMMA 2.15. The map m : Gy @ W — K restricts to a map m|Ker(ide®§)

. . . 1 VH®WH
whose image lies in G ygq/H+ = oW Ve

PROOF. Let [{] ® w be a generator of Ker(idg, ® ) as in Lemma 2.14:
there is n € Z such that §(w) € n W* and n € € V. Thus Go(2) = Lga(w) €
W*, that is % e Wt. Hence E® % e VI W! and

Vi Wt
VEQW + VWi

mgl@w) = [¢@ =] e — Gygy/H
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Set /L/ = ,Ulf = m|Ker(idcf®§)'

LEMMA 2.16. The map i is an isomorphism

Vi@ WH
. N l_
Ker(ide, ®9) = Greo/H™ = 37 3 s v @t

PROOF. The two groups are finite and isomorphic (Lemma 2.11 and
Lemma 2.12). Hence it suffices to prove that u' is onto. Choose orthogonal
bases e = (e1,...,e,) and € = (1, ...,¢&p) for (Vg, fo) and (Wqy, gg) respec-
tively, so that there exist a;,b; € Z — {0} (1 <i < n, 1 <j < p), such

that
1 1
i 27 e i il AP
|4 Ei—) o e, W €]|—) b, €j
We have
Vﬁ®W+V®Wﬁ=<—B lZ-ﬁ-i (6i®€')=€|—>¥Z(€i®E‘).
i a; bj J Y lcm(ai,bj) J
Therefore
Vi Wl ®ij o Llei ®¢)) 1
: ® = 7 i - @ ————7/2e; ®¢].
VEQW +VRW! @, mmpayZei®e;) 57 ged(ai by)

Now we verify the identity:

——e;®¢j]| = i ® & = S — ®ej ).
ng(a’iv bj) ng(ai7 b]) ng(a% b]) ng(ai7 b])
O

We define an isomorphism iy : H — Ggqe/H © as the composition
1

Jy . o~ M
vp =0t i H— Ker(ide, ®§) —'= G/H*.

There is a similar isomorphism v, : H — G g,/H* defined as the composi-
tion
1 ’

. Jg ~ . p
Vg = ;/g °Jg 1|H : HL>Ker(f®1ng) — G/H*.
It follows from definitions that
vp = vg.

Recall the isomorphism ¢ : G/H- — G  ® G4 we defined in the previous
paragraph. We are now ready to define an isomorphism p: H — Gy ® G
as the composition

p=1ov.
THEOREM 2.3. For all x € Gyg,/H',y € H,

Wz,y) = (A @A) (h(2), ¢ o w(y)) = (Af ® Ag) (¥ (), il(y))-



36 2. RECIPROCITY

PROOF. Let z = [€], 2/ = [€1 e Gy = V¥ /Vand y =[], ¥ = [(] €
G, = WH/W. We have to show the equality [(¥ "1 (z ® y), 71 (z' ®y')) =
(\r®X) @@y, ' ®y). We have =1 (z@y) = [[€®C]] = [®C] mod H.

With no loss of generality, we may assume that 2’ generates a cyclic (direct)
summand of G of order n. Hence we may assume that ' ®y’ = 2’ ®@y"” with
" = [¢"] of order dividing n. Thus p~1(2'®y’) = u(z'®y") = j(2'@nc") =
[§' @n("].
We compute
(W @ey),n (' ®y) = ([E@ ] [ @nd"]) = Asgy([€ ® ], [ @nc")
= (fe®90) (€ ®(, ¢ ®nc") mod 1
= fo(&¢) - go(¢,n¢") mod 1
= Az, 2") - go(¢nc”).
—_

EZ

On the other hand,
()‘f ® /\g)(x ® y7 x/ ® y/) = )‘f (xv JZ‘/) ®)‘9(y7 yl)
—_—

elz/z elz/z
= Af(z,2") ® (90(¢, ¢") mod 1)
= Az, 2) - go(C, (")
= Ap(z,2) - go (¢, nc”).

Here we used again the fact that (£ mod 1) ® (2 mod 1) = % mod 1 in
17/2®17/2 = 17/7. This finishes the proof.

O

COROLLARY 2.3. The isomorphism class of | : G/H+ x H — Q/Z does not
depend on the particular presentations (V, f) and (W, g) and depends only
on the linking pairings (Gy, Ay) and (G4, \g) respectively.

2.4. Wu classes and quadratic functions. We keep notations from
the previous paragraph. We extend the discriminant construction to lattices
endowed with a special element called a Wu class.

A Wu class v e V! is any element v € V¥ such that
f(z,z) — folx,v) € 2Z, forallzeV.

A Wu class is integral if it lies in V. A bilinear lattice (V) f) is said to be
even if 0 € Wu(f). Any bilinear lattice has an integral Wu class ([57]);
the set Wu(f) of Wu classes is freely and transitively acted on by V¥ The
action is given by the formula

z-s=2+2s, zeWu(f), seVh

This action restricts to an action of V on the set Wu" (f) of integral Wu
classes.
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To a bilinear lattice (V, f,v) equipped with a Wu class, one associates a
quadratic linking pairing ¢y, : Gy — Q/Z over the linking pairing Ay by

(26)  epola+V) = 3 (folwo) ~ fola,v) mod 1, weVE

The quadratic function ¢y, is homogeneous if and only if v is an integral
Wu class.

We now state two basic results in the theory of discriminant quadratic func-
tions.

THEOREM 2.4. The assignment (V, f,v) — (G5, ty) is surjective onto the
monoid of quadratic functions on finite abelian groups. When restricted to
even lattices, the assignement is surjective onto the monoid of homogeneous
quadratic functions on finite abelian groups.

The equivalence relation on bilinear lattices can be extended to bilinear
lattices equipped with Wu classes as follows. Say that (V, f,v) and (W, g, w)
are strongly stably equivalent if there exist unimodular lattices (U, h,u) and
(U', b, u') equipped with Wu classes u € Wu(h) and u’ € Wu(h') respectively
and an isomorphism ¢ : U@V — U’ @ W such that (W' @ g)(¢(x),¥(y)) =
(h® f)(z,y) for all z,y e UV and ¢g(u®v) e v @w +2(U' @ W). The
relation is an equivalence relation. It is verified that two strongly stably
equivalent triples (V, f,v) and (W, g, w) give rise to isomorphic discriminant
quadratic functions. A fundamental result consists in the converse.

THEOREM 2.5. [12, Prop. 3.1] Two nondegenerate quadratic functions on
finite abelian groups are isomorphic if and only if they can be lifted to strongly
stably equivalent bilinear lattices equipped with Wu classes.

Consider the lattice Z equipped with the unimodular form +1, sending (1, 1)
to +1, and the integral Wu class 1 € Z. It is shown in [12, Cor. 3.5] that the
strong stabilization in Th. 2.4 can be realized using only these unimodular
lattices.

2.5. Tensor products and half-integral Wu classes. Let (V, f) and
(W, g) be two nondegenerate bilinear lattices.

LEMMA 2.17. There is an injective map
Wu(f) x Wu(g) > Wu(f ®g), (v,w)—v®@w.

PRrROOF. Let v e Wu(f),w € Wu(g). For any x € V,y e W,
(f®9)(z®y,r®y) - (fO9)(vOw,z®Y)
= [z, 2)9(y, y) = f (v, 2)g(w,y)

= (J.2) = S0.2)) gly.9) + folv:) (90:) ~ s0w.)

~ . ~

EZ €Z

= 0 mod 2 = 0 mod 2

0 mod 2.

LEMMA 2.18. The group VIQW +V @ W acts freely on Wu(f ® g).
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PROOF. The group VIQW +V @W! is a subgroup of the group Vi@ W
acting freely on Wu(f ® g). O

This action is not transitive in general since the inclusion VIQW +V@W!
V! ® W* is proper in general. Indeed, there is equality if and only if

VEQW n VW =VIQW n (VI@W)=VW.
It will be convenient for our purpose to consider the action of a slightly
bigger subgroup (cf. Cor. 3.8). First we describe a special subset of Wu
classes. Consider the set S of Wu classes of the form v®w where v € Wu" (f)

or w e Wu"(g) (i.e, at least one of the Wu classes v or w has to be integral).
Consider first the difference A = v@w — v’ @' of two elements in S. Then

1RW -1 W = 1Qu-—vRQu +tv®uw — v Quw
= 1@ (w—-w)+(v-2)Qw
= 0mod 2(V@W*!+ViQW).

This suggests to define the set Wul/ 2(f®g) of “half-integral Wu classes” by
setting

7 = %(Vﬂ®W+V®Wﬁ) N (VP WH)
and

ze Wu'?(f®g) < there are s€ S, t € Z' such that z = s + 2¢.

This is a subset of Vf ® W!. Similarly, we define the set Wu(l)/ 2( f®g) of
“special half-integral Wu classes” by

z € Wu(l)/2(f®g) <= therearesc S, te 27 = VIQW + VW such that z = s+2t.
This is also a subset of VI ® W1,
What we have proved is

LEMMA 2.19. The group Z' (resp. 2Z') acts freely and transitively on
Wul2(f @), resp. Wug*(f @), by
c-t=x+2t, xeWu'2(f®yg), te Z'(resp. t € 22')

and
WuZ(f®g) c Wu(l)/Q(f®g) c Wu1/2(f®g) c Wu(f ®g).

As observed above the inclusions are strict in general.

Remark. It follows from Lemma 2.19 that for any half-integral (resp. special
half-integral) Wu class z, there exist a pair (v,w) € Wu" (f) x Wu"(g) of
integral Wu classes such that

2z =v®w + 2t, for some unique t € Z'(resp. t € 22").

The main motivation for introducing the set of half-integral Wu class lies in
Theorem 2.6 and Corollary 3.8.
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2.6. The discriminant and the characteristic homomorphism.
We keep notation from the previous paragraph. The next lemma is mostly
a reminder of the definitions.

LEMMA 2.20. The image of VI @ W under the canonical projection Z% —
Gigg = 2°/Z is A.

As a consequence, we have

VEQW n (VPQW) =V W «— AnAt=0.

Let z € Z®Q be a Wu class for (Z, f ® g). The discriminant (eq. (2.6)) of
(Z, f ®g, z) produces a nondegenerate quadratic function ¢fg, . : Grgg —
Q/Z where Gygy = Z%/Z.

Recall that the subgroup H in Gfg, consists in the intersection of A =
if(Gr @ W) and AL = j,(V ® G,). Note that H is also the image of
VEQW n V ®W?! under the canonical projection AR Grgq-

LEMMA 2.21. ¢tgq.:|m 95 a homomorphism H — Q/Z.

Proor. By Lemma 2.2, the associated linking pairing A g, vanishes on
H x H. (]

According to [12, Th. 2.10], there is an affine isomorphism

Wu(f® g)
27

over the group isomorphism

- Quad()‘f®9)a [Z] = ©f®g,2

Grog = Glgg: [s1= —Asgg(ls], -)-

Here Gygg = Z t/Z acts freely and transitively on w by the formula

[2]  [s] = [z +25], zeWu(f®g), seZ

and Gg, acts freely and transitively on Quad()sgg) by the usual formula
(4.1). The isomorphism is affine in the sense that

(2.7) PRy, [S] = @reg 151 = Prog—2s
for any s € Z*.

LEMMA 2.22. The group Gg,/(A + AL) acts freely and transitively on the
Wu(f ®9)
VIQW + VWi

quotient set 2

We now investigate the dependency of the homomorphism of Lemma 2.21
on the Wu class. Recall that Grg,/(A + AL) = Gge/H*' acts freely and
transitively on H* = Homy(H,Q/Z) by the formula

[2] - o= a4+ A\pgg(z,—), x€Grgy, a€ H.
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LEMMA 2.23. The affine map
WU(f ®g) - HomZ(H7 Q/Z)7 2= PfRg,z

induces an affine isomorphism

Wu(f® g)
2VEQW + VWi

H

— H*

over the isomorphism

GJ‘@Q/HL — H*, [z] = —Ajgg(z, —)|u.

PRrOOF. To prove that the map is well-defined, it suffices to verify that
¢f®g72+2[k]|H = Qfgg:|H for k € (VEQ W) + (V ® WH). This amounts to
verifying that for z € (VEQ W) n (V @ W),

(fo®go)(k,x) € Z.
This follows by Lemma 2.6.
As noted before, the group Gfgq/H L acts freely and transitively on both

Wu(f®g)
2(VIQW + V@WF)

for any z € Z¥, z€ Wu(f ® g),

sets and H*. Let us verify that the induced map is affine:

Pf@gzzlH = Pregetozln = Oregzln — Aeg([z], =)o = ¢reg:|H - [7].

We conclude by using the fact that G rg,/H 1 acts freely and transitively on
both sets.

O

To sum up the results so far, we proved that the following diagram is com-
mutative:

Pf@g,—
W) T Quad()ygy)
\L resy(—)
Wu(f®g) res (P f@g, ) .
2VEQW +VRWE) ~ H

Here the downward left arrow is the natural epimorphism induced by the
inclusion Z € VIQ@W + V ® Wt and resy denotes the restriction to the
subgroup H.

COROLLARY 2.4. The quotient set

Wu(f® g)
2VEQW +V @ W)

has the structure of an Abelian group isomorphic to Gy @ Gy. In particular,
the zero element is the unique class [z] such that pigg.|H = 0.
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Remark. The quotient set
Wy (£ ©9)
2VEQW +V @ WH)

is a singleton. In other words, under the affine map of Lemma 2.23, all
special half-integral Wu classes correspond to the same element in H*.

Furthermore, this element has order at most 2 since 2Wu(1)/ (f@g) <
AVEQW + V@ WH).

THEOREM 2.6. Let z € Wu(l)/2(f ®g). The map @fgg-|H has order at most
2 in H* and depends only on Ay and \,.

The subgroup generated by ¢tgg .|m in H* therefore only depends on Ay
and Ay, We call this subgroup the characteristic subgroup associated to Ay
and A4. It is either trivial or has order 2.

COROLLARY 2.5. If Gy @G has odd order, then the characteristic subgroup
1s trivial.

PRrROOF. By Lemma 2.11, H* has odd order; so has any subgroup of H*,
in particular the characteristic subgroup. By Th. 2.6, it must have order
dividing 2, hence it is trivial. (]

A proof of Th. 2.6 relying on structural properties of the discriminant (§2.7)
is given in §2.8.

Alternatively, an explicit expression for the characteristic map prgg..|m is
derived in §2.9. (However, the proof relies partially on Th. 2.6.)

2.7. More on the discriminant. This paragraph is devoted to prop-
erties of the discriminant. They are used to prove Th. 2.6 in the next
paragraph.

We begin with the following observations. There is the natural right action
of the group Aut(V') of automorphisms of V' on the set of nondegenerate
symmetric bilinear pairings on V:

fra=a*f=fo(a®), ae Aut(V).

Similarly, for a finite abelian group G, the group Aut(G) of automorphisms
of G acts on the set Quad(G) of quadratic functions on G by the formula

q-f=p%"=qof, qeQuad(G), f € Aut(G).

There is also an action of Aut(G) on the set of all linking pairings on G by
a similar formula.

Let O(f) denote the automorphism group of f, that is, the isotropy sub-
group of Aut(V) consisting of automorphisms fixing f. Let O(Af) denote
the automorphism group of s, that is the isotropy subgroup of Aut(Gy)
consisting of automorphisms fixing Ay. Then O(Ay) acts on the set of qua-
dratic functions over Ay, Quad(Ay) S Quad(Gy), by the same formula as
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above. Recall that any automorphism « of V' (resp. fixing f) induces an
automorphism [o] of G (resp. fixing Ay). Hence the assignment
a [a]
yields natural maps
Aut(V) - Aut(Gy), O(f) - O(p)

making the following diagram commutative

0(f) O(Af)

po

Aut(V) —_— Aut(Gf)

where the vertical arrows are canonical inclusions.
LEMMA 2.24. For any a € Aut(V),
ve Wu(f) < ag've Wu(a*f).

PrOOF. Direct computation. U

Consider now the set Ly, (V) of all pairs (f,v) where f : V xV — Z is a
lattice pairing as before and v € Wu(f). As a consequence of Lemma 2.24,
the group Aut(V) acts on Lywy (V') by the formula:

(2.8) (fiv)-a=(a™f, o@lv).

In particular, O(f) acts on Wu(f). Let O(fgp) denote the automorphism
group of fg. There is a restriction map on O(fy) defined by a — alywy(s)-
Denote by O(Wu(f)) the image. The action of O(f) on Wu(f) yields a map

O(f) = O(Wu(f)).

For (f,v) € Lwu(V), let O(f,v) denote the isotropy subgroup of Aut(V)
consisting of automorphisms fixing (f,v) under the action (2.8). Observe
that there are natural embeddings

O(f,v) = O(f), Olpsu) = O(Xf)

fitting in the commutative diagram

O(f,v) —= O(py.)

L

O(f) O(Af)

Finally denote by Aut(Lwy(V')) the symmetric group over the set Ly (V),
by Aut(Quad(Af)) the symmetric group over the set Quad(A;) and by
Aut(Quad(Gy)) the symmetric group over the set Quad(Gy).

There are natural maps between the various automorphism groups described
above. The canonical inclusions

Wu(f) = Lwu(V), v = (f,v), Quad(Ay) S Quad(Gy)
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induce maps
O(Wu(f)) = Aut(Lwa(V)), Aut(Quad(As)) — Aut(Quad(Gy))
respectively.

THEOREM 2.7. Let G be a finite abelian group. There exists a lattice V' such
that the formula

O = Qfo)ar  (f0) € Lwa(V), a e Aut(V)
defines an action of Aut(V) on Quad(G).

PROOF. According to [46], there is a lattice V' such that the map
LWU(V) - Quad(G)7 (f,?)) = Ofw

is surjective. The point that requires to be proved is that the formula for
the action is independent of the particular choice (f,v) over ¢ = ¢y,,.

Let f,g: V x V — Z be two bilinear lattices equipped with a Wu classe
v € Wu(f) and w € Wu(g) respectively. Assume that both discriminant
quadratic functions ¢y, and ¢g, lie in Quad(G). Let ¢ € Aut(G). We say
that (f,v) and (g, w) are strongly stably equivalent over 1), denoted

(f,’l)) '1; (gaw)7

if there is a strong stable equivalence between (f, v) and (g, w) that is realized

by a lattice automorphism inducing the automorphism ¢ : G — G. (See
§2.4 and Th. 2.5.)

PRrOPOSITION 2.1. With the notation above: ¥V*pg . = @y, if and only if
(f,v) > (g,w).

A proof is easily derived from [12, Prop. 3.1].

LEMMA 2.25. For three symmetric bilinear pairings on a lattice V' equipped
with Wu classes: (f,v) > (f, 0", (f1,0) > (f"0") = (fiv) ~

" " wlow
(f",0").
PROOF. Direct computation or consequence of Prop. 2.1. U

Let K be a subgroup of Aut(G). We say that two quadratic functions
q,q : G —> Q/Z are K-isomorphic (written g ~ q') if there exists ¢ € K

such that 1*q¢’ = ¢. Similarly, for two bilinear lattices f,g : V x V — Z
equipped with Wu classes v, v’ respectively, we say that (f,v) and (g,v’)
are K-isomorphic (written (f,v) P (g,v")) if there exists ¢ € K such that

(f,v) » (g,v"). An immediate consequence of Th. 2.5 is the following
observation.

LEMMA 2.26. Let K be a subgroup of Aut(G). We have

Pt E Pg,! — (f,’U) IN( (g7vl)'
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Recall that Aut(V) acts on Quad(V*/V) via the natural map Aut(V) —
Aut(V#/V). The next observation is a sufficient condition for the equivalence
relation P to be compatible with the action of Aut(V).

LEMMA 2.27. Let q,q¢' : G — Q/Z be two quadratic functions on G and let
K < Aut(G) be a normal subgroup in Aut(G). Then q ~ ¢ <= q-« ~

q -« for any o € Aut(V).

PROOF. Suppose ¢ P q': there exists 1 € K such that ¢’ oy = ¢. Since
K is normal in Aut(G), ' =a loyoae K and (¢ -a)ot) =qoa. O

End of proof of Theorem 2.7. Let K < Aut(G). Applying Lemmas 2.26 and
2.27, we have

(fav) %(ng) = (f,v)-a;(g,w)-a = Qp(f,v)u;(go(g,w)a

for any o € Aut(V'). The result follows by taking K = {idg}. O

Remark. The proof above shows that Theorem 2.7 generalizes as follows.

THEOREM 2.8. Let G be a finite abelian group and let K <« Aut(G). There
exists a lattice V' such that the formula

O = Qfo)ar  (f0) € Lwa(V), ae Aut(V)

induces an action of Aut(V') on the equivalence classes in Quad(G) for the
relation P

Theorem 2.7 is the case when K is trivial and equivalence classes are sin-
gletons. The other extreme case is when K = Aut(G) and the equivalence
classes consist of isomorphic quadratic functions on GG. There are other non-
trivial intermediate cases since the automorphism group of a finite abelian
group is nonsimple in general [52]. As an example, the automorphism group
of Z/3 x Z/3 is GL2(Z/3): both the subgroup SL2(Z/3) of matrices of deter-
minant 1 and the subgroup of diagonal 2 x 2 matrices with coefficients in
{£1} are normal.

Since the map
Wu(f) = Quad(Ay), 2z ¢y

is surjective, the action of Aut(Lwy,(V)) on Quad(Gy) restricts to an action
of O(Wu(f)) on Quad(As) defined by

Ofz-=pra1,, 2€ Wu(f), ae O(Wu(f)).

Compeatibility of the various actions is expressed by the commutative dia-
gram
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Aut(V) Aut(Lwa(V))

Aut(Gy) Aut(Quad(Gy))

0(\)) Aut(Quad(Af))

To verify that the cube is indeed commutative, the main point consists in
verifying that for a € O(f),

ofz0 o] = Carpa-tz = 05200 = Pfz - @,

which follows from our discussion above. In particular, there is an isomor-
phism

Sofvz o= ()Of,Z‘

Next, we consider the tensor product f ® g. The group Aut(V) acts on
Ly, (V ® W) via the natural map

Aut(V) 5> Awt(VO W), a— (a®ly).
Explicitly, the action is given by
(k,2)-a = ((a@1w)*k, (a®@1w) 12), (k, 2)€ Ly (VOW), ae Aut(V).
It follows that Aut(V') acts on Quad(Gy).

Similarly, there is a natural inclusion map

O(f) »O(f®g), o> a@lw.
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It follows that O(f) acts on O(Wu(f ® g)) and on O(Asg,). Finally, the

composition

GfﬂGf@WLGf@gg

enables to define an action of Aut(G¢) on Quad(Gyg,). This action restricts
to an action of O(Af) on Quad(Agg).

The cube above is still commutative if we replace f by f®g in all occurrences
of f in the right face.

We note that Aut(V') also acts on the set of subgroups of G g, via the map
Aut(V) - Aut(V @ W). Explicitly,

K-a=[a@lw] ' (K), acAut(V), K S G gy,

where [a ® 1] denotes the automorphism on Gg, induced by the map
a® ly € Aut(V ® W). (The action is a right action so as to be consistent
with the previous actions.)

LEMMA 2.28. The subgroup H = j;(Gf @ W) n j,(V ® Gy) introduced in
§2.2 is invariant under the action of Aut(V).

PRrROOF. Let o € Aut(V). Let
[z ®@w] = ji([z] @w) € jr (Gy ®W),
with z € VF, w e W. We have
[a® L[z ®w] = [agz ®w] = jf(Jagz] ®w) € jf(Gr © W),

Hence j¢(Gy ® W) is invariant under . A similar argument shows that
Jg(V ® Gy) is invariant under a. The lemma follows. O

2.8. Proof of Theorem 2.6. We already know that ¢ g, .|r has order
at most 2 for z € Wu(l)/ 2( f ® g) and that it is independent of the particular

choice of z € Wu(l)/ 2( f®g). For a fixed bilinear lattice g, we shall prove that
Y txg,:|H only depends on A¢. (The argument is completely symmetric in

g-)
First step: action of Aut(V') and O(f) on the homomorphism ¢ tgg .| H-

Recall the (right) action of Aut(V') on Quad(Gy) and on subgroups of G.
Let o€ Aut(V) act on @fg,. and H. We have

(PrRg.> - )0 = (Preg,> - W)|H,
according to Lemma 2.28. Thus if a € O(f), then

OrRg.z " lHa = Piogzall

Second step: if z € Wucl]/2(f ® g) then ptgg .|m is invariant under O(f).

The subset Wu[l)/ 2( f®g) is invariant under the action of O(f) on Wu(f®g).
The claim follows.

Third step: stabilization of f.
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Let (U, u) be an unimodular lattice. We show that replacing f by f@wu does
not affect the homomorphism ¢ g - |H-

First, Af(—Du = )\f @D\ = )\f ®0 = )\f and A(f@u)@g = )‘f®g (‘B)\u®g~ Next,
the monomorphism jrg, : Gy @ W — Grgy ® Gugy factors through the
monomorphism j¢ : Gy ® W — G g, and the canonical inclusion Grgy —
Greg ® Gugy sending € G gy to (x,0). In particular, the images of j gy
and j; coincide and are contained in Grgy @0 S Grgy @ Gugy. Denote
by H' the new subgroup when f is replaced by f @ w. It follows that
H' € Gtge®0 S Grgy®Gugy and is equal to H once G gy @0 is identified
to Gygg. Let 2’ be an arbitrary Wu class of (f@u)®g = (f®9) D (u®yg)
such that its restriction on V® W is z. Then

Pfou)e. | H = P(t00)@usg). |H = Pfeg:H @O0.

Therefore, we have proved that ¢ g .|p is invariant under O(f) and stabi-
lization of f by unimodular lattices. It follows from [?] (see also [46] [14])
that ¢ gy -|rr only depends on Ay as claimed. o

Remarks. Another proof results from the following observations. First,

for allveWuV(f), PfRgo@w O Jf = Pfu ® g
and similarly
for all w e Wu'" (g), P f@gu@w ° Jg = [ ® Pguw-

Second, let z € Wu'/2(f ® g) written as z = v ® w + 25 with v € Wu"' (f) or
w e WuW(g), and se VIQW + V ® WH. Then

Pfeg,z Oj9|j;1H = f®90g,w|j;1H = Pt ®9|j}71H = Pf®g,z Ojf|j;1H‘

A slightly more explicit expression is given by the formula:
(2.9) Pregegw—2t °Jf = P ® g+ (Ar ® go)([tDlc,ew,
where v € Wu" (f), t € VE@ W, [t] € Gy ® W Here the map (Xf ®
9o)([t])|c,@w denotes the homomorphism induced by the map adjoint to
the bilinear pairing
A ® galwesw : (G @WFH) x (G @W) — Q/2Z
at [t] e Gy @ WH(Y).
Similarly,
(2.10) PfRgu@uw—2t © Jg = f® Pgw + (f@ ® Ag)([t])|V®G9>

where w € Wu (g), t € VIQWH, [t] € VI®Gy. The map (fo®Ay)([t])|vea,
denotes the homomorphism induced by the map adjoint to the bilinear pair-
ing

Jolvixy ®Ag : VE@ Gy x V@ Gy — Q/Z

10ne should note at this point that the bilinear pairing (A\; ® 90)|c;ewt < ow 1S

well defined, as gg(W* W) € Z acts by multiplication on A\y(Gy,Gy) < Q/Z. A similar
observation applies to the bilinear pairing (fg ® Ag)|viga, xvee, considered below.
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at [t] e VI®G,.

In the cases when ¢ lies in the smaller subgroup V#®@W, the formula simplifies

(2.11) Pr@greuw—2t ©Jf = o ® 9+ (A @g)([t], -),
where v e WuV'(f), t e VEQ W, [t] € G, ® W. Similarly,
(2'12) P f®g,0Qw—2t Ojg = f ® Pgw + (f ® )‘g)([t]a _)7

where w € VVuW(g)7 te VW, [t] e V ®Gy.

2.9. The characteristic homomorphism: explicit form. Let (G, \)
be a nondegenerate linking pairing.

Let (G, A) and (G, X) two (nondegenerate) linking pairings on finite abelian
groups G and G’ respectively. We define a map

X:GxG —>17/2
as follows: we set x(x,y) = 1 if x and y both generate an orthogonal sum-

mand of the same even order in G and G’ respectively; we set x(z,y) = 0
otherwise. Note that the map x depends on the linking pairings A and X

As an example, if G or G’ has odd order, then xy = 0. For G and G’ are both
cyclic of order a power of 2, x(z,y) = 1 if and only if x and y are generators.

PROPOSITION 2.2. The map x : G x G' — Z/2 is bilinear.
Therefore x induces a homomorphism G ® G’ — Z/2, still denoted y.

PRrROOF. Although the proof is a consequence of the general theory of
linking pairings in torsion Dedekind modules (cf. [13, Chap. 2]), we give an
elementary proof based on the following observation ([8, Lemma 28]).

LEMMA 2.29. Let A : G x G — Q/Z be a linking pairing and let x € G. The
subgroup generated by x in G is an orthogonal summand if and only if x and
Az, x) have the same order in G and Q/Z respectively.

First, it is obvious that y only depends on unordered pairs (z,y) € G x G'.
Secondly, it is not hard to see that it is sufficient to consider 2-groups. Let
x,y € G and z € G'. Suppose first x(z,z) = x(y,z) = 1. We have to prove
that x(x + y,2) = 0. By hypothesis, both x and y generate an orthogonal
summand of even order 2¥ in G and similarly z in G’. By Lemma 2.29,
the order of A(z,z) and the order of \(y,y) in Q/Z coincide with the order
of  (resp. of y) in G. Thus there are odd integers a,b € Z such that
Az, z) = 55 mod 1 and A(y,y) = 2% mod 1. Hence for some c € Z,

Az +y.z+y) = Mz,z)+2XM,y) + Ay, y)
a 2c b
oF ToF Tk

+2c+b

= % mod 1.

Since a + 2c + b is even, A(z + y, z + ) is of order strictly less than 2. By
Lemma 2.29 again, we conclude that  + y does not generate an orthogonal
summand of order 2¥. Hence x(z + ¥, z) = 0.
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Suppose next that x(x, z) = x(y, z) = 0. We have to show that x(z+y, z) =
0. Suppose the contrary. Then x + y generates an orthogonal summand of
order 2* in G. So Mz 4+ y,z +y) = 55 mod 1 for some odd integer a. By
our hypotheses, there are even integers b, ¢, d € 2Z such that

a
A(x+y,m+y)=27 = Mwz,z) +2- Mz,y) + My, y)
b c d
T ooFTar Tk
b+c+d
- T ok

Since b+ ¢ +d is even, A(z 4+ 5,z + ) is of order strictly less than 2¥. This
is a contradiction. Hence x(x + y,2) = 0.

Suppose finally that x(z,z) = 1 and x(y,2) = 0. Assume that the order of
y divides the order of z. By Lemma 2.29, there exists an odd integer a € Z
and integers b, ¢ € 2Z such that A(z,r) = 5 mod 1, A(y,y) = 2b mod 1 and

2
A(z,y) = 57 mod 1. Hence

Mz+yz+y) = Mz,2)+2- Mz, y) + My, y)
_a c 2b
+2b+2
Since a + 2b + 2¢ is odd, we conclude that the order of AM(z + y,z + y) in
Q/Z equals the order of x 4+ y in G, hence by Lemma 2.29, x + y generates
an orthogonal summand of order 2¥ in G, as z does in G’. This implies

x(x+y,2)=1. O

We now identify the characteristic homomorphism by means of the tensor
product of linking pairings. Recall that for a group G, we denote by G|n]
the subgroup of elements of order dividing n.

COROLLARY 2.6. Let (G, ) be a linking pairing. Let n be an integer and
(Z/n, X') be a cyclic linking pairing. Let h : G[n] - GQZ/nZ be the isomor-
phism defined by h(x) = x @ (1 mod n). The characteristic homomorphism
X:GQZL/nZ — LLJZ7 ~ 7/2 is given by

(2.13) X(z) = gA(ifl(x), h(z)), z€G®ZL/nZ.

Furthermore, let Ao : Z/n x Z/n — QJZ be the linking pairing uniquely
determined by

1 .
_§ 5 ifn=0mod 2;
)\g(lmodn,lmodn)—{o =1 mod2
Then
(214) X)H)\/(x) = ()\ ® )\0)(%, .f), s G@Z/TLZ

Remark. Note that the linking pairing Ag in the statement of Cor. 2.6 is
degenerate if n + 2.



50 2. RECIPROCITY

This result provides a way to compute easily y for any pair of linking pair-
ings: decompose )\ into an orthogonal sum of indecomposable linking pair-
ings; disregard the noncyclic ones and the cyclic ones of odd order; using the
remark above, the homomorphism Yy is the orthogonal sum of the restriction
of x to the remaining components which is computed by Cor. 2.6.

We now relate our previous construction (§2.6) to the characteristic homo-
morphism. Recall the isomorphism p : H — Gy ® G4 defined in §2.3.

THEOREM 2.9. Let z € Wu(l]/2(f ®g). Then ©gg:ln = X © p.

Proor. It is sufficient to verify the statement with z = v ® w where
v and w are integral Wu classes of f and g respectively. Then we verify
that they coincide on the generators of the orthogonal summands of an
orthogonal splitting of (G, Af) and (Gg, Ag). O

We can now write down a general formula for the homomorphism g . |#
for an arbitrary Wu class z = zg + 2t, 2o € Wu?(f ® g), t € Z%:

(2.15) Prog.zlr = x o (=) = (A @A) (¥ ([]), (=),

where ¢ : G/H+ — G  ®Gy is the natural isomorphism defined in §2.2. We
deduce

THEOREM 2.10. With the notation above, the homomorphism ¢ fgg o+2t|H
s zero if and only if

x = Ar ®Ag)(¥([1]), —)-

In other words, ¢ fgg,zo+2¢| 1 is zero if and only if ([t]) is the characteristic
element in Gy ® Gy, corresponding to the characteristic homomorphism
X = Xx;,\, under the map adjoint to Ay @ Ag.

3. Classification results

3.1. Gauss sums. Let ¢ : G — Q/Z be a quadratic function on a finite
abelian group. The complex number

[(G,q) = ). exp(2mig())
zeG
is the unnormalized Gauss sum associated to (G, q). It is convenient to
define also ) )
WG, q) = |G| 2|G*| "2 )] exp(2mig()),
zeG

be the normalized Gauss sum associated to q. These sums are clearly in-
variants of the isomorphism class of q. Two basic properties, immediate
from the definition, are the behavior with respect to the orthogonal sum
of quadratic functions and the natural involution (opposite) of quadratic
functions

(G, ) ®(G',¢) =v(G®C,q®q) = (G, q) -G, ),

G, —q) = (G, q).



3. CLASSIFICATION RESULTS 51

These properties are interpreted in the classical context of the Witt group
of quadratic functions (See §4). Another useful property is the behaviour of
the Gauss sum when a homomorphism is added to the quadratic function:

(3.1) Y(G, q +by(a)) = (G, q) e ).

Gauss sums play a fundamental réle in the classification of pointed linking
pairings.

3.2. Classification of pointed linking pairings. The use of Gauss
sums in the classification of isomorphism classes of linking pairings goes back
to Minkowski; it is actually proved in [33] that Gauss sums form a complete
system of invariants. Using a different approach, we now extend this result
to the classification of isomorphism classes of pointed linking pairings.

A pointed linking pairing is a pair formed by a linking pairing (G, \) and
an element ¢ = (c1,...,¢,) € G™ for some natural integer n. Two pointed
linking pairings (G, A, ¢) and (G’, X', ¢) are isomorphic if there is an isomor-
phism of linking pairings that sends ¢ onto .

In the sequel of this paragraph, we fix a nondegenerate pointed linking pair-
ing (G, \,¢), with ¢ = (¢1,...,¢,) € G", n > 1. Consider now a triple
(V,h,s) where h : V — Z is a homogeneous nondegenerate quadratic func-
tion on a lattice V and s = (s1,...,8,) € (V*)". We form a new quadratic
function on V ® G defined by

(3.2) AR+ (idys @ N (s ®c)

where h® A\ is the usual tensor product of a homogeneous quadratic function
and a linking pairing and s ® ¢ = Zj 5; ®cj € V* ®G. Explicitly

(h®AN) (Z x; ®yj> = Zh(xj))\(a:j,xj)—i-E bu(zj, xp)Nzj,z), €V, y;€eG
J J

<k
where by, is the bilinear symmetric pairing associated to h. Here (idys ®
A)(s ® ) is the homomorphism V ® G — Q/Z defined by
(idvs @A) (s @)z ®y) = Y si(@)A\(ciy), z€V, yeG.

i

Let T'y s(A,c) = T (V@G,h@)\ + (idy = ®3\)(s®c)) be the (unnormal-

ized) Gauss sum associated to the quadratic function defined above by (3.2).
It is convenient to consider as well the normalized Gauss sum 7y s(\, ¢) =

7(V®G,h®/\+(idv*@)f\)(s@c)).
LEMMA 3.1. If s®c = (gh ®idg)(y) for somey eV @G, then

(3-3) s e) =1V @G, h @A) - e 2 h@NW),
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PROOF. According to the hypothesis,
Ths(Ae) =7 (V @G, h @\ + (idys ® V) (s ®c)>
=1 (VoG her+ ey

=Y(VRG,h®)\) - e 2mh&NW),
U

Also we need to define invariants extracted from the group G. Recall that
every linking pairing (G, \) splits in an orthogonal decomposition into link-
ing pairings
(G.A) = D(Gp M)
P

on p-groups, where p describes a finite subset of primes. Furthermore, every
linking pairing (Gp, Ap) splits in an orthogonal decomposition into linking
pairings

(Gp X)) = DGy AD)

k=1

where each G’; is a free Z/p*-module and hence has a well defined rank. Set
p’;()\) = rank G]; e N.

Clearly the ranks p’;()\) depend only on the underlying group G, are additive
under direct sums and only finitely many of them are non zero.

THEOREM 3.1. Two pointed linking pairings (G, \,c¢) and (G', N, ') with
distinguished n-tuples ¢ € G™ and ¢ € (G')" are isomorphic if and only if
the following conditions are satisfied:

(1) p’;()\) = p’;()\’) for all prime p and all k > 1;

(2) Yh,s(A ) = (N, ) for all triples (V, h, s) of lattices V' equipped
with a homogeneous quadratic function h and a multiform s €
(V=)

We make a few observations on Th. 3.1. Condition (1) is purely group-
theoretic and does not involve the pairings nor the distinguished elements.

In condition (2), only a finite number of Gauss sums is required. However,
it can be shown that one needs, in the most general case, to consider at least
one rank 2 lattice (V f).

If we replace the Gauss sums 7y, 5(A, ¢) by unnormalized Gauss sums I'y, 4(A, ¢)
in condition (2), then condition (1) becomes redundant. Taking the absolute
value of appropriately chosen unnormalized Gauss sums yield the invariants
of condition (1).

The classification of linking pairings without distinguished point (see [33,
Th. 4.1]) is recovered from Th. 3.1 by taking n = 1 and setting ¢ and ¢
to be the zero element of G and G’ respectively. The Gauss sum 7y s(X, 0)
then is just Y(V® G, h® \).
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PROOF. We give an abridged proof here, referring to [13] for details.
The proof is based on two lemmas.

The first lemma is a “reduction to linear algebra” based on the classification
of linking pairings. Let N = 1. Recall that n denotes the number of distin-
guished elements. Denote by Ry, (resp. Ry) the vector space of matrices
with N rows and n columns (resp. the vector space of square symmetric
matrices of size N) with entries in Q/Z. For r = (rj1)i<jr<ny € Ry and
" € Ry p, set

Sprr(Ae) ={(z1,...,2n) € G | Mg, xp) = ) and A(xj,cp) = r;k}

This set is clearly finite and we denote its cardinality by [S,., (A, ¢)|.
LEMMA 3.2. Two pointed linking pairings (G, \,¢) and (G', N, ) with n
distinguished elements are isomorphic if and only if p];()\) = p];()\’) for all

prime p and all k =1 and |S, (A, ¢)| = |Sy (N, )| for all matrices r € Ry
and Ry for N large enough.

The second lemma is classical.

LEMMA 3.3. A family of distinct characters is free over C.

We interpret the unnormalized Gauss sums I'j, s(\, ¢) as characters and re-
lated them to the invariants |S,, (A, c)|. Fix a basis of V' and identify h
with a square symmetric matrix of size IV, each s; € V*, 1 < j < N, with a
vector (s;x)1<k<n € ZV. Then

(3.4) Ihs(N ) = Z ISy (A, c)| exp (27rz'Trace<hr —i—sr')).

TER N
TIERN,TL

The sum is finite since only finitely many terms are non zero. The maps
Kryr : (h,8) — exp (QWiTrace (fr + sr'))

are distinct characters, hence the family (&, ,/),., is free over C. On the other
hand, only finitely many sets S, ,/(),c) are non empty. Therefore there is
a finite number M of homogeneous quadratic functions equipped with multi-
forms (h',s'),..., (RM, sM) such that the matrix ® = (Iirjﬂq; (h*, s%)) 1<) ket

is invertible over C. Set
I'= i (A igjenrs S = (1Sr,0 (X )Drgjicn-
We deduce from (3.4) the identity
r=o-5.

Since ® is invertible, I determines S and conversely. The result then follows
from Lemma 3.2. O
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The Gauss sum 7y 5(A, ¢) and the quadratic function (3.2) can be interpreted
using the discriminant construction as follows. First,

(35)  h@A+ (idyx®@MN)(s®a) = (by ®0) + (bag ® V(€ @),
where on the right hand side:

e ¢ is a homogeneous quadratic refinement of A;

o b, : V xV — Z denotes the symmetric bilinear pairing associated
to the quadratic form h: V — Z;

o fc (Vu)" is defined by fQ(gj) =s;, 1 <j<mn;

e {®c=2,§®c;

e The map (b’;lQ ® X) (E®c): V x G— Q/Z is induced by the map
adjoint to b, ® A at £ ® c. It is defined by

(bhg ®N(E® )z ®y) = (br)g(é.x) Me,y) €V, yeG.

It follows from (2.10) that the quadratic function on the right hand side
identifies to ¢y, @g,v0w—2t © jg Wwhere (W, g,w) is a bilinear lattice equipped
with an integral Wu class w € Wu(g) such that (G,q) = (W*/W,p4.u),
v e Wu(by) is a Wu class for by, and t € Vi@ WH is a lift of E®ce VIRG.
We conclude that

(3.6) Yhs(A,€) =7V @G, vp,04,00w—2t © Jg)-

3.3. The classification of pointed quadratic functions. The re-
sults of the previous paragraph are generalized to pointed quadratic func-
tions. A pointed quadratic function on a finite abelian group G consists of
a quadratic function ¢ : G — Q/Z equipped with ¢ = (c1,...,¢,) € G" for
some integer n > 0. Two pointed quadratic functions (G, g, c) and (G', ¢, )
are isomorphic if there is an isomorphism of linking pairings that sends c;
onto ¢}, 1 < j < n.

Before stating the theorem of this paragraph, we recall two simple defini-
tions. Given a quadratic function ¢ : G — Q/Z, the difference d,(x) =
q(x) — q(—z), z € G, defines a homomorphism G — Q/Z, the homogeneity
defect. This map is zero if and only if g is homogeneous. Recall that a qua-
dratic function canonically induces an associated linking pairing b,. Hence
there is a well defined surjective (“forgetful”) homomorphism

(G, q,¢) = (G,bg; )

from the monoid of pointed (nondegenerate) quadratic functions (with dis-
tinguished n-tuples) to the monoid of pointed (nondegenerate) linking pair-
ings (with distinguished n-tuples). We shall use a related but distinct ho-
momorphism

(G,q,¢) = (G, by, c®b; dy)
from the monoid of pointed (nondegenerate) quadratic functions with distin-
guished n-tuples to the monoid of pointed (nondegenerate) linking pairings
with distinguished (n + 1)-tuples. Here the adjoint map /I;q G —> G* is
bijective hence Bq*ldq is a well defined element in G and ¢ @3;1dq denotes
the (n + 1)-tuple obtained by adjoining the form d, € G* to the n-tuple
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¢ = (c1,...,¢y,) on the right. This latter map is not onto. (It is onto if we
restrict the image to pointed linking pairings with (n 4+ 1)-tuples of distin-
guished points whose last distinguished point lies in 2G.)

THEOREM 3.2. Two pointed quadratic functions (G, q,c) and (G',q', ") with
distinguished n-tuples are isomorphic if and only if the following conditions
are satisfied:

(1) p’;(bq) = p];(bq/) for all prime p and all k > 1;

(2) Yh,s(bg, c@(;;ldq) = Yp,s(by c'Ei—)bAqildq/) for all triples (V. h, s) of
lattices V' equipped with a homogeneous quadratic function h and a
maultiform s € (V*)"1;

(3) 1(G,q) = WG, ) and (G, q + by(ci)) = VG, ¢ + by(c), i =
1,...,n.

Remarks similar to those to Th. 3.1 also apply to Th. 3.2.

Proor. Clearly if the pointed quadratic functions are isomorphic then
the conditions are verified. Let us prove the converse. Suppose the condi-
tions are satisfied. Then the conditions of Th. 3.1 are satisfied. Therefore,
(G,bg,c® bAq_ldq) and (G',by,c @ l;; 1dq/) are isomorphic pointed linking
pairings. Explicitly, let ¢ : G — G’ an isomorphism such that ¢*by = by
and ¢(c) = ¢ and ¢*dy = d,. Replacing the triple (G',¢’, ¢') by the isomor-
phic triple (G, ¢*¢, ¢*c’) = (G, ¢*¢, ¢), it is enough to show that (G, ¢, c)
and (G, ¢*¢,c) are isomorphic. Note that dy+y = ¢*dy = dg. So we may
assume that (G, q,c) and (G, ¢, ¢) are two pointed quadratic functions over
the same associated bilinear linking pairing, with the same homogeneity de-
fect and the same distinguished elements satisfying the conditions (1), (2)
and (3). Let us construct an isomorphism between (G, ¢,c) and (G, ¢, c).
Since ¢ and ¢’ are quadratic functions over the same nondegenerate linking
pairing, they differ by some o € G: ¢ = q + b;(a). The equality dq = dy
implies that 2 = 0. Since v(G, q) = Y(G,¢') = Y(G, q) ™4 we deduce
that ¢(a) = 0. Define a map [n] : G — Z/2Z by by(c, x) = @ mod 1 for
all z € G. Clearly [n] is a homomorphism. Since g(a) = 0,

0 =¢(2a) = q(a) +g(a) + by(a, @) = by(a, @),
hence [n](a) = 0. Consider the map
v:G-> G, z—x+n(r)a
where n(z) € Z is an arbitrary lift of [n](z) € Z/2Z. Since

Y2 (z) = Y(z + n(z)a) r+n(x)a+n(z+n(r)a)a

r+n(z)a +n(x)a +n(z)n(a)a
r+n(z) 2 +0

z+0

377

1 is an involutive automorphism of G. Furthermore,

q(¢(2)) = q(z+n(r)a) = g(x)+n(z) by(z, ) +q(n(2)a) = q(2)+by(z, @) +0 =

q'(z)
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for any z € G. Therefore ¢*q' = ¢. Since
NG q) 70 = 5(G.q +By(er) = (G + by (e:) = 7(C.qf) 7
= (G, q) ™),
we deduce that ¢(c;) = ¢/(c;) = q(¢;) + bg(a, ¢;), hence by(c, ¢;) = 0. Hence
() = ¢ +n(e)a =g

for all i = 1,...,n. Therefore ¢ is an isomorphism between (G, ¢,c) and
(G,q,c) as desired. O

REMARK 3.1. The system of invariants of Th. 3.2 is minimal in the sense
that if one equality among the equalities of conditions (1)—(3) is not satisfied
then there is a pair of nonisomorphic pointed quadratic functions satisfying
all the other equalities.

EXAMPLE 3.1. As an illustration of the previous remark, we point out that
there exist nonisomorphic pointed quadratic functions (G, ¢, ¢) and (G, ¢, )
such that (G, q) and (G', ¢’) are isomorphic and the associated pointed link-
ing pairings (G, by, c) and (G,by,c) are isomorphic. Such an example is
provided by

2% + 4z

(Z/16Z, q(k mod 16) = mod 1,¢ =1 mod 16)
—72% + 20z
32
The map = — 3x provides the isomorphism between the associated pointed
linking pairings, the map x +— 5z provides the isomorphism between the
quadratic functions, but there is no isomorphism between the pointed qua-
dratic functions. In terms of invariants, one checks that v(G,q + b;(c)) +

(G, ¢ —H;; (). All other equalities in the statement of Th. 3.2 are satisfied.

and (Z/16Z,q(k mod 16) = mod 1,¢ = 3 mod 16).

COROLLARY 3.1. Suppose that c € (2G)™. Two pointed quadratic functions
(G,q,c) and (G', ¢, ') with distinguished n-tuples are isomorphic if and only
if the following conditions are satisfied:

(1) p’;(bq) = p];(bqr) for all prime p and all k > 1;
(2) Yh,s(bg, c(—BbAq_ldq) = Yn,s(bg c’@l;]_ldq/) for all triples (V, h,s) of

lattices V' equipped with a homogeneous quadratic function h and a
multiform s € (V*)"+1;
(3) Y(G,q) =G, q).

ProoF. Conditions (1) and (2) imply that ¢ € (2G)". In the proof
of Th. 3.2, the last equality of condition (3) is used only to ensure that
by, ¢;) = 0. But the condition ¢; € 2G already implies that equality for all
i=1,...,n. O

REMARK 3.2. Cor. 3.1 applies in particular if the underlying group has odd
order.
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Another special case worth considering is the case of pointed homogeneous
quadratic functions: it turns out that this case is analogous to the case of
pointed linking pairings. Fix a nondegenerate pointed homogeneous qua-
dratic function (G, q,c) with a distinguished n-tuple ¢ € G. Consider a
triple (V, f,s) where (V, f) is a bilinear lattice and s an element in (V*)".
We form the quadratic function on V& GG

F®q+ (idys @by (s ®c)
and denote by

(3.7) Vr,s(g:¢) = 7(V®G,f®Q+ (idy ®5q)(8®6))
the corresponding Gauss sum.

COROLLARY 3.2. Two pointed homogeneous quadratic functions (G, q,c) and
(G', ¢, ) with distinguished n-tuples are isomorphic if and only if the fol-
lowing conditions are satisfied:

1) pkE(b,) = pF(by) for all prime p and all k > 1;

( ) pp q pp q p

(2) v¢s(q,¢) = vps(d', ) for all triples (V, f,s) of bilinear lattices
(V, f) equipped with a multiform s e (V*)".

PROOF. Since ¢ is homogeneous, d, = 0, hence v sgs,,,(bg,c D@ 0) =
Yh,s(bg, ) for all triples (V, h, s) of lattices V' equipped with a homogeneous
quadratic function h and a multiform s € (V*)". Observe that

h®bq:bh®q

for any homogeneous quadratic function h : V' — Z and homogeneous qua-
dratic function ¢ : G — Q/Z. Hence 7, s(bg,¢) = M,.5(q,c). The second
observation is that v(G,q) = v7,0(q, c) and v(G, ¢ +5q(c7;)) = v71(g, ¢;) with
the pointed bilinear lattice V = Z, f(1,1) = 1,s = 0 and s = 1z respectively.
The result follows from Th. 3.2. O

REMARK 3.3. It is possible to give a proof of Corollary 3.2 along the lines
of Th. 3.1. We leave it to the reader to prove directly that the isomorphism
class of (G, q,c) is classified by condition (1) and the Gauss sums 7y (g, c)
for all triples (V, f,s). Since v(G,q) = vs0(q,c) for V. =17, f(1,1) = 1, this
easily implies the result. As mentioned above, this line of proof is valid for
homogeneous quadratic functions only.

As the particular case of quadratic functions with no distinguished element
(or with trivial element), we recover the classification of quadratic functions
[12, Th. 4.1].

COROLLARY 3.3. Two quadratic functions (G, q) and (G',q') are isomorphic
if and only if Y(G,q) = v(G',q") and there is an isomorphism ¢ of their
associated linking pairings such that dy o ¢ = dy.

REMARK 3.4. As illustrated in Example 3.1, the classification of pointed
quadratic functions cannot be recovered by Corollary 3.3 and Theorem 3.1
alone.
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3.4. Linking groups and pointed linking groups. We generalize
the notion of linking pairings to allow non torsion elements in the underlying

group.

Let n > 1. First we extend slightly the definition linking pairings. A linking
group is a pair (G, \) where G is a finitely generated abelian group and A :
Tors G x Tors G — Q/Z is a linking pairing. According to our terminology,
a linking pairing is a torsion linking group (i.e., the underlying group G in
the definition is a torsion group). If G has no torsion element, then the
linking group (G, \) reduces to the underlying group G. An isomorphism
between linking groups (G, \) and (G’, ') is an isomorphism ¢ : G — G’ of
groups such that ¢|pos ¢ : Tors G — Tors G’ verifies (¢|1ors ¢)*(N) = A
In other words, an isomorphism of linking groups is a group isomorphism
whose restriction to torsion induces an isomorphism of linking pairings.

EXAMPLE 3.2. . Any bilinear lattice (V, f) induces a linking group (Gf =
Coker f,\) by formula (??). (See §2.2.) This linking group is called the
discriminant linking group.

Two equivalent lattices (V, f) and (V’, f') induce isomorphic discriminant
linking pairings if and only the induced nondegenerate bilinear lattices (V/, f)
and (V', f) are stably equivalent; however the induced discriminant linking
groups may be non isomorphic. A simple example is provided by V = Z,
flxyy)=2zyand V! =Z@®Z and f'(x D',y Dy') = 2zy. We see on this
example that Coker f = 7,/27 while Coker f' = Z@®7Z/27. Hence the linking
groups are not isomorphic while the linking pairings are.

A pointed linking group is a triple (G, A, ¢) where (G, \) is a linking group
and ¢ € G" is a distinguished n-tuple. (In contrast with the definition of
pointed linking pairings, G is now allowed to have non torsion - including
distinguished - elements.) An isomorphism of pointed linking groups is an
isomorphism of the underlying linking groups sending the distinguished n-
tuple to the distinguished n-tuple.

ExaMpPLE 3.3. The first integral homology of a 3-manifold endowed with
distinguished elements provides a fundamental example of pointed linking

group.

We now derive a lemma in order to deal with isomorphism of pointed linking
groups.

The classification of pointed linking groups can be essentially reduced to the
classification of pointed linking pairings by means of the following lemma.
For a map f : A — B, we denote by f® : A" — B" the n-ary cartesian
product map induced by f.

LEMMA 3.4. Let (G, \,c) and (G', N, c') be two pointed linking groups with
distinguished n-tuples c € G"™ and c € G™ respectively. The following asser-
tions are equivalent:

(1) There is an isomorphism of pointed linking groups

(G, \,c) ~ (G, N, )
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(2) There are
(i) a group isomorphism v : G/Tors G — G'/Tors G’ such that
v ([e]) = [];
(i) two retractions r : G — Tors G and r' : G' — Tors G’ of the
natural inclusions into G and G’ respectively and an isomor-
phism ¥ of pointed linking pairings

(Tors G, A\, r®"(c)) ~ (Tors G', X', 7"®"(c)).

PROOF. In order to lighten notation, since it is clear when n-ary carte-
sian product is meant, we suppress the superscript . (1) = (2): clearly
a pointed linking group isomorphism ¢ induces a linking group isomor-
phism ¢|1ors ¢ between (Tors G, \) and (Tors G, \'). Choose any retraction
r: G — Tors G of i : Tors G — G. Then v’ = ¢|os gorog ! is a retraction
of i/ : Tors G' > G'. Then ¢|1ors g(r(c)) = 1" o p(c) = (). (2) = (1): let
p: G — G/Tors G, x — p(x) = [z] denote the canonical projection. Define
similarly the canonical projection p’ onto G’/Tors G'. The map

(r,p) : G = Tors G ® G/Tors G, x> (r(z),p(x) = [z])

is a group isomorphism. There is a similar isomorphism (r/,p’) : G' —
Tors G’ @ G'/Tors G’'. Define an isomorphism ¢ : G — G’ by the following
composition

T v rp)~t
G ﬂ Tors G @ G/Tors G i Tors G' ® G’ /Tors G’(LL el

Thus ¢ = (r',p')" o (¥ ®v) o (r,p). By construction |t ¢ = ¥ and
thus it is an isomorphism of pointed linking pairings between (\,7(c)) and
(A, (). The isomorphism ¢ : G — G’ induces an isomorphism [¢] :
G/Tors G — G'/Tors G’ defined by [¢]([z]) = [¢(z)] for all x € G. By
construction [¢] = v. The formula s(|z]) = z — r(x), = € G defines unam-
biguously a section s of the canonical projection p : G — G/Tors G. Define
similarly a section s’ of the canonical projection p’ : G’ — G’/Tors G’ by
s([2']) = ' —r'(2’), 2’ € G'. Then

pos([z]) =z —r(x)) = (x) — o(r(x)) = p(x) —r' o p(x) = 5" o [¢]([x]),
thus pos = s o|p]. It follows that

p(c) = (r(c) + c = r(c)) = @(r(e) + @(s([c]) =r'(d

COROLLARY 3.4. Two linking groups (G,\) and (G',\') are isomorphic if

and only if the groups G and G’ are isomorphic and the linking groups
(Tors G, \) and (Tors G', \') are isomorphic.
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3.5. The isomorphism problem for pointed lattices. We now give
a necessary and sufficient condition to solve the isomorphism problem for
pointed lattices (pointed linking groups with trivial linking pairing and
abelian free group). This is the Proposition 3.1 below. This condition will
be used in the sequel to manufacture invariants of linking groups.

Let V be a lattice. The linear group GL(V') acts naturally on V' in the usual
way. Extend diagonally this action to any n-ary cartesian power of V.

PROPOSITION 3.1. Let V' be a lattice. Two n-tuples x = (x1,...,x,) € V"

and y = (y1,--.,Yn) € V" lie in the same orbit of GL, (V) if and only if

(3.8)

for any N € Z, for any(ai,...,a,) €Z", Zaj zje NV & Zaj yj € N-V.
J jeJ

To prove Proposition 3.1, we need a number of lemmas.

LEMMA 3.5. Let x1,...,x, be Z-independent elements in a lattice V. The
sublattice S generated by x1,. .., T, is primitive if and only if
(3.9)
for all (a1, ...,an) € Z" with ged(aq,...,an) =1, Zaixi e V\ U k-V.
7 k>1

PROOF. Suppose that thereis (aq,...,a,) € Z™ with ged(ay,...,an) =1
such that } ; a;x; € k-V for some k > 1. Let y = %ZZ a;x; € V. By hypothe-
sis, k-y = >, a;x; € S. We claim that y ¢ S. Otherwise since the z;’s are in-
dependent, k|a; for all ¢, which contradicts the fact that ged(ay, ..., a,) = 1.
Hence S is not primitive.

Conversely, suppose that S is not primitive. There exists y € V\S such that
k-y € S for some k > 1. Consider the smallest integer £ > 1 realizing this
condition. Then there exist bq,...,b, such that k -y = >, bjz;. Let | =
ged(by, ..., by). Since y ¢ S and by minimality of k, the integers k and [ are
coprime. Let a; = b;/l, i = 1,...,n. By construction, ged(by,...,b,) = 1.

We have
ky = ZZ a;T; .
.
es
Since k and [ are coprime, ), a;x; € k- V. This is the desired result. O

LEMMA 3.6. Let x1,...,x, and yi1,...,yn be two families of independent
elements in 'V satisfying the condition (3.8). Let S and S’ be the sublattices
generated by x1,...,x, and y1,..., Yy, respectively. Let c;; € Q be rational
numbers, 1 < 14,j < n. The primitive hull of S is generated by z), = Zj CijTj
if and only the primitive hull of S is generated by y; = 3, cijy;, 1 <i < n.

Proor. Consequence of the previous lemma. O

LEMMA 3.7. With the same hypothesis and notation as in the previous
lemma, there exists an automorphism ¢ : V. — V such that p(x;) = y;
for all i.
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PROOF. Define ¢(x}) = y!, 1 < i < n. This defines an isomorphism

between the respective primitive hulls S and S By Lemma 2.2, this iso-
morphism extends to an automorphism ¢ : V. — V. Let 2}, 1 < ¢ < n,

be the generators of S. There are rational numbers cj (1 <i,j < n)
such that 2 = Zj ¢ijr;. The matrix C' = (¢ij)1<ij<n is invertible over
Q. Since some multiple of each w; lies in S, we deduce that the inverse
matrix C™! = (d;j)1<ij<n has integral coefficients. By the hypothesis,
yi = 2 ¢y, 1 < i,j < n, form a Z-basis of generators for S'. There-
fore,

o) = ¢ (Z dw‘ﬂ«“&)
J
= Z dijep(x)
J
= Z dijy;
J
= Yi-
This is the desired result. O

ProOOF OF PROPOSITION 3.1. Necessity is clear. Let J be a maximal
subset of {1,...,n} such that the elements x;, j € J, are independent over
Z. Then the relation for N = 0 shows that the elements y;, j € J, are also
independent over Z. Applying the previous lemma yields an automorphism
¢ € GL(V) such that ¢(x;) = y; for all i € J. Let k ¢ J. There is a relation

Zaj zj+ap x =0,

jedJ

for some ag + 0. Then

(3.10) 2 a; Y +ag Y = 0.
jeJ

Since y; = ¢(x;) for j € J, we deduce that

O=<p<2aj xj + ay :Uk> zzaj yj +ap (k).

JjeJ JjeJ
Comparing this equality to (3.10), we deduce that
ap yr = ax (T).

Since ay £ 0 and since V' is torsion free, y = p(zg). O

3.6. The stable classification. We begin by recalling the classical
results on the stable classification of lattices. Recall from §2.2 that by defi-
nition, two bilinear lattices are stably equivalent if they become isomorphic
after adding to them some unimodular orthogonal summands. Furthermore,
the map

(Vo f) = (G, Af)
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induces a bijective correspondence between stable equivalence classes of non-
degenerate bilinear lattices and isomorphism classes of nondegenerate link-
ing pairings (Th. 2.2).

The aim of this paragraph is to extend this result to the more general setting
of pointed linking groups.

A pointed bilinear lattice V' is a bilinear lattice equipped with a finite ordered
collection ¢ of elements c¢1,...,c, € V*. Pointed bilinear lattices form a
monoid for the orthogonal sum @. Let (V, f,¢) and (V, f, ¢) be two pointed
bilinear lattices. A weak isomorphism between them is an isomorphism
v (V, f) = (V' f') of bilinear lattices such that ¢*(¢’) = ¢ mod f(V). For
instance, if the bilinear lattices are isomorphic in the usual sense and if the

distinguished elements ¢ and ¢ lie in f(V') and f(V"’) respectively, then the
pointed bilinear lattices are weakly isomorphic.

EXAMPLE 3.4. Let (U, h) and (U’, h’) be unimodular bilinear lattices. If ¢ :
(U,h) — (U', k') is an isomorphism of bilinear lattices, then ¢ : (U, h,u) —
(U',h',u') is a weak isomorphism of pointed lattices for any u € U™ and any
uey™.

We say that (V, f,c) and (V', f', ¢') are stably equivalent if there exist pointed
unimodular lattices (U, h,u) and (U’, b/, ") such that (V, f,¢)® (U, h, u) and
(V' f.dy® (U, W, u') are weakly isomorphic as pointed bilinear lattices.

Clearly stably equivalent pointed lattices induce isomorphic pointed link-
ing groups. The main observation of this section lies in the converse and
generalizes Th. 2.2.

THEOREM 3.3. Two pointed bilinear lattices (V, f,c) and (V', f', ) are sta-
bly equivalent if and only if there is an isomorphism

¢ : (Coker f, N, [c]) = (Coker f, A" [])

of the induced discriminant linking groups. In fact, any isomorphism ¢ :
(H,\,z) — (H',N,2") of linking groups lifts to a stable equivalence of
pointed bilinear lattices.

PrOOF. Let s : (V, f,c) ® (U, h,u) —» (V', f',) @ (U, W, u') be an ex-
plicit weak isomorphism realizing the two stable equivalence between the
pointed bilinear lattices (V, f,¢) and (V’/, f’,¢’). Since unimodular pointed
lattices are sent via the discriminant construction to trivial linking pairing
(with trivial distinguished elements), this isomorphism induces an isomor-
phism

Coker (f/ @ k') = Coker f' — Coker f = Coker f@®h

whose restriction to G = Tors Coker f is an isomorphism of the linking
pairings A" and M.

Conversely, it suffices to prove the last statement. Let ¢ : (H,\,z) —
(H',X,2") be an isomorphism of linking groups. Set G = Tors H and
G’ = Tors H'. Using [14, Proof of Th. 4.1], lift ¢|¢ : G — G’ to a stable
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equivalence s between nondegenerate bilinear lattices (V, f) and (V' f').
Consider the following commutative diagram of extension of abelian groups

% p

0 G H F 0
lqﬁc 2i¢ l[(ﬁ]
0 G — g s 0

where 7 is the canonical inclusion and [¢] : F — F’ is the isomorphism
induced by ¢. The two horizontal short exact sequences are split. Choose a
section s : F'— H of p. Then s’ = poso[p|™' : I/ — H' is a section of p/.
Define
V=veasF), f=f&o0

and similarly V! = V' @ &/(F))*, f' = f'@®0. We see that ¢ = s ® Pls(r)
is an isomorphism between the lattices (V, f) and (V’, f/ inducing the iso-
morphism ¢ : (H,\) — (H’, \'). Furthermore, let Z € V* = V* @ s(F) and
o' e V" =V @s/(F') be lifts of v € H = G@s(F) and z € H' = G'®s'(F')

respectively. Clearly ¢* sends #' to # mod f (V) Therefore, ¢ is a suitable
stable equivalence between pointed bilinear lattices lifting the isomorphism
between group linkings (H, A\, z) and (H', X, z'). O

In practice, the following corollary is useful. It shows that in the process
of stabilization, one can restrict to a particular pointed unimodular lattice.
Denote by +1 the bilinear lattice on Z sending (1,1) to £1.

COROLLARY 3.5. Two n-pointed bilinear lattices (V, f,c) and V', f', ) are
stably equivalent if and only if they are related by a finite sequence

/ /
o

(V, fre) 25 o s o PG V', f.¢)
of the following two operations:

(i) lattice isomorphisms;
(ii) orthogonal sum with (Z,+1,0).

Let us state the particular case of torsion groups.

COROLLARY 3.6. Two pointed nondegenerate bilinear lattices (V, f,c) and
(V' ', are stably equivalent if and only if the discriminant linking pair-
ings (G, Ag) and (Gyr, Ap) are isomorphic. Furthermore, any isomorphism
between two nondegenerate pointed linking pairings (G, \,x) and (G', N, z')
can be lifted to a stable equivalence of pointed bilinear lattices (V, f,Z) and
V', f "),

REMARK 3.5. The notion of stable equivalence generalizes the notion of
stable equivalence for bilinear lattices (without distinguished element) and
is weaker than the notion of strongly stable equivalence defined for bilinear
lattices equipped with Wu classes. It is indeed clear from the definition
that if two triples (V, f,¢) and (V’, f/, /) of bilinear lattices equipped with
distinguished elements v € V* and v € V'* that happen to be image of
Wu classes (by f@ and [’ respectively) are strongly stably equivalent, then
they are stably equivalent. See Th. 2.1 and Th. 2.5 respectively.
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3.7. The vanishing condition. We study precisely the condition for
a generalized Gauss sum to vanish, in terms of characteristic elements. We
keep notation from the previous paragraphs.

LEMMA 3.8. ¥(G,q) is nonzero if and only if (G) = 0. If this condition
is satisfied then |y(G,q)| = 1.

See for example [6, Lemma 1.1, §2.3] for a proof. In particular:

COROLLARY 3.7. If q is nondegenerate (G*+ = 0), then v(G,q)~" = (G, q).

The study of possibly degenerate quadratic functions is necessary, however,
in many contexts. For instance, the tensor product of a nondegenerate
homogeneous quadratic function and a nondegenerate bilinear lattice may
be degenerate.

ExaMPLE 3.5. The tensor product of the nondegenerate quadratic form
defined by z + 2%/4, x € Z/2 and the nondegenerate bilinear lattice defined
by (z,y) — 2zy, = € Z, is degenerate.

Note that, in the general case, ¢|gL is a homomorphism G — Q/Z.

Let f:V xV - Zand g: W x W — Z be two nondegenerate bilinear
lattices. Endow f ® g with a Wu class z € (V ® W)ﬁ. Recall that the
subgroups A = j;(Gy ® W) and B = j4(V ® G4) are mutually orthogonal
in Gygy with respect to the discriminant linking pairing Arg, (See §2.2,
Lemma 2.9). As before, we set H = An B =An A+,

We apply Lemma 3.8 to the quadratic function ¢ gy, 0 jr on Gy @W. We
deduce from Lemma 2.8 that (Gf @ W, ¢rgg,- © jf) =~ (A, ¢fgg.-a). The
next result is an immediate consequence:

THEOREM 3.4. The following assertions are equivalent:

(1) (G @ W, pjgg,z 0 jf) * 0.

(2) Y(V® Gy, pr@g.z© dg) + 0.

(3) Yfxg,:lH =0.

(4) ¥([t]) is the characteristic element associated to Ay @ Ay for z =
20 + 2t with zo € Wu?(f ®g), te VEQWH, [t] e Greg/H* and 1
18 the natural isomorphism Gf®g/HJ- - GrRdG,.

(5) The Wu class z € Wu(f®g) is sent to 0 under the natural projection
Wu(f®g) » Wu(f ®9)2(V:@W +V @W?).

PROOF. Since j; is injective (Lemma 2.8), (Gy ®@ W, ¢gq.- © jf) =~
(A, pf@g.2]4). The annihilator of ¢sg,.la is A n AL = H. Therefore,
applying Lemma 3.8 to the quadratic function yfgg.|a gives the equiva-
lence (1) <= (3). A similar argument yields (2) <= (3). The equivalence
(3) < (4) is Theorem 2.10. The equivalence (3) <= (5) follows from
Lemma 2.23 (§2.4). O

Fix a Wu class z € Wu(f ® g). Recall (§2.4) that (V ® W) acts freely and
transitively on Wu(f ® g). Therefore, there exists a unique triple (v, w, &)



4. RECIPROCITY 65
such that v € Wu" (f), w e Wu"(g) and ¢ € (V ® W)! such that
z=vQ@w + 2.
It follows from (2.9) that

izl = (pr ®9) 0 j7 m — Assg([€], —)|a

where Asg, denotes the (induced) bilinear pairing G/H+ x H — Q/Z (see
Lemma 2.23). Suppose now that z verifies one of the conditions of Th. 3.4.
Then ¢fgg..|m = 0. Thus

(‘Pf,v ®g) Oj;1|H = Af@g([f]v —)|u-

Observe that the homomorphism H — Q/Z, z — (¢, ® g) 0 j;l(a}) has
order 2 in H*: this follows from Theorem 2.6. [Alternative proof: it follows
from Lemma 2.12 that (¢, ® g) o J;1|H = (90 ®9)|Ker(§if®g)' Note that
2 ¢¢(x) = Af(x, x) since ¢¢, is homogeneous. Hence

2 (010 ®9) 0 jp H(H) =2+ (g1 ® g)(Ker(A; ®37))
= (207, @ 9)(Ker(\; ©9)) = (Af ® 9)(Ker(A; ®§)) = 0

where A; denotes the map « + A;(x, z).] Therefore, since the bilinear pair-
ing G/H+ x H — Q/Z is nondegenerate, 2[¢] = 0 in G/H+ ~ G;®G,. This
is equivalent to 2§ € VEQW +V @ WH.

Hence we have proved:

COROLLARY 3.8. If a Wu class z € Wu(f ® g) satisfies ¢ g, = 0 then
ze Wu2(f ®yg).

4. Reciprocity

We derive a formula in the Witt group of torsion quadratic functions; pre-
sented as an alternative, it generalizes all previously known formulas of
reciprocity. We keep notation from the previous paragraphs. The formula
can be regarded as a far-reaching generalization of the classical Van der Blij
formula. Hence we begin the Van der Blij formula first.

4.1. The van der Blij formula. In 1959, F. van der Blij stated a for-
mula relating the bilinear lattice to its discriminant function. In short, this
is a computation of the Gauss sum associated to a discriminant quadratic
function. Since any quadratic function is a discriminant quadratic function
(Th 2.4), this computation applies to any (nondegenerate) finite quadratic
function. The computation is explicit in terms of the bilinear lattice ly-
ing over the quadratic function and yields a fundamental invariant of the
quadratic function. The applications of this beautiful formula, many times
rediscovered, lie in algebra and topology.

THEOREM 4.1. Let q : G — Q/Z be a nondegenerate quadratic function on
a finite abelian group. Let (V, f,v) be any (nondegenerate) bilinear lattice
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equipped with a Wu class v e V*# such that (G, 050) = (G,q). Then
21,
(4.1) Gy pra) = exp( - (sign(f) = fa(v.v))).

Here sign(f) denotes the signature of the lattice (V| f) ® R. It follows that
the rational residue sign(f) — fo(v,v) mod 8 is an invariant of (G, ¢) and
will be denoted ((q) € Q/8Z.

As hinted above, the applications in algebra and topology are just too nu-
merous to list. We shall content ourselves with a few obvious observations
and consequences:

1. If g is homogeneous then 3(q) € Z/8Z.
2. If (V, f) is unimodular then sign(f) = f(v,v) mod 8 for any Wu
classv e V.

A complete proof of the formula above can be adapted for instance from the
original paper [3] or from [43].

4.2. Statement. A quadratic function g : G — Q/Z on a finite abelian
group is metabolic if there exists a subgroup H < G such that H+ = H
and ¢|g = 0. Two quadratic functions ¢ : G — Q/Z and ¢’ : G' — Q/Z are
Lagrange-related if the quadratic function ¢@® (—¢') on G@® G’ is metabolic.
This defines an equivalence relation on the monoid of quadratic functions
on finite abelian groups; furthermore, the set of all equivalence classes forms
a group W, the Witt group of quadratic functions on finite abelian groups
(see [55, Chap. 5, §1]). The addition is induced by orthogonal sum.

It is not hard to see that the Gauss sum (G, q) associated to a quadratic
function is actually an invariant of its Witt class. The general reciprocity
formula below is an identity between Witt classes.

Let f:V xV - Zand g: W x W — Z be two nondegenerate bilinear
lattices. Endow f ® g with a Wu class z € (V ® W)!. Recall that the
subgroups A = j¢(Gy®W) and B = j,(V ®G,) are mutually orthogonal in
G rgg with respect to the discriminant linking pairing Afgg. As before, we
set H=AnB=An AL

THEOREM 4.2 (Reciprocity). The following alternative holds: either ¢ g .
1s not identically zero on H or

(4.2) [Grgg, Pfeg,2] = [GFOW, 0igg.- 077l +[V Gy, ¢rgg,-0Jy] in WA.

A corollary of Th. 4.2 is the following reciprocity formula [62, 1.3]. Below
bar denotes complex conjugation.

COROLLARY 4.1.

(4'3) V(Gf ® VVv PfRg,z © ]f) = V(Gf®ga 80f®g,z) : 7(V ® Gga PfRg,z © ]g)

Proof of Corollary 4.1. If ¢ gy .|i is not identically zero on H then Th. 3.4
implies that both sides of (4.3) are zero:

'Y(Gf®W7 PfRg,z Ojf) =0= 7(V®G97¢f®g,z Ojg)-
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Suppose that gy .|r is identically zero. Then the three Gauss sums ap-
pearing in (4.3) are nonzero. It is well known that the Gauss map 7 induces
a homomorphism Q — C* (e.g., [55, §2]). Applying v to the relation
(4.2) and using the fact that y(G, q)~! = (G, q) yields the desired relation.

]

COROLLARY 4.2. Let v e Wu(f) and w e Wu(g). For any vo € Wu" (f) and
wo € WuW(g);

(4.4)
V(Gf®w,w,m®g+ Gr®a)([5] ®w>) -

(G r@g.v0w) 7(‘/ ® Gy, | ® pguw, + (J?® 3‘9)(” ® [WD)

ProOF. Apply Cor. 4.1 to the case z = v ® w. Noting that
VW =v9@w+ (v—19) Qw =vRQwy + v & (w— wp)
with v — vy € 2V* and w — wy € 2W*, we have, according to (2.9),
P fRg,v@w Ojf = @Ffwo Kg— ()\f ®g)([v72$] ®w, _)|G®W
and, according to (2.10),
P 090w © Jg = f ® Pguwe — (F @A) (v @ [“F2], Hlvea,-
This yields the desired result. O

COROLLARY 4.3. [6, Th. 3] For any vo € Wu" (f) and wo € Wu"(g),
(4.5) NG ®W, 050, ® 9) = VG fwgmw) YV @Gy, f @ Pgu)-

Proor. Cor. 4.2 with integral Wu classes v = vy and w = wy. O

For the proof of the reciprocity, we refer to [13].






CHAPTER 3

The Weil representation of a finite abelian group

In 1964, in a remarkable paper [65], André Weil constructed a unitary rep-
resentation associated to a symplectic locally compact abelian group. In a
few decades the Weil representation has appeared to be a central object in
mathematics, lying at the crossroads between the theory of theta functions,
number theory, harmonic analysis and quantum mechanics.

In the third paragraph of his celebrated paper, André Weil makes in passing
the following remark: “qu’il me soit permis, en passant, de signaler I'intérét
qu’il y aurait peut-étre a examiner de plus pres, du point de vue de la
présente théorie, le cas des groupes finis.” (“Let me mention in passing the
interest that might lie in studying more closely, from the viewpoint of the
present theory, the case of finite groups.”)

The exact intent of Weil is not immediately clear, aside from a note to a
paper by H. Kloosterman. One possible interpretation is that the existence
of the Weil representation for finite abelian groups is closely related to the
existence of Abelian Topological Quantum Field Theories.

1. The Heisenberg group

1.1. The Heisenberg group associated to a lattice. Let w : V x
V' — Z be a nondegenerate symplectic lattice. We choose a form 5: V xV —
Z such that

(11) B($,y)_ﬁ(y,$) :w(:c,y), Ve,yeV.

Such a form will be called a Seifert form. The motivation for this terminol-
ogy comes from the following example.

EXAMPLE 1.1. Let ¥ < S be an oriented smooth surface. Choose a bicollar
Int(X) x [0,1] < S% — 0%. For a l-cycle x representing an element z in
H{(X), denote by ™ (resp. ) the 1-cycle representative corresponding to
x x 1 (resp. x x 0) in the bicollar. The Seifert form is a bilinear pairing
B: H1(X) x H{(X) — Z defined by

Bx,y) =k(z,y") € Z, z,ye H|(Z),

where 1k denotes the usual symmetric linking pairing of cycles in S3. We
have

B(l‘,y) - 6(3/,1’) = 1k($,y+ - yi) =Tey
where e denotes the intersection pairing on Y. Hence [ satisfies the relation
(1.1) where w is the intersection pairing.

69
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The Heisenberg group (V') associated to (V, ) is defined the set V' x Z
endowed with the multiplication rule

(z,8) (y,t) = (x +y, t +1' + B(z,9)).
The short exact sequence

(1.2) 0—=2—>HV)—V —0.

is non-split unless w = 0. The symplectic group Sp(V') is the subgroup
of automorphisms of V leaving w invariant. The affine symplectic group
ASp(V) is the group of automorphisms of (V) acting trivially on the
center Z. It fits into the short exact sequence

(1.3) 0 — Hom(V,Z) —— ASp(V) ——=Sp(V) —1

which is non-split unless w = 0.

1.2. The Heisenberg group associated to a finite group. Let A be
a finite abelian group. A symplectic form on A is a nondegenerate alternate
bilinear pairing w : A x A — Q/Z. We say that (A, w) is a symplectic abelian
group. We choose a form 5 : A x A — Q/Z such that

(14) B(xay)_ﬂ(yax) zw(:c,y), anyEA‘

By analogy with classical knot theory (see Example 1.1 above), we still call
the form (3 above satisfying (1.4) a Seifert form associated to the symplectic
form w. Note that there is no uniqueness of the Seifert form 3 for a given
symplectic form w: adding a symmetric bilinear pairing to a Seifert form
produces another Seifert form.

The Heisenberg group is the extension 7 (A) = H3(A) associated to (A, ):
it is the set A x Q/Z equipped with the group law

(z,t) - (y,t") = (x + y, t +t' + B(z,y)).

The Heisenberg group fits into the short exact sequence

(1.5) 0 Q/Z H(A) —= A —0.
The center Z of #(A) is Z =0 x Q/Z.

LEMMA 1.1. The Heisenberg group 7 (A) is a split extension of A if and
only if 7 (A) is a direct product of A and Q/Z) if and only if w = 0.

PROOF. If w = 0 then J#(A) = A x Q/Z with direct product group
structure. Conversely, suppose that the extension J#(A) is split. There
exists then a section s : A — J#(A), s(a) = (s1(a),s2(a)), with s : A —> A
and sy : A — Q/Z. Since s is a section, we must have si(a) = a. Since s is
a group homomorphism,

so(a +a') = sa(a) + so(a’) + Bla,d’), Va,d € A.

This implies that 3 is symmetric, which in turn implies that w = 0. U
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Let
(1.6) ASp(A) = {s € Aut(H(A)) | s|z =1dz}.

Let Sp(A) denote the symplectic group of (A,w), that is, the subgroup of
automorphisms of A leaving w invariant. Note that Sp(A) is finite. It is not
hard to see that ASp(A) is an extension of Sp(A) that fits into the short
exact sequence

(1.7) 0 — Hom(A, Q/Z) — ASp(A) Sp(A) 1.

(In particular, ASp(A) is finite.) More exactly, elements in ASp(A) can be
presented as ordered pairs (s,q), s € Aut(A), ¢: A — Q/Z acting on H(A)
by

(1.8) (s:9) - (z, 1) = (s(z),t +q(x)), (x,t)€ H(A).
The group law in ASp(A) is given by
(1.9) (s,9) - (s',d) = (so 5", qos' + ).

Furthermore, s and ¢ are related by the formula

(1.10) q(z +y) —q(z) — q(y) = B(s(z), s(y)) — B(x,y), Y,y € A.

Since the left hand side is symmetric, it follows that s € Sp(A). Since the
right hand side is bilinear, it follows that ¢ is a quadratic function on A. In
particular, each s € Sp(A) determines a linking pairing As : A x A - Q/Z
defined by

(L.11) As(@,y) = B(s(x),s(y)) — B(x,y), x,y€ A

LEMMA 1.2. The following assertions are equivalent:

(1) The affine symplectic group ASp(A) is a split extension of Sp(A)
and Hom(A,Q/Z);
(2) A has odd order.

(3) Multiplication by 2 defines an automorphism of A;

PROOF. Let ASp’(A) denote the set of pairs (s, As) where s € Sp(A4) and
As = s*B — B. This set is a group for the operation

(s,0s) - (8", Ag) = (508, () As + Ay).

Let (s,q) € ASp(A). According to (1.10), b, = Xs. The projection map
p: ASp(A — Sp(A4), (s,q) +— s factors through the map p” : ASp(4) —
ASpP'(A), (s,q) — (s,by), so that the diagram
ASp(4) - Sp(4)
P’ /
ASp'(A)

commutes. There is a section o : Sp(A) — ASp(A) if and only if there is a
section o” : ASp’'(A) — ASp(A). Thus the proof is a relative version of the
proof of Prop. 4.1.
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Let us prove (1) = (2). Assume that A has even order. We shall show that
there is no group-theoretic section o” : ASp’(4) — ASp(A). Consider an
element xy € A of order 2 where k is maximal. There exists another element
x1 € A of order 2% such that the isotropic subgroups By and B; generated
by x¢ and x; respectively do not intersect nontrivially, the subgroup By® B
is an orthogonal summand of (A, w) and

To - T1

o (mod 1), S(x1,x0) = B(xo,x0) = B(21,21).

Define a symplectomorphism s : A — A by setting

w(xo,x1) = B(xo, 1) =

s(m xg,n x1) = (—n x9,m 1), MmN €%

and by extending by the identity on the orthogonal complement of By ® B;.
Then A, = s*—f3 is a symmetric linking pairing of order 2. For z = (z¢, z1)
and 2’ = (zf,z}), we have

T1Th + o)
-
A quadratic enhancement of A is the quadratic form ¢ defined by ¢(x) =

__ZToT1
ok

Let us prove (3) = (1). We should prove that the short exact sequence
(1.7) is split. Define a map o : Sp(A) — ASp(A) by o(s) = (s, ¢qs) with

qs(x) = %)\S(Ji,ﬂf), z e A.

The map ¢s : A - Q/Z is clearly a (homogeneous) quadratic function. We
have

As(z,2') = mod 1.

tros@) = 2850 8/(2) 50 (2)) = Ble,)
= (850 (2), 50 /(x)) — B(s' (), '(2))
F @), £ - Ble )
=qs0 SI({L‘) + qsl(x)-

It follows that
0(508) = (508, guog) = (505,405 + gy) = o(s) - o(s)).
Hence o is a group-theoretic section of the short exact sequence (1.7).
Let us prove (1) = (2). Let ASp’(A) denote the set of pairs (s, \s) where
s € Sp(A) and \s = s* — 3. This set is a group for the operation
(5,Xs) - (8, Ag) = (508, (8)*As + Agr).
Let (s,q) € ASp(A). According to (1.10), by = As.

The projection map ASp(A) — Sp(A), (s,q) — s factors through the map
ASp(A) — ASp'(4), (s,q) — (s,by). Hence if the projection map (s, q) — s
has a section, then the projection map (s, q) — (s, bq) has a section.

O
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REMARK 1.1. By definition the Heisenberg group depends on a Seifert form
B for the symplectic form w. For any two Seifert forms 5,5 : A x A —
Q/Z for w, the corresponding Heisenberg groups #3(A) and 3 (A) are
isomorphic by an isomorphism that is trivial on the center. But there is no
canonical isomorphism. Consider the set Iz g of all isomorphisms .7#3(A) —
H (A) that act trivially on the center Z. Then the group ASp(A) acts freely
and transitively on Ig g. It is therefore sufficient to fix one Seifert form
for w and study the corresponding group ASp(A).

REMARK 1.2. Our presentation of the Heisenberg groups in this paragraph
and in the previous one uses the additive notation for the value group (since
the applications we have in mind are for lattices and finite groups). Given
a symplectic abelian group (A, w) with Seifert form (3, we may regard the
symplectic form and the Seifert form as bimultiplicative pairings A x A —
U(1) into the multiplicative group U(1). Then we could equivalently define
the Heisenberg group associated to A by the same group law as before but on
the underlying set A x U(1). This leads to a Heisenberg group 4 (A;U(1))
that contains an isomorphic image of the Heisenberg group 7 (A).

2. The Heisenberg group and the discriminant

The goal of this paragraph is to study the Heisenberg group associated to the
discriminant group. Let (V,w) be a nondegenerate symplectic lattice. The
discriminant construction (see Chap. ) associated to (V,w) a discriminant
finite symplectic group (G, A,) that fits into the exact sequence

W

0 \% Vi G, 0.

The intermediate group V* has a natural symplectic structure induced by
w, namely wolyzyy 0 VEx VE— Q.

LEMMA 2.1. There is a Seifert form B :V x V. — Z associated to w such
that Bo(V,V*) S Z and Bo(VH, V) € Z.

In the sequel we fix such a Seifert form g for V. This determines a Heisenberg
group H (V) for V. Then V* has also a Seifert form, namely Bg|yyy+ @ VF x
Vt — Q. We define the Heisenberg group H (V*) associated to (V¥, Bolyixy:)
in the same way as before: it is the set V# x Q endowed with the usual mul-
tiplication rule.

The last symplectic group (G, A,) also inherits a Seifert form, namely the
Seifert form defined by

Bu([z], [y]) = Bo(z,y) mod 1, z,ye V*

(Lemma 2.1 ensures that this is well defined.)

LEMMA 2.2. There is a short exact sequence

0—=H(\V)— HV*" — H(G,) —0.
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PROOF. The inclusion map H(V) — H(V!) is the natural one provided
by the set-theoretic inclusion. By Lemma 2.1, H(V) < H(V*). The natu-
ral projection map H(V#)/H(V) — H(G.), (w,t) — ([w],[t]) is a group
isomorphism. O

3. The Schrodinger representation

In this section, (A, w) is a finite symplectic group.
First we choose a suitable pair (a Seifert form (3, a Lagrangian A; in A).
COROLLARY 3.1. There exists a pair of transverse Lagrangians Ag, A1 for

(A,w) such that B(Ag, Ag) = B(A1, A1) = B(Ao, A1) = 0 and the bilinear
pairing Bla,xa, : A1 x Ag = Q/Z is nonsingular.

PROOF. By the decomposition result of Prop. 3.2, (A,w) = Oex (B, wk)
where By is the direct sum of two copies of a cyclic group of order p™*
and w(xg,yr) = 1/p™ for some ni; € N* and some set xp,y; of genera-
tors of By. We may assume that the sets {x;, k € K} and {yx, k € K}
generate Lagrangians A; and Ag respectively in A. Define a Seifert form
B:AxA— QJZ for w (cf. proof of Cor. 3.4) by the formulas S(zy, z) =

Bk, yx) = By, k) = 0 and B(xg, yx) = w(zk, yx) and bilinear extension.
Then 5|4, x4, = w|A,xA,- The last statement of the lemma follows. O

In the sequel, (A,w) is endowed with a triple (3, Ag, A1) satisfying the prop-
erties of Corollary 3.1.

Let x : Z — U(1) be a character on the center of J#(A). For each a € A,
define a character

Xa:A— U(l)a T = X(B(aa .%'))

Let L?Ag be the Hilbert space consisting of C-valued functions over A
endowed with the positive definite hermitian product

(3.1) (f,9) = D) f(@)-g(2).
T€AQ

An orthonormal basis for L?Ag consists of the set of functions &,,x € Ag
defined by §,(y) = 1 if z = y and §,(y) = 0 otherwise. Recall that L?A, is
actually a commutative and associative algebra for the convolution product

frg(x)= ) flz—y) g(y), z€ Ao

yeAg
We have 9, * 0y = 04y, ¥,y € Ag. The map
T 0y
extends linearly to an algebra isomorphism C[Ag] — L2Ao.

Consider on L?Ay the following two operators:

e Translation: (T,,f)(z) = f(z — ap) defined for ag € Ay.
e Modulation: (Mg, f)(2) = xa,(2) f(z) defined for a; € A;.
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REMARK 3.1. Our convention for the translation operator is chosen so that
Tho0z = 0ztay, TEA, ape€ Ap.
The modulation operator can also be written
My, 0z = Xa,(T) 02y, xE A, a1 € Ay

DEFINITION 3.1. For each a = (ag,a1) € A, define the Weyl operator W, :
L2A0 - L2A0 by
Weo = T4y M,, .

It is clear from the definition that Wy = Id 2 4,. Furthermore, if a = (ag, a1)
and b = (bg, b1) then

(3.2) WyWa = xb, (@0) Wha-
It follows that
(3.3) WyW, = Xa1 (bU)_lxln (ao) WoW.

LEMMA 3.1. For any a = (ag,a1) € A,
(3.4) Wi = Xa, (ag) W_g.
In particular, WiW, = Idp24,.

PROOF. Using the inner product (3.1), one computes

<f7 W*tlg> = Xa1 (a0)<Wafa g>'
The first assertion follows. Now by (3.4) and (3.2),

W;Wa = Xa1 (0)W-aWa = Xa, (@0)X—a, (a0) Wo = Iz 4,-

Let U(L?Ag) denote the space of unitary operators on L2Ag. The map
A — U(L*Ap), a v W,,
is a projective unitary representation in the sense that there is a cocycle
c(a,b) = Xa, (bo)~! € U(1) such that W, = c(a, b)W,W;. The (multiplica-
tively written) group (known as the Mackey obstruction group associated to
A, c) that consists of all pairs (a,t) € A x U(1) endowed with the law
(a,2) - (d,2') = (ad', z7'c¢(a,b) ™), ae A zeU(1)

is precisely the Heisenberg group J#(A4;U(1)) defined in Remark 1.2. The
map

w1 H(A) = U(L*Ao), (a,t) = x(t) Wa,
is a faithful unitary linear representation of .#°(A). This is the Schrodinger
representation of the Heisenberg group.

LEMMA 3.2. The following properties hold:

(1) The Weyl operators W,,a € A, form a basis of Endc(L?Ap).

(2) The Schrédinger representation m : #(A) — U(L%2Ag) is irre-
ducible.

(3) 7 2(0,t) = x(¢) Id for all t € Q/Z.
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ProOF. We follow [49, Lemma 3.2], see also [29, p. 823].
(1) Define a representation A — Endc(L%Ag) by
a(x)p = WeoW, .
If a = (ap,a1) and b = (b, by) then the relation (3.3) implies that
a(0)(Wa) = Xay (b0) ™ xb, (a0) Wa.
Let
Ea(b) = Xar (b0) " Xy (a0)-
W, is an eigenvector of o with eigencharacter Z,. Since a — Z, is an iso-
morphism of A onto Hom(A4, S'), the eigenvectors W, have distinct eigen-

characters. It follows that {W,, a € A} is a set of linearly independent
elements of Endc(L?Ap). Since the cardinality of this set is

|A| = |Ao]| - |A1] = |Ao| - |Ao| = |Ao|* = dimc Endc (L2 Ay),
the set is a basis of End¢(L?Ap).

(2) A subspace of L?Ag invariant under all the Weyl operators W, is invari-
ant under Endc(L?Ap), according to 1. Thus it is either 0 or L?A,.

(3) Follows from definitions. O

THEOREM 3.1 (Stone-Von Neumann-Mackey). For any irreducible unitary
representation p : J(A) — U(H) where H is a Hilbert space such that
plz(0,t) = x(t) Idy, there is an isometry W : L?(Ag) — H such that

U(n(h)f) = p(R)W(f), for all fe L*(A), he H#(A).

In short: up to unitary equivalence, there is a unique unitary irreducible
representation m : J#(A) — U(L?Ap) such that 7|z(0,t) = x(t) Idjz24,.
The Schrodinger representation is essentially unique.

ProoOF. We follow [49, Theorem 3.1] supplying details from [38, p.26-
27]. Since 7 is faithful, we regard #(A) as embedded into U(L24p). By
the previous lemma, Endc(L2Ag) is freely generated over C by the Weyl
operators Wy, a € A. Therefore p : 7 (A) — U(H) extends linearly to a
representation j : C[#(A)] = Endc(L?4g) — Endc(H) by

(3.5) p (Z AM@) = > Xap(Wa).

This turns H into a Endc(L?Ag)-module. Since p is irreducible, H is a
simple End¢(L?Ap)-module. On the one hand, since p is unitary,

p(Wo)*p(W,) = 1Idy for all a € A.
On the other hand, since W, is unitary,
pW3)p(Wa) = p(WgWa) = p(Idgz24,) = Idy.
Hence p(W}) = p(W,)~! = p(W,)*. It follows from (3.5) that
F(6%) = ()" for all ¢ € Ende(L2Ay).

For a € A, let p, be the orthogonal projector onto Cé, < L?Aq defined
by pa(f) = {f0a)da- Then p2 = p, and p} = p,. Furthermore, j(pa)? =
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p(r;) = p(pa) and p(pa)* = p(pi) = p(pa) thus p(pa) is an orthogonal
projector. Since p is injective, p(p,) has rank 1. In particular,

ﬁ(pa)/H = (CUO :+: 0

for some vector vy € H, ||vo||y = 1. Define a map ¥ : L2Ay — H by setting

U(pdo) = p(P)vo, ¢ € Ende(L*Ap)

and extending by C-linearity. This map is well defined since

(i) Endc(V)do = L*Ao;
(i) if ¢(d0) = ¢'(do) then ¢po = ¢'po, so p(#)p(po) = A(¢")A(po), hence
(p(¢) — p(¢")) © ppo) = 0. Since p(po) + 0, we have 5(d)[n, =
(@), so that p(d)h = p(¢)h.
We claim that ¥ is surjective. Let ¢, € Endc(L?Ag) such that ¢,(d) =

dq. Then ¢upod; = p, and therefore Id;24, = Zaer baDa®y Applying
p: Endc(L2Ag) — Endc(H) yields

Idy = > p(¢a)p(p0)p(da)*.

ae AO

Hence any element h € H decomposes as h = ),
of W follows.

Observe that W(¢ds) = W(¢¢ado) = p(dda)vo = p(#)p(¢a)vo = p(¢)¥(¢Pado) =
p(P)¥(d,). It follows that

(3.6) U(of) = p(¢)U(f) for all ¢ € Endc(L*Ag) and fe L?Ag.

ac A, MaP(Pa)vo. Surjectivity

Using again that p is unitary, we deduce that ¥ : L2Aq — # is an isometry.
Restricting the property (3.6) to .#°(A) yields the desired result. O

An alternative incarnation of Schridinger representation is the representa-
tion of #(A) induced from a maximal abelian normal subgroup in J#(A).

LEMMA 3.3. For any Lagrangian Ay in A, the subset L1 = Ay x Q/Z <
HC(A) is a mazimal abelian normal subgroup.

In particular, L; contains the center Z = 0 x Q/Z. Extend the character
X : Z — U(1) to a character x on L by

X:Li —U(1), (z,t)— x(t).

We now assume that these choices are fixed throughout the construction to
follow.

Let ‘H 4, be the Hilbert space of functions f : 5#(A) — C such that
1) = Q) L), heA(A), e Ly,

The induced representation is given by the action of J#(A) on H 4, by left
translations

©'(W[f1(z) = f(h™'z), feHa, heH(A).
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To see that this representation is equivalent to the previous representation
7, observe first that any map f : Ag — C extends in a unique way to a map
f € Ha, defined by

Flag-1) = x()7" f(ao), ao€ Ao, L€ L.
ProposiTiON 3.1. The map f +— f s an isometry
LQ(AO) - HAU f = f~7

which is an equivalence between the representations m and 7.

PRroor. The first assertion follows from the deﬁpition. For the second

assertion, we verify the identify w(h)[f] = 7«'(h)[f] for h € #(A) and
f e L? (Ao) U

It follows in particular that the Schrodinger representation only depends on
the choice of one Lagrangian Ag in A rather than on a pair of transverse
Lagrangians of A. This is also clear from the definition of the Weyl operator
(where A; can be replaced by A/Aj throughout the construction).

As our construction is based on the finite group A, there is yet another
presentation of the Schrodinger representation as a quotient of the group
algebra of the Heisenberg group. Let I = I, , be the two-sided ideal in
C[#7(A)] generated by the set {h -1 — x(l)h, he H#(A), l € L1}. Set

H(A) = C[#(A)]/I.
The Heisenberg group J#(A) acts by translations on the left on the group
algebra C[27(A)]:
h'5k:5hk7 h,k:eji”(A)
Since I is stable under J#(A), this action descends to a representation
H(A) x H(A) > H(A):
Wll(h)[(gk] = [h . 5k] = [5hk]7 h,k S %(A)
PROPOSITION 3.2. The map 6q, — [da,] defines an equivalence
L2AU i H(A)

between the representation ™ and 7.

4. The Weil representation

4.1. The canonical intertwining operator. Consider the version of
the Schrédinger representation constructed in the previous paragraph as an
induced functional representation. It is defined as a map m : H#(A) —
U(Ha)) (noted #" in the previous paragraph) and depends on the choice
of a Lagrangian A in A (noted A; in the previous paragraph). Another
choice of Lagrangian A’ leads to another Schrodinger representation my/ :
H(A) — U(Hypr). By the Stone-Von Neumann-Mackey theorem, the two
representations are unitary equivalent: there exists an isometry para €
Hom%;(A) (Ha,Har) such that

paA(Taf) = mar(para(f)),  f € Ha.
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This relation determines the map par ar up to a scalar of modulus one. Such
a map is called an intertwining operator.

LEMMA 4.1. Suppose that A and A’ are transverse in A. Up to a complex
unit scalar,

(4.1) pialf1(h) = >, f(h

l'eN

PROOF. We need to verify that p[f] € Ha. Let L' = A x Q/Z the
maximal normal subgroup associated to A’. Let ' = (I",t) = (I",0)(0,t) €
L'. Then f(ha') = f(h-(I",0) - (0,8) - (I',0)) = f(h- (I, 0)(I',0) - (0,1)) =
x@) "L f(R-(1",0)(I",0)) = x(2") f( (l” 0)(I’,0)). Then by summing over
' € N, we see that p[f](ha’) = x(«’)~1 - p[f](h). Thus p[f] € Has. Next,
since the action is by translations, p is a if (A)-map. O

Consider now three Lagrangians A, A’ and A” in A. They give rise to three
intertwining operators pas o, par ar and par a respectively. Both ppr o and
par aropar A are intertwiners of H» and Ha. Since H, is irreducible (Lemma
3.2), it follows from Schur’s lemma that there exists C'(A”,A’,A) € C such
that

(4.2) parnr © para = C(A", AL A) pana.

As noticed by A. Weil, it turns out that the cocycle C'(A”, A, A) can be
expressed as a Gauss sum. We shall describe it in the case when A", A’
and A are mutually transverse. Since A @ A” = A, there is a well-defined
projection pyr 5 : A — A” on A” with respect to A. Consider the restriction
p: A — A" of the map ppar a to A

LEMMA 4.2. Suppose A", N and A are mutually transverse. Then

C(A" N A) = 3 x(=BI, para(l))).
e\’

PROOF. Let 0y € H, the extension of the map &y (defined in Prop. 3.1).
Note that the support of 0y is Z-A = A x Q/Z. We apply the identity (4.2)
to &y evaluated at z = 0. Since A and A’ are transverse, Z - A and Z - A/
intersect exactly on the center Z. Hence

pA/ Z 50 l, - 60 O)
l'eN
Thus

C(A", A", A) = pan ar(par.a[d0])(0)

Z Z 50((l”7 0)(l/’ 0))

ZHEA” llEA/

DT s 1,81,

l//eAlI lleA/

Now do(a,t) % 0 if and only if a € A. Thus the only nonzero terms in the
sum above occur when " +1" € A. This is equivalent to I = —pp» A (l'). Let
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us compute this term:

So(l' = para (1), B(=para (1), 1)) = x(B(=para (1), 1)).
—_—
eA
Summing over all I’ € A’ yields the desired result. O

4.2. Definition of the Weil representation. By definition, the affine
symplectic group ASp(A) acts by automorphisms on the Heisenberg group
H(A):

ASp(A) x H(A) > H(A), (s,h) — s(h).
For each s € ASp(A), define a new representation 7* of the Heisenberg group
by
7°(h) = m(s(h))), he A(A).
This representation is still irreducible unitary and verifies
m°|2(0,1) = 7[2((0,1)*) = 7|2(0,%) = x(t) Idf24,
for any t € Q/Z. Hence by Theorem 3.1, the representations m and 7° are

unitary equivalent: there exists a unitary operator (defined up to a unitary
scalar) ps € L2Ag — L%Ag such that

(4.3) ps(m(R)f) = 7 (h)(psf), Yhe A (A), Vfe L?Ag.
Equivalently,
(4.4) T = ps T py L.

The Weil representation is the map
ASp(4) — U(L*Ag), s+ ps.

This definition depends on the choice, for each s € ASp(A), of a unitary
operator ps € U(L?Ap) verifying (4.4).

LEMMA 4.3. The Weil representation is a projective representation in the
sense that for any s, s’ € ASp(A), there exists c(s,s') € U(1) = S such that

(45) Pss! = C(S, S,) PsPs' -
The map (s,s") — c(s,s") is a 2-cocycle satisfying the identity
(4.6) c(so, s152)c(s1, 82) = ¢(sos1, s2)c(so, $1), VS0, S1,52 € ASp(A).
PROOF. For s,s" € ASp(A4),
psps(h) = pr® ()py = por(s'(h)py = 7°(s'(h)) psps = m(55'(h))paps
= 7 (h) paps-
Set C(s,s') = p;jpspsr € U(L%2Ap). Then
C(s,s")w(h) = pripspam(h) = piam™ (W)psps = w(h)piipsps = m(R)C(s, ).

Since 7 is irreducible, Schur’s lemma implies that C(s, s") = (s, s") Id 24,
for some multiple ¢(s, s') € C*. Since C(s,s’) is unitary, ¢(s,s’) € U(1).

The cocycle identity is derived from associativity by writing down the equal-
ity Pso-(s152) = P(sgs1)-s2 and applying (45) g
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There is the natural question of linearization: can one choose the operators
(ps)se Asp(A) 1n such a way that the corresponding Weil representation is
linear ? Specifically, is there a map b : A — U(1) such that s — b(s) ps is
linear ? Such a map exists if and only if b(ss’) c(s,s’) = b(s) b(s’) for all
s,s" € ASp(A). The cocycle ¢ is a coboundary in this case.

In general there is a construction of a central extension of ASp(A) that has
defined on it a linear representation induced by the projective Weil represen-
tation and the cocycle c. The set ASp(A),. of all pairs (s,t) € ASp(A) xU(1)

becomes a group (the Mackey obstruction group associated to ¢) when en-
dowed with the operation

(5,t) - (s',t') = (ss',tt'c(s,8')7Y), seAsp(A), teU(1).

Clearly the group ASp(A), is a central extension of ASp(A) and fits into the
short exact sequence

(4.7) 1 —-U(1) - ASp(A). —» ASp(A) — 1.

The map, induced by the projective Weil representation, defined by
ASp(A). — U(L2Ag), (s,t) —t ps

is a linear representation.

One can ask for a smallest group U, a map u : U — U(1) and a group G,
and a map g : G. — ASp(A), such that there is a commutative diagram
with exact sequences

1 — > U(1) — ASp(A), —= ASp(A) — 1
1 uj] ﬁ ASp(A) — 1.

By taking U = 1, we see the following

PROPOSITION 4.1. The Weil representation is linearizable if and only if the
short exact sequence (4.7) splits.

THEOREM 4.1. If A had odd order, then the Weil representation is lineariz-
able. If A had even order, then the projective Weil representation lifts to a
linear representation of the double cover of ASp(A).

5. The Maslov index for finite groups

We define here the Maslov index for an ordered triple of Lagrangians in a
finite symplectic group (A,w). We adapt the original definition by Kashi-
wara as described by Lion and Vergne in [38, I, §1.5] to our setting. For
other generalizations see also the work of Kamgarpour and Thomas [32].

Let A be a symplectic abelian group. Let Ag, A1, A2 be three Lagrangians in
A. Consider the abelian group Ag@ A1 D As. The Maslov indez is defined as
the Witt class of the homogeneous quadratic form @ defined on AgP A1 P A-
by

Q(ap+ai+as) = w(ag, a1)+w(a,az)+wlas, ag), (ag,a1,az) € Agx Ay x As.
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In the case when A is a lattice, the Witt group is the Witt group of integral
quadratic forms is isomorphic to Z, the isomorphism being given by the
signature. In the case when A is a finite abelian group, the Witt group is
the Witt group 209 of finite quadratic forms is isomorphic to Z/8Z x Z/2Z.
We denote the Maslov index of (Lo, L1, Lo) by u(Lo, L1, L2) € 209Q.

The following two properties are consequences of the definition. The first
property states that the Maslov index is invariant under circular permuta-
tion:

(51) M(L07L17L2) = _M(L17L07L2) = _H(L07L27L1)'

From the classification of finite symplectic pairings, we see that the symplec-
tic group Sp(A) acts transitively on pairs of transverse Lagrangians. The
second property states the Maslov index is invariant under the action of the
symplectic group:

(5.2) Vs € Sp(A), u(s Lo,s L1,s La) = (Lo, L1, La).

A more subtle property of the Maslov index is the chain relation.

PROPOSITION 5.1. Let Ag, A1, Ao, L be four Lagrangians. The Maslov index
verifies the relation

(53) M(AQ, Aq, AQ) = /L(Ao, Aq, L) + /L(Al, Ao, L) + [L(AQ, Ay, L)

The chain relation is a relation in the Witt group. In the classical setting
(when A is a lattice or a vector space), the Maslov index is an integer and
the chain relation has a geometric interpretation. See [38, I, §1.5.8] for a
proof. (Autres références...)

6. The Weil representation of a finite quadratic form

Let ¢ : G — Q/Z be a homogeneous quadratic form on a finite abelian
group G with associated linking pairing b, : G x G = Q/Z. Let (V,w) be a
symplectic lattice equipped with a Seifert form 8 : V x V — Z. Then the
form

bq®w:G®V><G®V—>Q/Z

is nondegenerate and alternate, hence is defines a symplectic form on GRV'.

LEMMA 6.1. The form b, @B :GRV xGRV — Q/Z is a Seifert form for
by ®w.

PROOF. Let z,2' € G and y,y’ € V. We compute
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where we used that b, is symmetric in the second equality. U

Denote by O(q) the group of automorphisms of G fixing ¢q. Recall that for
s € Sp(V), As € Link(V) denotes the linking pairing defined by \; = s*3— 0.

PROPOSITION 6.1. There is a well defined monomorphism
O(q) ®Sp(V) = ASp(GRV), a®s— (a®s5,¢® As).
In particular, there is a well defined monomorphism

Sp(V) = ASp(G®V), s (ida®s5,¢ @ As).

PROOF. The point is to verify that (a®s, q®\s) € ASp(GRV). Clearly
a®seSp(GR V). We compute

bgars (T @y, 7' ®Y') = (g @ Xs)(z ®y, 2’ ®Y')
= by(x,2") - (B(sy,sy") — B(y,y"))
= by(x,2") B(sy,sy’) — by(z,2") By, y)
= by(ax,ax’) B(sy, sy’) — by(x, ") By, y)
= (bg®P) (e ®@s)(z®Y), (a®@s) (@' ®Y)) — (@ B)(z @y, 2’ ®Y').
O

Suppose that V = Ly @ Ly is a Lagrangian decomposition of V. Then
GV =(G®Ly) ®(G® L) is a Lagrangian decomposition of G @ V.
Composing the map of Prop. 6.1 with the Weil representation defined in
the previous section gives a projective representation

0(q) ® Sp(V) = U(L*(G ® L)), (@, 8) = pas,q@n,-
This is the Weil representation of the quadratic form q.

The groups O(g) and Sp(V), viewed as subgroups of ASp(G®V'), are mutual
centralizers. They form a prominent instance of an reductive dual pair.

7. Particular cases and examples

Several particular cases of the Weil representation of the quadratic form q are
of interest. The representation O(g) ® Sp(V) — U(L?*(G ® Ly)) considered
in the previous paragraph restricts to a representation

Sp(V) - U(L2(G ® LO))? S Pide®s,q®\s

For simplicity, we denote this representation by s — ps;. We describe this
representation in terms of generators for Sp(V).

Let g > 1. Let V = Z%9 endowed with the canonical symplectic form. Then
Sp(V') identifies with the symplectic group

Spog(Z) = {M € GLay(Z), MTQM = Q}, Q = [ 10 _019 ]
9
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also called Siegel’s modular group. (Our convention follows the left action
notation: automorphisms act on the left on groups.) The Seifert form is

0 0
o)
The lattice V' has a canonical Lagrangian decomposition

V=Ly® L,

where Lo = {r € Z%9 |V g < j <29, #;j=0}and L1 = {y € Z?9 | V1<
Jj < g, yj =0}. For x = (w0, 71), y = (yo, 1) € Lo x L,

B(z,y) = {z1,Y0)

where (—, —) denotes here the canonical symmetric positive definite product
on Z9. Examples of integral symplectic matrices are
(7.1)

0 -1, [1, O] .. o 7. AT o0 ] .
[19 0 ], [B 19] with B = B" integral, [0 A1 with A € GLy(Z).

REMARK 7.1. The set of all matrices of the three types above generates
Sp2g(Z), see [58] and [2]. Furthermore, the set of each type generates a
subgroup of Spy,(Z) which has a group theoretic section into ASpa,(Z).

We explicit below the map
Spyy(Z) = U(LX(G @ Lo)) = U(LA(GY)), s = p,.

PROPOSITION 7.1. The Weil representation p : Spy,(Z) — U(L*(GY)) is
determined by the following formulas:

12 o ) ) I @ =69 T b ®0)m) S

yeGRLo
(73) (B 1)@= (e 1@,
(7.4) p< %T A(ll )f (z) = f(le ® AT) 2).

REMARK 7.2. The proposition has a generalization (with essentially the
same proof below) for an arbitrary commutative locally compact group G
endowed with some Haar measure (a Borel measure invariant under transla-
tions which is unique up to a scalar multiple). In this case, the group G® Lo
inherits a Haar measure du and the first relation reads

@5 o4 0 )@= e ) fo) i

PROOF. The three operators defined in the proposition are unitary (for
the hermitian product defined by (3.1)). The rest of the proof consists in
verifying the identity (4.4). We have to verify that

ps(r*(h)f) = w(h)(psf), Yhe HG®V), ¥fe LG ® Lo)
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with s being one of the three symplectomorphisms above. Set Gy = G ® Ly
and G; = G ® Li. Write (s, s1) the image of a = (ag,a1) € Go ® G1 by
idg @ s € Spyy(Z). Let h = (ag,a1,t) € H(G @ V). Recall that s acts on h
as

s-h = (s0,51,t + (g®N\s)(t)).

We have
7 (h)f (x) = 7(s0,51,t + ¢ ® As(ao,a1)) f (z)
= X(t + Q®)‘S(a0a 1)) 80,51 (x)
= X(t + ¢® As(ao, a1)) xs,(z) f(x + s0)
= X[+ q®As(ao, a1)) x(bg ® B(s1,2)) f(z + o).
Let g(z) be

m(ao, a1, 1) f () = x(t) x((bg ® B)(a1, %)) f(z + ao).

Consider now each case separately. It will be convenient to denote in this
paragraph by (—, —) the symmetric bilinear product on Z9 associated to the
g % g identity matrix.

In the first case: sy = a1,s1 = —ag. Then

As(z,y) = —((xo, y1) + {x1, Y0))-

This symmetric bilinear pairing admits a quadratic enhancement defined on

V by
z — —(z0,71) = —B(z, ).

It follows that ¢®As(a,b) = —(by®f)(a,b) for all a,b e GRV. We compute
psg (1) = |G Lol > x(by® Bly, 2))g(v)

yeGRLo
=GR Lo x(t) ) x(bg® By, x +a1)) f(y + ao)
yeGRLo
=GR Lo|™*x(t) Y, x(by®BY —ao,x +a1)) f().
y’eG®L0

On the other hand, setting h = psf, we have
m(a,t)h (z) = w(a1, —ag,t — ¢ ® As(ap,a1))h (x)
= x(t = by ® B(ag, a1)) x(bg ® f(—a0,z)) h(z + a1)
= |G ® Lo| ™% X(t) X(bg ® B(—ao, @ + 1)) -
D1 x(bg ® By, + a1)) f(y)

yeGRLo
= psg (z).

In the second case: sg = ag, s1 = Bag + a1. Then

As(z,y) = z{ Byo, z,ye V.
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It follows that (¢ ® As)(ag,a1) = (¢ ® B)(ag). We compute
psg (z) = x(—(¢® B)(z)) g(x)
= x(t) x(bg ® B(a1,2)) x(—(¢® B)(x)) f(z + ao).
Let h = ps(f). We have
m(a,t)h (z) = w(ag, Bag + a1,t + (¢ ® As)(ao,a1))h (z)
= x(t + (¢ ® B)(ao)) x(bg ® B(Bag + a1,x)) h(z + ao)
= x(t + (¢® B)(ao)) x(bg ® B(Bag + a1, x)) x(—¢ ® B(x + ao)) f(z + ao)
= x(t) x(bg ® B(a1,2)) x(—(q® B)(x)) f(x + ao)
= psg ().

Here we used in the penultimate equality the fact that (b; ® 5)(Bao,z) =
(bg ® B)(0@ Bag,z ®0) = (bg ® B)(ao, 7).

In the third case: so = (1¢ ® AT)ag, s1 = (¢ ® A~1)a;. Then A\, = 0. It
follows that ¢ ® A; = 0. We compute

psg (2) = 9(le®@A T)z)
= x(t) x(bg ® B(ar, 1g ® A™)2)) f((1c ® A™1)z + ap).

Let h = psf. We have

w*(a,)h (z) = 7((le ® AM)ao, (1c @ A™)ax, ) h(z)

= x(t) x(by ® B((1c ® A Var, x)) h(z + (1 ® AT)ao).

Since h(u) = f((1¢ ® A~T)u), we deduce that
m*(a,)h (2) = x(8) x(by ® B((1e ® A a1, 2)) f(la @ A™)(x + (1o ® AT)ao))
(1) x(by ® B((1e ® A Nar,2)) f(la® A )z + ap)
(t) x(bg ® Blar, (1 ® A™")z)) f((le ® A™")z + ag)

)-

g (z

X
X
Psg

O

We begin with the Weil representation associated to the group SLa(R) (cor-
responding to the case when the genus of the surface is 1) and then we
describe the general case.

Let SLa(R), resp. SL2(Z), be the multiplicative group of 2 by 2 matrices
with real coefficients (resp. with integer coefficients) and determinant equal
to one. Let H = {T = u+iv € C |v > 0} be the upper half plane. The
formula

(M,T)'—)M-T:m——i_b :[a b

et +d’ c d]’ TeH

defines a transitive (resp. discontinuous) action of SLa(R) (resp. SLa(Z)) on
H. Tt is well known (see for instance [57, Chap. VII; Théoreme 2]) that

0 -1 1 1
s<[V ] war=} ]
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generate SLo(Z) with relations
5% = (ST)3, (ST)% = 1.
The group SLy(R) admits a double cover, called the metaplectic group Mpa(R).
This group is realized as the set of pairs
M= { “! ] e SLa(R), o> far(r)

where fy;(7) is a holomorphic solution of the equation cr +d = fy/(7)%. In
other words, 7 — fys(7) is a function defined in H as a holomorphic square
root of the holomorphic function 7 +— ¢7 + d. Elements in Mpy(R) obey the
associative multiplication law

(7.6) (M, far (7)) - (N, fau (7)) = (MN, far(N - 7) (7))
which turns Mpa(Z) into a group with unit

1 0
Intp,(z) = ([ 0 1 ]71>‘

Let Mp2(Z) be the inverse image of SLy(Z) under the covering map Mpy(R) —
SLa(R). The following lemma is a consequence of well known facts about
SLa(Z).

LEMMA 7.1. The group Mpy(Z) is generated by the two elements

(8 o) - (4]

with relations
z=(| 1 O | va) =82 =1 22= (] ]
0o -1 ’ 0

The order 4 element Z generates the center of Mpy(Z).

= O

] ,—1> 2t =T, @)

Let ¢ : G — Q/Z be a quadratic function on a finite abelian group G
such that v(G,q) # 0. There is a unitary representation p; : Mpy(Z) —
Aut(C[G)), called the Weil representation, associated to (G, q). Let (eg)gec
be the standard basis of the group ring C[G] so that e4 - ¢j, = ¢444 (Where
dot denotes the (convolution) product of C[G]). Then p = p, is defined by
the action on the generators S,7 € Mpy(Z) by

(7.7) p(8)ey = |Gl 29(G,q)- Y exp(—2mi by(g, h)) e
heG
(7.8) p(T)ey = exp(2mi q(q)) ¢

One computes that R

p(Z)e!] = 7(G7 q)2 e—g-
For a proof using relations of SLa(Z) that these formulas indeed define a full
projective action of SLa(Z), see [47].

Let A = (A, fa) be a preimage of A € SLy(Z). Then according to (7.6),
the other preimage of A is AZ? = (A,—fa). Since p(Z2%) = p(2)? =
(G, q)* idc[g], we see that p induces a linear representation of SLy(Z) if
(G, q)* = 1 and only a projective representation of SLy(Z) otherwise. For a
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homogeneous quadratic function ¢, the Gauss sum (G, q) is an eighth root
of unity. It follows that the corresponding cocycle ¢(A, B) = ¢,(A, B) lies
in {—1, +1} for ¢ is homogeneous. It can be computed as follows. Choose
first a canonical preimage A in Mpa(Z) of each A € SLy(Z) by using a fixed

branch cut for the argument of f4. Then set p(A) = p(A). We have by
definition

(7.9) p(AB) = c(A, B) p(A) p(B), A,B € SLy(Z).
It follows from this definition and (7.6) that
c(A, B) = p(AB, fap(r)) p(AB, fa(B7)f5(7)) ™" = fap(r) fa(Br)™" fa(r)".

The second equality follows from the fact that the second term differs only
by the choice of the square roots and a different choice introduces only a
sign factor. For the same reason, we see that ¢(A, B) is independent of the
actual value of 7. The explicit computation of p for an arbitrary element
A € Mpy(Z) is carried out in [56] and [60].

For g = 1, let

1
Spag(R) = {M € GLgy(R) | MYJM =g}, J= [ 01 Og ] )
g

the symplectic group over R. This group contains a most important discrete
subgroup Spy,(Z), consisting of symplectic matrices with integer coefficients,
called Siegel’s modular group. Exemples of integral symplectic matrices are
(7.10)

0 -1 1, B| . T A 0 .
[19 0 ] , [O 1, with B = B” integral, 0 (AT) ! with A € GL4(Z).
The set of matrices above generates Spag(Z), see [58]. Let H, denote the set
of g x g symmetric matrices with complex coefficients the imaginary part of
which is definite positive (Siegel’s half space). The formula

A B
C D

defines a transitive (resp. discontinuous) action of Spay(R) (resp. Spag(Z))
on Hy. Since 71(Spgy(R)) = Z, the symplectic group admits a double cover
Mpag(R), called the metaplectic group. This group can be realized as pairs

A B
M = [ e ] € Spyy(R), Z > +/det(CZ + D).

Here the map Z — +/det(CZ + D) is a holomorphic square root of the
holomorphic map Z + det(CZ+ D) (See for instance [20, Chap. I, Remarks
2.3 and 3.1]). The group multiplication is given by the same formula as
above, except that the action is replaced by the action of Spa,(R) on H,.
The metaplectic group over Z is defined as the inverse image of Spy,(Z)
under the covering map Mp,,(R) — Spy,(Z). The elements

(M, Z) > M(Z) = (AZ + B)(CZ + D)™, M:[ ] Ze H,

(e R R D R R

lying above (7.10) generate Mpy,(Z).
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Remarkably, the Weil representation extends to the metaplectic group Mpag(Z)
for any g > 1. This is part of the content of the Theorem below. This ex-
tension is based on tensor product as follows. Let (e;)zeqezs be a basis for
C[G®Z9]. The symbol 1, used to denote the g x g identity matrix shall also
be used to denote the canonical positive definite bilinear symmetric pairing

(a,b) > > a;b;, abeZ?.

1<j<g
Define a map p = pq : Mpy,(Z) — Aut(C[G ®Z9]) b
(711) p(S)ex = [GI727(Grg) D, exp(=2mi(by ® 16)(x,y)) ¢y
yeGRZLI

(7.12) p(T)e, = exp(2mi(q® B)(x)) ey

(713) p(U)ex = 6(1G®AT)—1

These formulas specialize to the case ¢ = 1 which is the case considered
above. It is not immediately clear that these formulas fit to yield a repre-

sentation of the metaplectic group. This, however, will be seen below as a
consequence of the previous section.

Given a closed oriented surface Y4, it will be convenient to endow it with a
symplectic basis for H1 (%) so that Sp(H1(%y), ¢) is identified with Sp,,(Z).

THEOREM 7.1. The map
p : Mpy,(Z) — Aut(C[G ® Z7])

1s a linear representation of the metaplectic group. It induces a projective
representation

Spay(Z) — Aut(C[G ®Z7]), A p(A)
of the symplectic group.
The TQFT projective representation
M(5y) — Aut(T (5y)) = Aut(C[G7]), [f]— 7(f)

defined in the previous section factors through the projective Weil represen-
tation

Spag(2) = Aut(C[G ®Z7]), fu = p(f)

so that the following diagram is commutative

Mng(Z)

|

Spay(Z) —= Aut(C[G ® Z9]

|

M(Y) Aut(C

This theorem achieves our final aim. By means of the previous section (for-
mula 3.2), the Weil representation is now interpreted intrinsically as a topo-
logical cobordism invariant. Note that this form of the Weil representation
requires a lattice presentation for the quadratic form (G, q).
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ProoOF. We fix a standard handlebody of genus g whose boundary is
the standard closed oriented surface ¥ of genus g. The surface ¥ is equipped
with its standard geometrical symplectic basis b = ([ma], ..., [mg], [l1], ..., [l4])
(Fig. 1.1). We endow H = H;(X) with the basis b. By means of this basis,
Sp(H, e) is identified to Sp(2g,Z). It suffices to prove that the two represen-
tations coincide on a system of generators for the symplectic group. It will
be convenient for our purpose to use the following small set of generators.
The following lemma follows from Birman’s work on the symplectic group
[2].

LEMMA 7.2. For 1 < k,l < g, denote by Ey; the (k,l)-elementary square
matriz of sizeg. For1<j<g—1,let Bj = Ejj—Ejj1—FEj1;+Ej141-
The symplectic group Sp(2g,Z) is generated by the matrices

(o -1, L1, Ea - _[1, B
(714) S - |:1g 0 :| ) T(Z) - [0 1g:| ) T(]a] + 1) - [0 1g
withl <i<gandl<j<g—1.

Hence it suffices to compute 7(f) where [f] € M(X) is such that f, = 5,
T@) and T'(j,j+ 1), forI<i<gand 1 <j<g—1.

Let Cyl(X) denote the set of parametrized cylinders over ¥ up to parametrization-
commuting diffeomorphisms. There is an obvious composition of parametrized
cylinders defined by gluing the bottom base of the top cylinder to the top
base of the bottom cylinder and composing parametrizations. Then Cyl(3)
becomes a group, clearly isomorphic to the mapping class group M(X).

Therefore, in order to compute 7(f), we may represent mapping classes as
parametrized cylinders over ¥ and use §77.

The next step consists in presenting such a parametrized cylinder as a special
kind of tangle. The class of such special tangles can be made up into a group
(see Turaev’s presentation in [61, IV, §2] and Matveev—Polyak’s approach
in [41]'). We now sketch the construction, referring to [61, IV, §2], [41] and
[9] for details.

Consider a cylinder M (f) = ¥ x [0, 1] with the bottom base parametrized by
f € Diff " (X) and the top base by the identity. Glue to M(f) two standard
handlebodies along the given parametrizations on ¢_-M =3 and 0, M = X
respectively.

This yields a closed oriented 3-manifold M. Here M is the oriented cylinder
Y x[0,1], ¥ = X_ = X,. The two sets of longitudes form a link [T < M(f)
and a link f,(I7) c M(f). Each link is oriented and comes endowed with a
framing (from the standard framing on the surface and the parametrization).
We denote these links by L, L™ respectively, after the gluing, that is, inside
M. Now M is presented by surgery on a framed link L in S3. By isotoping

IThe two approaches are completely equivalent, but distinct. Turaev’s approach is
geometrically symmetric, but composition introduces new components while Matveev—
Polyak’s approach leads to a more natural composition but is not symmetric. In order to
be compatible with our previous work [9], we use here Turaev’s presentation. Since we
represent the full images of longitudes, our tangles will actually always be links.
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L* UL, we may push it into the exterior of L in S3. The combinatorial data
that consists of the link £ = L~ UL UL" in S determines the parametrized
cylinder ¥ x [0,1] up to cobordism equivalence. (This presentation of the
parametrized cylinder is not unique. See [41] for a complete set of moves.)

For each (c¢t,—c7) € GI x GY, there is a C-valued invariant
(7.15) T ot (M) = 7(8, L3 g, (", 7))

defined by (1.1). Following [9, §3], we consider the square |G|? x |G|? matrix
defined by

— 1|92 . ( M ) )
T™ | | Te ,c*( ) —€G, c+eGo
It follows from [9, §4, Th. 3] that 7y is the matrix of the linear map

T(M) : T(X) — T(X) with respect to the basis specified by Remark 5.1.
With the notation of Remark 5.1, 7py = 7/(M).

It remains to perform the computations for three tangles representing three
elements in the mapping class group M (X) inducing in homology the three
elements described in Lemma 7.2.

In the three figures below, components with a small circle have a positive
+1-framing. All other components have framing 0.

The first link in Fig. 7.1 represents a mapping class f such that Maty(f«) =
S.

L+

—
—
—

-
N
«Q

FIGURE 7.1. A special link in S3 representing a mapping
class in M(X,) whose action in homology is S with respect
to the symplectic basis b.

The link in Fig. 7.2 represents the positive Dehn twist ¢,,; relative to the
J-th meridian. Note that Maty(t,,;) = T'(j).

Recall the simple closed curve k; on ¥ (depicted in Fig. 1.1). The link in
Fig. 7.3 represents the positive Dehn twist ¢x; relative to the simple closed
curve kj. Note that Maty(tx;) = T'(j,5 + 1).

It remains to check that (7.15) yields the same formulas in these three cases

as described by (7.11) and (7.12). O
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FIGURE 7.2. A special link in S® representing the positive
Dehn twist relative to the j-th meridian m;.

+

—

00 D

&
j J+1

Ly
Q
g
FIGURE 7.3. A special link in S® representing the positive
Dehn twist relative to the j-th simple closed curve k;.
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CHAPTER 5

Kirby calculus for oriented framed links in
3-manifolds

Throughout this chapter, M is a closed oriented connected 3-manifold. Con-
sider now an n-component oriented link £ =Ly u---u L, € M. A framing
on L is a trivialization of its unit normal bundle in M. It is completely de-
termined by a vector field v, on £ of constant length 1. The set of isotopy
classes of framings on each component of £ in M (fixed at some basepoint
on each component) is freely and transitively acted on by Z (see e.g., [25,
Chap. 4]). The parallel E;» of a component £; of £ is obtained by pushing
slightly £; in the direction of the vector field vy, If M = 53, the map
ve = (Ik(L, £;)); gives an explicit correspondence between framings on
L and Z". By a theorem of Lickorish and Wallace, any closed oriented
connected 3-manifold M is homeomorphic to the manifold My, obtained by
surgery on the 3-sphere S% on some framed link L = Ly u--- U L, € S°
(see e.g. [25, Chap. 5]). Another fundamental result due to Kirby asserts
that two framed links in S® yield homeomorphic 3-manifolds if and only
if they are related by a finite sequence of operations called “Kirby moves”
[35]. (See also Remark 0.3 and Fig. 0.1 below.)

Suppose that M is presented by a framed and oriented link L = Ly u---uL,,
in S3. Denote by Ay, the integral symmetric matrix whose (j, k) entry is the
linking coefficient lkgs(L;, L) € Z of L; and Ly in S if j + k and whose
(J,7) entry is the linking coefficient (framing number) lkgs(L;, L)) € Z of L;
and its parallel L;- in S3. The matrix Ay, is called the linking matriz of L
in S3. The result of surgery can be regarded as the trace of the following
4-dimensional surgery:

M = Mg =0Xy, Xp=D'uum (D?x D?);,

where each 2-handle D? x D? is attached to the 4-ball D* by embedding
0D? x D? = S! x D? into dD* = S? in accordance to the orientation and
framing of L;. The group Wy, = Ho(Xp) is a finitely generated free abelian
and carries an intersection pairing gy, : Wi x Wi — Z which turns it into
a bilinear lattice. Choosing a Seifert surface ¥; € S3 (which can be slightly
pushed into the interior of D*) for each component L; and closing it by the
core of the i-th handle yields a closed surface S;. The set ([S1],...,[Sm])
form a basis of Ho(X). With respect to this basis, the matrix of gy, is the
linking matrix Ay.

The linking pairing of M is an algebraic linking pairing Ays : Tors Hy (M) x
Tors Hi(M) — Q/Z which is a fundamental homotopy invariant of M [25,
Chap. 4] (see also §?7 below for a definition). It is a key observation

97
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that the discriminant construction from (W, gr) yields the linking pairing
(Tors H1(M), Apr) with opposite sign (for the usual convention of orientation
of M). With the notation previously introduced, we can state it as

LEMMA 0.3.

(0.16) (Ggps Ag) =~ (Tors Hy(M),—Anr).

This result will be used several times in the sequel.

The next step is to consider an ordered, oriented and framed n-component
link £ in a closed oriented 3-manifold M. Two such pairs (M, £) and (N, J)
are diffeomorphic if there is a diffeomorphism ¢ : M — N such that p(L;) =
J; (sending the j-th component onto the j-th component) and p*vz =
ve, (preserving the j-th framing). Note that if two links J and K are
isotopic in N (as oriented framed ordered links), then (N,J) and (N, K)
are diffeomorphic.

The surgery presentation of an oriented link in a closed oriented 3-manifold
induces canonically an isomorphism class of a pointed bilinear lattice (see
3.6 for the definition). The construction is as follows. Let (L = Ly u---u
Ly, J = Jyu---uJy) be a pair of oriented and framed links presenting a link
L in a closed oriented 3-manifold M. Each component J; when viewed in X,
bounds a surface ¥, (that can be obtained for instance from a Seifert surface
for Ji in S3). Such a surface ) represents an element [2;] € Ho(X [, My).
The intersection pairing Hy (X, Mp) x Ho(Xp) — Z is nonsingular (by
Poincaré duality and the fact that X is simply connected). Hence by the
left adjoint map, [Ey] yields an element ef € Hom(H2(X1),Z) = W}. The
exact sequence

] 0
s Ho(Xp) —2 Ho(Xp, M) -2 Hy(Mp) — -

shows that any other choice for [¥j] will differ by an element in Im j,.
So any other choice for e, will differ by an element in gz (Wy). Hence the
assignment

Ji — |ex] € Coker g;, = GY

is well defined. Therefore the isomorphism class of the pointed bilinear lat-

tice (Wr,gr, e{ ,...,e]) is well defined. Note that this class is independent

ren

of the framing of L.

We make explicit a “Kirby calculus” slightly generalized to this setting. We
describe briefly the reversible moves indicated in Fig. 0.1. The first four
moves are the classical Kirby moves and involve only the first link: the first
two moves are the usual stabilization Kirby moves applied to the first link
L (the trivial component added is unlinked from all other component); the
third move consists in reversing orientation of the first link L; the fourth
move is the usual Kirby handle slide move applied between two components
of the first link L. The fifth move is a handle slide of one component of the
second link J over one component of the first link L. These handle slides
are performed regardless of the orientations of the components by choosing
a small band connecting the two components.
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* Stabilization: (L)) <= (L 1L @ J )
LJ) <> @LL @J)
* Orientation reversal: L, J)<—> -LJ)
* Handle sliding: v
(i =) L, L; / Eyﬁ\\i
L >
L; L ~ N
L >
J L; .~ N
L >
Ji L_] I ! m] /

FiGure 0.1. The Kirby moves for links in 3-manifolds.

THEOREM 0.2. Two pairs of disjoint oriented and framed links (L,J) and
(L', J") in S3 present diffeomorphic pairs (M, L) if and only if, up to re-
ordering of the components of L and up to isotopy, they are related by a
finite sequence of moves indicated in Fig. 0.1.

REMARK 0.3. The classical Kirby theorem corresponds to the special case
J=J =2.

ProoFr. This is straightforward from the usual Kirby’s theorem. For
each Kirby move L1 — Lo, we consider the corresponding diffeomorphism
My, — My, of 3-manifolds and write down combinatorially the image of
the link £ in Mjp,. U



100 5. KIRBY CALCULUS FOR ORIENTED FRAMED LINKS IN 3-MANIFOLDS

REMARK 0.4. Theorem 0.2 applies to oriented framed ordered links in ori-
ented closed 3-manifolds. There are actually several versions of Th. 0.2, de-
pending on the exact class of links: ordered/unordered, framed/unframed,
oriented /unoriented. In particular, there are:

(1) [unordered, framed, oriented] The set of pairs (M, L) formed by an ori-
ented and framed link £ in an oriented closed connected 3-manifold M. Two
such pairs (M, £) and (N, J) are diffeomorphic if there is a diffeomorphism
¢ : M — N such that ¢(£) = J and ¢*vy = vz, Such a pair (M, L) is
presented by a pair (L, .J) of disjoint oriented and framed links in S3. The
version of Th. 0.2 is in this case:

THEOREM 0.3. Two pairs of disjoint oriented and framed links (L, J) and
(L', J") in S3 present diffeomorphic pairs (M, L) if and only if, up to re-
ordering of the components of each of the individual links (L and J), they
are related by a finite sequence of moves indicated in Fig. 0.1.

(2) [ordered, unframed, oriented] The set of oriented and ordered links in
oriented closed 3-manifolds. Such a link is presented by a pair (L,.J) of
disjoint oriented links where L is framed and J is ordered. Two such links
(M, L) and (N,J) are diffeomorphic if there exists a diffeomorphism ¢ :
M — N such that ¢(£;) = J;. The corresponding version of Th. 0.2 is
obtained by forgetting the framing of the link J in the surgery presentation
(L, J) and in the Kirby moves of Fig. 0.1.

REMARK 0.5. The Kirby moves for pairs of disjoint links (a framed and
oriented link in S3, an oriented link in S%) preserve the stable equivalence
class of the (isomorphism class of the) pointed bilinear lattice defined in the
previous remark. This is straightforward from the definitions (Fig. 0.1).

Let A = Ay ; the linking matrix of the link L U J in S3. This is an integral
symmetric matrix of size m + n. To distinguish it from the usual linking
matrix A, we call it the extended linking matriz. The extended linking
matrix Ay ; not only represents the stable equivalence class of the pointed

bilinear lattice (Wp,gr,e1,...,e,) but also encodes the framing of the link
Lc M.

Let us describe how the Kirby moves affect the linking matrix Ap, ;. We
denote below Ay, j the m x n matrix defined by (Ar,g)e = 1k(Ls, Ji), 1 <
s<m, 1 <t<n Weset Ay = A} ;.

Stabilization:
— — [ O ]
A : A
Ap Ar L ; L.J
Apog = |0 - 0l+1]0 0
0
AgL Ay ‘
| ] AJ7L . AJ
L 0 —
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Orientation reversal: for 1 < i < m, let I;(—1) be the size m + n square
matrix whose (j,7) entry is 1 for all 1 < 5 + i < m + n, whose (i,1)
entry is —1 and all other entries are zero. Reversing the orientation of one
component L; of L induces the transformation

Apog o Li(=1)- Aoy - Aj(=1)".

To handle the handle slide cases, we introduce some matrix notation. Let
N,N'>1. For1<s<Nand1l<t<N,let E;;j(N,N') be the N x N’
matrix whose (s,t) entry is 1 and all other entries are zero. If N = N’
(square matrices), we write E;j(N, N') = E;;(N). Let In = > ) Exr(N) the
identity matrix of size N x N. Let T;;(N) = Iy + E;j(N) € GLn(Z). Note
that Ts(N)® = Tj; and Ty(N)™! = Iy — Eg(N).

Consider the first type of handle sliding. Let 1 < ¢ £+ j < m + n. Denote
by L; the new component after handle sliding. Sliding the ¢-th component
of L onto the j-th component of L has the following effect.

k(Li, Ly) = k(Ly, Ly) £1k(Ly, L), for all 1 <k +4,j < m,
Ik(Ly, Lj) = k(Ly, L) + 1k(Ly, L)),

Ik(Ly, Ji) = k(Li, Ji,) £ 1k(L;, Jy,), forall 1 <k <n
and
I(L;, £i') = k(Li, L5) + 1k(Ly, L) + 2 1k(Ly, Lj).

Consider the case of the sign + in the formulas above. The effect consists
in adding to the i-th column of Ay s the j-th column of Ay s and adding
to the i-th row of Ar s the j-th row of Ar_ ;. As is well known, this has a
matrix interpretation: the handle slide of L; over L; transforms Ay, into
T;j(m+n)- Apoy - Tij(m + n)'. Since there is a block decomposition T}; =

[ T (()'m) IO ], the corresponding transformation of Ay, s is described by
Ar Ar.g T (m) AL T (m)" T;(m) AL,y
ALuJ = >
Ajsr Ay Ay pTij(m)" Ay

The case of the sign — is treated similarly and the formula is similar: the
matrix 7;;(m+n) is replaced by its inverse Tj;(m~+n)~! = Iy, n— Eij(m-+n).

The second type of handle sliding is similar, except that this time a com-
ponent J; of J slides over a component L; of L. Here 1 < ¢ < n and
1 € j < m. Given our ordering, the effect consists in adding to the
(m + 4)-th column of A the j-th column of Ay ; and adding to the
(m + i)-th row of Ap,; the j-th row of Ar ;. Hence A, is replaced
by Ttij(m +n) - Apog - Tt j(m + n)t. Observe that Tp,qi;(m + n) =
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nolo o
[ Biy(n,m) | In ] We deduce that the transformation of Ay is given by
A Ar,g Ap Ay y
Apog = PN
AJ,L Ay Aj,L Af
with
Apy= ApEij(n,m)* + Ag g, Ay = Al 5

and Aj = Eij(n, m)ALEij(n, m)t + Eij(n, m)ALyJ + AJ7LEij(TL, m)t + Aj.

We call the transvections Tjj(m +n), 1 <i % j < m, T j(m+n), 1 <
i,J < n, the handle slide transvections (of first and second kind) respectively.

LEMMA 0.4. The set of all handle slide transvections generate the subgroup

R ral

of SLim+n(Z). The set of all handle slide transvections and all matrices
I;(—1) (induced by orientation reversal of one component of L), 1 <1i < m,
generate the subgroup

B GLw(Z) | 0

Let m,n be two nonnegative integers. Consider the set S, , of pairs (a
nonnegative integer m, an integral symmetric square matrices of size m+n).
(One should think of elements of S+, as an integral symmetric square
matrix endowed with a block decomposition parametrized by m and n.)The
group G, acts naturally on S, by (g9,4) — g-A- ¢, for g € Gy, and
A€ S, Declare two such matrices A and B be equivalent if they are in
the same orbit of the action of Gy, . Stabilization on A € S, ,, consists in
replacing A by a matrix in Sy,41, by adding to A one new (m + 1)-th row
and one new (m + 1)-th column with (m + 1,m + 1) entry equal to +1 and
all other entries equal to 0. Let & = Uy, nSmn. Let A, B € S be stably
equivalent if after some finite number of stabilizations on A and B, they
become equivalent.

The following result says that stably equivalent extended linking matrices
induce stably equivalent pointed bilinear lattices.

PROPOSITION 0.2. Let (L,J) and (L,J) be two pairs of oriented framed
links in S3. If Ar,; and A; 5 are two stably equivalent extended linking

matrices, then their afsociated pointed bilinear lattices (Wr, gr, e{, . ,e;{)

and (W3, g;, e{, ...,€)) are stably equivalent.

rn
REMARK 0.6. The converse of Prop. 0.2 does not hold: consider the sim-

plest case of the 3-sphere S® equipped with a trivial knot £. A surgery
presentation of this knot is the pair (&, J = £) (no surgery is performed).
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The linking matrix is an element in Sp; (a one-entry matrix) given by
the framing integer of £ in S2. We have X; = D* so that the lattice
Wy, = Ha(D*?) is trivial. The associated pointed bilinear lattice in this case
is (Wr = 0,91, = 0,e/ =0). If J/ = £ is a trivial knot with a different
framing in S, then e/ = e/ = 0, so that (&, £') induces the same associated
pointed bilinear lattice (0,0, 0).

ExAMPLE 0.1. Consider the two pairs of knots of Fig. 0.2. They differ only
by the framing of .J in S3. In both cases, surgery on the framed knot L yields

@ @

by J by ]
FIGURE 0.2. Two presentations of knots in S* x S2. The
framing of each component in S is indicated by an integer.

St x §? equipped with the same knot £ of infinite order in H;(S' x S?) = Z.
Therefore they give rise to the same stable equivalence class of pointed
bilinear lattices, namely the stable equivalence class of (Z, 0, [£]). We claim
that

(1) The oriented and framed knots presented by the two pairs are iso-
topic.

(2) Any Kirby equivalence between the two pairs of knots requires at
least one stabilization.

Proof of the first claim. There is a sequence of Kirby moves transforming
the first pair into the second pair indicated in Fig. 0.3. |

REMARK 0.7. It is instructive to see the sequence of Kirby moves of Fig.
0.3 at the level of the extended linking matrix Az . In the first case, the

matrix is Ag = [ }] while in the second case, it is A1 = [{1]. We have

0 01 0 01
Alz[—’—(l]i]—) 0 1/10 | >0 1]0 H[—'—?é]zflo
1 0|1 1 0/0
The first operation is a stabilization; the second operation is the action of an

element in Go; (corresponding to the composition of the three handle slide
moves indicated in Fig. 0.3 — note that these three handle slides commute

001 100 00 1007t
one with another): indeed [010] = [—110] . [01%] . [—110] ; the last
100 111 101 111

operation is a destabilization.

Proof of the second claim. To see why the second statement holds, we
consider again the extended linking matrices Ag and A;. We claim that
A; and Ag, as matrices in Sj 1, are not equivalent. (But Remark 0.7 shows
that after each of them is stabilized once, they are become equivalent.) In
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9 1 0 +2
stabilizati handle slide
stabilization i i b ‘ 1
+1 b
L J

+1

L,

l handle slide

Q)_(0

handle slide l isotopy

-~
+1 @H

1sotopy

@ destabilization @

FI1GURE 0.3. The two pairs of links are Kirby equivalent.

fact, the parity of the (2,2) entry of A; (j = 0,1) is preserved by action of

_l’_
Gi1= [ _Zl (1) ] on Ag. The claim follows. |



CHAPTER 6

The invariant 7 of a closed 3-manifold

Throughout this chapter, M is a closed oriented connected 3-manifold. We
define a topological invariant 7 of M and establish a number of properties
of 7

1. Definition and first properties

Let L = Ly u---uU L,, be an oriented and framed link in S3 presenting
M. We denote by Ay the linking matrix of L as defined in the previous
chapter. Recall that this is a square symmetric integral matrix of size m.
By tensor product over R, this matrix induces a symmetric bilinear pairing
R™ x R™ — R. Let sign(L) € Z denote its signature. In [6], we prove that
the number

(1) 7(M,q) =7(G.q) " Pa|7™? 3 exp(2mi(q ® AL)(w))
TeGRZL™

is invariant under the Kirby moves and is therefore a topological invariant
of M.

It is shown in [6, Th. 1] that 7(M, q) depends actually only on the linking
pairing Aps and the first Betti number by (M) € N: more precisely, if two
closed oriented connected 3-manifolds M and N are related by an isomor-
phism f : Hi(M) — Hi(N) such that An(f(x), f(y)) = Am(x,y) for all
x,y € Tors Hi(M), then 7(M,q) = 7(N, q). Therefore, 7(M, q) depends on
the one hand, on the quadratic form (G, q) up to isomorphism and on the
other hand, on the linking group (Hi(M), Aps) up to isomorphism (as de-
fined in §...). The relation is made explicit by means of a reciprocity formula
in [6, Th. 4].

In particular, we can make the following observation. Define an oriented
closed 3-manifold M to be an integral homology sphere if H,(M) = 0.

PropoOSITION 1.1. 7(M,q) = 1 if and only if M is an integral homology
sphere.

PROOF. Since H1(M) = 0, the linking group (H;(M), A\pr) is trivial. O

This proposition shows that 7 detects only nontrivial rational homology
spheres. Therefore, one is led to present 7 as an algebraic pairing which is the
viewpoint adopted in [10]. Let Q%(0) denote the set of isomorphism classes
of nondegenerate homogeneous quadratic forms on finite abelian groups.
We define a related set 9%(0) as follows. An element in 9t(0) is represented

105
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by a pair (H,\) where H is a finitely generated abelian group and A :
Tors H x Tors H — Q/Z is a linking pairing. Two such pairs represent the
same element in M(0) if there is an isomorphism between the groups that
restrict on the respective torsion subgroups to an isomorphism of the linking
pairings. Both sets are monoids for the orthogonal sum @, with the trivial
form being the neutral element. Define a pairing

<_’ _> : m(o) x QO - C’ (H7 A)vq = <H7)\7Q>
by
(1.2) (H,Xiq) =7(M,q),
for any closed oriented 3-manifold M such that Ay = X and H (M) = H.
The existence of such a 3-manifold is ensured by [33]. The discussion above
on 7(M, q) ensures that (H, \; ¢) is independent of the particular choice of
such a 3-manifold M. One can alternatively present the pairing (—, —) in a

purely algebraic fashion as follows. Let (W, g) be any bilinear lattice such
that (Gg, \g) = (H, —\) via the discriminant construction. Then

(1.3) (H, X q) = 7(G,q) 59 1(GOW,q® ) |G @ Gyl2|G]3.

The pairing (—, —) is biadditive in the sense that
(H N @ (H,N);qp = H N qp - (H N5 g,

and
(H, X5 (q@4q)y = CH, X q) - (H, X5 ).

It follows from [10, Th. 1] that the pairing (—, =) : M(0) x Q°(0) — C is
nondegenerate.

2. Extension to Spin structures

A spin structure o on M is a trivialization considered up to homotopy of
the tangent bundle over the 1-skeleton M that extends over the 2-skeleton
M? of M. Spin structures always exist on a closed 3-manifold M. The set
of spin structures on M is in bijective correspondence with H'(M;Z/2). A
spin structure o on M induces a canonical quadratic refinement

qo : Tors Hi(M;Z) — Q/Z
of the linking pairing Aps. See for instance [35], [25], [39].

Using this fact, a topological invariant 7P of (M, o) is defined as follows.
Fix an element (H, \) € M(0). The complex number

(2.1) TSP(M, oy HoN) = (H, X g0y

is a topological invariant of the pair (M, o). More precisely: if two closed
oriented connected spin 3-manifolds (M, o) and (N,oy) are related by
an isomorphism f : Hi(M) — Hi(N) such that ¢, (f(x)) = q(x) for all
x € Tors Hy(M), then 7P (M, o; H, \) = 7P (N, on; H, \) for any (H, \) €
M(0).
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A converse is proved in [10, Th. 2]: if 75P®(M, opr; H, A) = 7P(N, on; H, \)
for any (H,\) € M(0), then (M,op) and (N,on) are related by an iso-
morphism f : H{(M) — Hi(N) such that ¢, (f(x)) = ¢o,,(x) for all
x € Tors Hy(M). Tt follows that 7°P'" classifies YSPI" equivalent spin man-
ifolds in Massuyeau’s spin refinement of the Goussarov-Habiro theory (see
39]).

3. Extension to Spin® structures

The idea of extending the invariant 7 to Spin® structures is formally similar
to the extension to Spin structures. A Spin¢ structure on an oriented closed
connected 3-manifold M is a complex structure (considered up to homotopy)
on the 2-skeleton M? that extends to M. For references on Spin® structures,
see [25] and [11]. The set Spin°(M) of Spin® structures on M is acted on
freely and transitively by H?(M;Z).

The basic observation consists in the interpretation of Spin® structures as
quadratic refinements of the linking pairing, as in [11, Th. 2.3]. First define
a modified linking pairing

Ny + Hy(M3Q/Z) x Ha(M;Q/Z) — Q/Z
by the formula
M = o (Bu x Bu),
where By @ Ho(M;Q/Z) — Hi(M) denotes the Bockstein homomorphism.

This modified linking pairing is nondegenerate if and only if M is a rational
homology 3-sphere. There is a natural H?(M;Z)-embedding

(3.1) Spin®(M) — Q(Xy), s+~ ¢’

See [11, §2] for further details. To the Chern class c¢(o) € H?(M) cor-
responds the difference dgo : Ho(M;Q/Z) — Q/Z defined by dgo(x) =
¢°(z) — ¢°(—x) = {c(o),z), © € Ho(M;Q/Z). A spin® structure o on M is
torsion if its associated Chern class c(o) € H?(M) is torsion. The quadratic
refinement ¢” is nondegenerate if and only if ¢° vanishes on Ha(M) ® Q/Z
if and only if o is torsion. In this case, the quadratic function ¢° factors
through a unique quadratic refinement of the usual linking pairing Ays. In
particular, this is the case if M is a rational homology 3-sphere. As in [8],
we shall consider only torsion spin® structures.

A Spin structure induces naturally a Spin® structure, hence there is a nat-
ural map Spin(M) — Spin°(M). This map is injective if M is a rational
homology 3-sphere. The image of this map is the set of Spin® structures o
with trivial Chern class ¢i(c) = 0. This map and the maps above fit into
the commutative diagram

Spin(M) —— Spin®(M)

| |

Quad(Apr) — Quad(X),).
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The extension of the invariant 7 to Spin® structures is not obvious, however,
because a priori one has to define a tensor product involving non homoge-
neous quadratic functions. If we try to mimic the definition of the spin case,
then we run into the problem of defining the tensor product ¢ ® g where ¢
is a possibly non homogeneous quadratic function!. An alternative product
(and the corresponding extension) is proposed in [10], but the extension
in question is shown to fail to have the property of classifying degree 0 in-
variants of complex spin structures (See [12, §3] for the foundations of the
theory of finite type invariants of complex spin structures). Another exten-
sion suggested at the end of the same paper corresponds to the Gaussian
invariant used in the classification of general quadratic functions described
here in §3.3 (Th. 3.2).

emma 1 of [8] applies in fact only to homogeneous quadratic functions.



CHAPTER 7

The invariant 7 for an oriented framed link in a
closed 3-manifold

The invariant 7(M, q) of the chapter extends to an invariant of framed links
in M. (It was first introduced in [8]). We keep the previous notation.
This chapter is devoted to the study of the properties of this invariant. In
particular, we prove a conjecture stated in [?]...

1. Definition and invariance

Let £L=L1u---u L, be an oriented and framed link in a closed oriented
3-manifold M. The pair (M, L) is presented by surgery by a pair

L=L1v---uUlLy, J=Jiu---udJd,

of disjoint framed oriented links in S3: the manifold M is obtained by
surgery on L as before while the framed link £ in M? is the image of the
framed link J after the surgery is performed on L. Th. 0.2 asserts that any
closed oriented 3-manifold M equipped with an oriented framed link L can
be obtained in this fashion. Denote by A = Ay s the linking matrix of the
link LU J in S3. This is an integral symmetric matrix of size m +n. Denote
by sign(L) € Z the signature of A;, ® R. Associate to each link component
L; an element ¢; € G (called a color) and set ¢ = (c1,...,¢,) € G™. The
tensor product ¢ ® A can be regarded as a homogeneous quadratic form
G™T = G™ x G" — Q/Z. The number

(1.1) 7(M, L;q,¢) = (G, q) PG| ™2 " exp(2mi(q ® Aros)(x,©))
xeG™

is a topological invariant of (M, £). We verify that 7(M, L; ¢, ¢) is invariant
under the Kirby moves of Theorem 0.2. Hence 7(M, L; g, ¢) is a topological
invariant of (M, L), as claimed.

Clearly, the invariant previously considered in §?7 is recovered if the link is
empty or the element c € G" is trivial:

T(M;q) = 7(M,&;q,¢) = (M, L; q,0).

REMARK 1.1. For M, ¢ and c fixed, 7(M, L;q,c) is an invariant of the
ordered link L.

REMARK 1.2. For a subset J < {1,...,n}, let £/ = Ujes denote the
corresponding sublink of £. If £ is ordered, then £/ is also ordered. If
¢ = (¢;)1<i<n € G™ is the color vector for the ordered link £, then ¢/ =

109
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(¢j)jes € Gl is the color vector for £7. Let ¢ € G™ be a color vector such
that ¢; =0 if i ¢ J. Then

(1.2) (M, L;q,¢) = 7(M, ﬁ‘];q, c‘]).

In fact, 7(M, L; q,c) is more precisely a topological invariant of the pair

[300)

where we regard },;c; ® £; as a framed 1-cycle with coefficients in G ([8,
Th. 1]).

We will show (as a consequence of Th. 3.1) that it depends on the framed
oriented 1-cycle only up to framed cobordism with coefficients in G.

2. The vanishing of the invariant

A necessary and sufficient condition for 7(M, L; ¢, ¢) to vanish is described in
[8, Th. 4]. Since this condition plays a decisive role in the construction of the
topological quantum field theory in §, we relate it explicitly to our previous
constructions of the tensor product of linking pairings and the characteristic
homomorphism respectively.

THEOREM 2.1. 7(M, L;q,c) is nonzero if and only if the class
216 ®LL]
J

in Hi(M;G) is the characteristic element of (G,by) and (Tors Hy (M), Anr),
i.e., if and only if

Oprne = 0, ¢ @ [L]-
J

Recall (cf. §2.9) that the characteristic element 6 = 0y, »,, lives in G ®
Tors Hy(M).

PROOF. First, the fact that };; c; ® [£;] must lie in G ® Tors Hy(M) is
a necessary condition for 7(M, L; ¢, c) to be nonzero is proved in [8, Th. 3
(1]-
Next, we observe from (1.1) that 7(M, L;q,c¢) = 0 if and only if the last

Gauss sum on the right hand of (1.1) is zero. Developping the term ¢ ®
Arog(z,c) in terms of the block decomposition of the matrix Ap,; =

A Aryg
Ay Ay
complex number and the Gauss sum

HWC®Z™,q® AL + (by® Asr)(—,¢) = WG OW,q® g + (by ® i) ([w]),

where g denotes the symmetric bilinear map on W = Z™ determined the
m x m linking matrix A7 and w € G @ W1 is a lift of Zj ¢ ®[Lj]le G®

] enables to rewrite the Gauss sum as a product of a nonzero
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W#/W = G ® Tors Hi(M). Now we apply the formula (2.9) to obtain the
identity

q®g+ (bq ®g<@)(_vw) = Pfog,v@uw—2t © jfv
where (V) f,v) is a bilinear lattice equipped with an integral Wu class v for

f such that (G, ¢s.) = (G,q)("), where w is a Wu class for g and where
te Vi Whis alift of we G ® WH.

Finally we apply Th. 3.4, condition (4): Y(GOW, ¢ fgg.v@w—2t0jf) F 0if and
only if (w) = 0 € G;®G,, is the characteristic element for Ay @Ay = bs®@A .
This is the desired result. O

COROLLARY 2.1. If7(M, L;q,c) % 0 then };; ¢;®|L;] lies in G&Tors Hy (M)
and has order at most 2. In particular, if T(M,L,q,c) + 0 and at least one
of the two groups G or Tors Hy(M) has odd order, then ) ; c; @ [L;] = 0.

PROOF. The characteristic element 6 lies by definition in G®Tors H; (M)
and satisfies 2 § = 0 (see the end of §2.9). The first statement follows. The
second statement is a consequence of the first one. O

COROLLARY 2.2. The following assertions are equivalent:

(1) 7(M,q) + 0;

(2) The characteristic element 0y, x,, is zero;

(3) (G,bq) and (Tors Hi(M),A\pr) have no common orthogonal cyclic
summand of even order.

Proor. Apply Th. 2.1 with £ = @. Then >}, ¢; ® £; = 0. This gives
(1) & (2). The equivalence (2) < (3) follows from the definition of the
characteristic element. (]

3. Classification results: topology

In this paragraph, we investigate the sensitivity of the invariant 7(M,6) to
the topology of (M, L).

There is a well defined notion of linking numbers of cycles whenever they
represent torsion elements in homology. A framing of a smooth 1-cycle Z
in M is a framing on each of its components. We denote by Z’ the parallel
copy of Z in M. The framing allows to define a number ¢, (Z) € Q by the
formula

1
¢(Z) = Sl (2, Z") eqQ.
If Z does not represent a torsion element in H; (M), then ¢l (Z) is undefined.

THEOREM 3.1. Let (M, L) and (N,J) be two closed oriented connected 3-
manifolds equipped with oriented and framed n-component links L and J.
The following two assertions are equivalent:

1Such a triple exists by Th. 2.4.
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I. (i) There is an isomorphism
(Hl(M)7)‘M7 [‘61]7 s [‘Cn]) = (Hl(N)v)‘Na [jl]a s [‘-7”])

of pointed linking groups;
(ii) The rational linking and framing numbers are equal:

Tknr (L3, £) = kn(Ti, Tj) and qiy(£:) = gy () for all 1 <i < j < n.

II. 7(M, L,q,c) = 7(N,T;q,c) for any quadratic functionq: G — Q/Z
equipped with ¢ € G™.

The proof is dealt with in the next section. We first consider two simples
examples of applications of Theorem 3.1.

ExAMPLE 3.1. Consider the two pairs of links in S representing two oriented
knots (M, £) and (N, J) respectively (see Fig. 3.1). Since the surgery links
are the same, M = N = (S x §?) ¢ L(5,1) (the connected sum of S* x §?
and a lens space). Set an arbitrary framing % € Z for the component J; < 53
(in red in the figure; it should be the same for both components labelled J;).

J
J,
0 f/‘yyf\GS Offﬂyf\x//\x +5
ULI L, QLI QLZ

Ficure 3.1. Two pairs of links representing two oriented
knots in (S' x S?) § L(5,1) .

We have .
Hi(M) = Z®ZL/5Z, My(z,y) = gy mod 1.

Under the identification above, [£] = (5,1) and [J] = (5, 3) respectively.

The extended linking matrices are and

, 3
0
) respec-
3

O O
= ot O
* | = DN
O O
* W N

tively.

Let (G,q,c) be a pointed quadratic form. The characteristic element for
(bg, Aar) is zero since Tors Hi(M) has odd order. Hence ¢ ® [L] is charac-
teristic if and only if ¢ ® [L] is zero. Consider the case when G is cyclic of

n ifk=0,1; Then
n/5 otherwise.
c¢®[L] = 0if and only if ¢ = 0 mod n’ (if and only if c®[J] = 0). Let n = 25
and ¢ = 5 mod 25. Using the definition (1.1) of 7 and the observation above
on the characteristic element, we find that

(M, L;q,¢) + 7(M,T;q,c).

Thus there is no isomorphism ¢ : Hi(M) — H;(M) such that ¢([L]) = [T]
and ¢*(/\M) = )\M- |

order n. Let k be the 5-valuation of n. Let n' =
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ExAMPLE 3.2. Consider again the two oriented and framed knots £ and J
in S x S? presented in Fig. 0.2. Here M = N = S' x S2. Let (G, q,c) be
a pointed quadratic form. It is not hard to see that ¢® [£] is characteristic
if and only if ¢ = 0 in G. We conclude immediately that

(8" x 8%, Liq,c) = (ST x S, T1q.¢).
It follows that there exists an isomorphism ¢ : Hy (M) — H;(M) such that
o(|£]) = [T] and ¢*(Arr) = Apr. (This isomorphism is actually induced by
a diffeomorphism of the pair (S! x S2, L), as described in the Example 0.1.)
[ |

COROLLARY 3.1. Let (M,L) and (N,J) be two closed oriented connected
3-manifolds with framed oriented n-component links L and J. Assume that
none of the components of L represents a torsion element in Hy(M). Then
the following assertions are equivalent:

I. There is an isomorphism

(Hl(M)’)‘Mv [‘Cl]w X [En]) = (Hl(N)v)‘Na [jl]a R [jn])

of pointed linking groups.
II. 7(M, L,q,c) = T(N,T;q,c) for any quadratic functionq: G — Q/Z
equipped with c € G™.

4. The proof of the classification theorem

Both implications? will be derived from the formula of [8, Th. 3] which we
recall and slight adapt to our notation. To state this formula, there are a
number of choices to make (although the final result does not depend on
the particular choices made). Choose a spin structure s on M, inducing a
homogeneous quadratic refinement ¢° : Tors Hi(M) — Q/Z of the linking
pairing Ay on M. Choose a lattice pairing (V, f, v) equipped with an integral
Wu class such that (V¥/V,¢;,) = (G, q).

Assume first that >}, ¢; ® £; € G ® Tors Hy(M). Choose a framed 1-cycle
n = 2;& ®L; by lifting the coefficients ¢; € G = VE/V to & € Vi Then
[7] € V¥ ® Tors Hy(M). Evaluating n against the Wu class v € V yields a
framed integral 1-cycle 1, = >, j fo(v,&5)L;. Note that this cycle represents
a torsion element. There is an invariant of framed 1-cycles 5 defined by the
following conditions (see [8, §2.3, Lemma 14]):

(1) & is a Z-homomorphism and takes values in {0,1/2} = 1Z/Z <
Q/z;

(2) 05 depends on the spin structure s on M;

(3) 05 vanishes exactly on framed 1-cycles for which the spin structure
s and the framing are compatible.

In the case when the framed cycle o represents a torsion element, we have
3s(0) = ¢"(0) — ¢*([0]).

2This is not strictly necessary for the direct implication (I) = (II); however the idea
of using characteristic elements is a key ingredient in the converse.
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In particular, for o = n,,, we have

ds(mw) = Z fa(v,&5)d5(L5).
J

Hence

(A1) ) = X fa.&)(a"(L)) — a*([£)]) € 1/22/2.
J

In particular, if v = 0 mod 2, then d4(n,) = 0.

Using the fact that n also has a framing, we can slightly generalize the
definition of ¢ above by defining

(f@qm) = fal&: &) ¢ (L) + D fol&s, &) Tkar(L5, Lk) € Q.
J i<k
A fundamental formula [8, Th. 3] is the relation
(4.2)
(M, L q,¢) = 2™ (IS =0:01)) oy (Tors Hy (M), g,) Folv)

7<v ® Tors Hy(M).f @, + (fo ® XM)<[n]>) [H (M G|,
Here f ® gs denotes the quadratic function V ® Tors Hy(M) — Q/Z over
f ® Ay defined by
@y flz, ) ¢s(y)-
The map (f@®XM> (In]) is the map on V®Tors Hi (M) induced by the map
adjoint to the linking pairing f ® Ays at [n] € V¥ x Tors Hy(M). Explicitly
V @ Tors H1(M) — Q/Z, z— (fo ® An)([n], 2)-

Note that this map is well defined and non-trivial in general since [n] €
Vi ® Tors Hy(M).

Let us prove the implication (I) = (II). Consider the case
D¢ ®[L;] ¢ G @ Tors Hy(M)
J
first. By Cor. 2.1, 7(M,L;q,¢) = 0 = 7(N,J;q,c), which is the desired

result. Consider next the case

ch@) [£;] € G®Tors Hi(M).
J

Since ¢* Ay = Az, choose a spin structure s’ on N such that qb*qf\'] = qy-
Thus q]S\l, ~ ¢3, and their associated Gauss sums are equal. Set nyr = ] j §®
Lj and ny = ;& @ Jj. The isomorphism ¢ : Hi(M) — Hi(N) induces
an isomorphism 1+ ® ¢ sending [n3/] € V@ Hi(M) to [nn] € V@ Hi(N).
The isomorphism 14 ® ¢ induces an isomorphism

FOG + (Fa® ) ([mu]) = fF @ g + (fo ® An)([nw]).
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Hence their associated Gauss sums are equal. In view of Hy(M) ~ H{(N),
the equality |H'(M;G)| = |H'(N;G)| is clear. Finally it follows from (iii)
that

(f ®@aip)(mr) = (f ® dx) ()
and it follows from (i) and the definition of s’ that

d(nar) = d(nn)-
This is the desired result.

We now prove the converse.

Step 1: we recover the homology by taking the absolute value of 7(M;q) =
7(M, @; q,0). By Corollary 2.2, if (G, q) and (Tors H1(M)) have no common
orthogonal cyclic summand of even order, then

IT(M;q)| = |H'(M; G)|V? = |Hi(M) ® G|/

By allowing G to vary, we recover all p-components of Hy(M) for all odd
primes p. For 2-components, for each k& > 1 and G = Z/2*7Z, we compute
7(M;q). By Corollary 2.2, we know that Hy(M) has Gy as an orthogonal
summand if and only if 7(M;q) = 0. We only need to know the num-
ber of such summands. We observe that given any finite abelian group
G, the group G @ G carries a hyperbolic linking with no cyclic orthogonal
summand. Lift this linking to any quadratic form g. Then |7(M;q)|* =
|HY(M;G®G)| = |H' (M; G)|*. By allowing G to vary over all 2-groups, we
recover all 2-components of Hy(M). Finally we recover in this fashion the
isomorphism class of H;(M). (For more details on this step, see [7].) [ |

Step 2: For ¢ = 0, the formula (1.1) simplifies to
(4.3)

T(M,L;q,0) = 7(M,q) =

AV ®Tors Hy(M), f ®4°)
v(Tors Hy (M), q*)f(vv)
Using the discriminant construction (§2.4, Th. 2.4), we may choose any

bilinear even lattice (V, f,0) equipped with Wu class v = 0 € Wu" (f) such
that (Gf,¢r0) = (G,q). Then the formula simplifies further to

(M, q)
|HY(M; G)|/?

(4.5 — V@ HI(M), 3/ ® ).

[H (M @),

(4.4) Y(V ® Tors Hi(M), f ® ¢°)

For the second equality above, we regard % f as the homogeneous quadratic

function defined by (3f)(z) = @ € Z for all x € V and we use the fact
that 2 ¢°(y) = Am(y,y) for all y € Hi(M). We now apply the classifica-
tion theorem (Th. 3.1) to the Gauss sums 7(M, q) = v1/2 50(An,0) (this is
the special case when the distinguished element is trivial): we recover the
isomorphism class of the linking pairing Ap;. It follows from Step 1 and

Corollary 3.4 that we recover the isomorphism class of the linking group
(H1 (M), Anr)- u
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Step 3: we show how to detect whether a Z-linear combination > ;¢ ; a;[L;]
is torsion in Hy (M) and if it is, we show how to compute its order.

Let J € {1,...,n}. Recall the corresponding ordered sublink £’ = UjesLj
of L. Let (aj)jes € ZVl. We prove that 7 detects whether the Z-linear
combination ;. ; a;[£;] is torsion in Hy(M). Note that it actually suffices
to detect whether > .. ;a; [£;] = 0 in Hi(M). We use the following fact
from p-adic numbers. Let

Z =lim Z/nZ = {(zk)k>1 € H Z/kZ, for all n|m, x,, = x, mod n}.
k=1

Note that the natural homomorphism

7 — 1_[ ZJkZ, x— (x mod k)g=1
k=1

factors through a map Z — Z.

LEMMA 4.1. Let H be an abelian group. The map H — 7Z®H is injective.

Applying this lemma to H = H;(M) for the particular element >}, a; [£;]
yields the

COROLLARY 4.1.

2 a] = 0 if and only if 2 a; mod k)®[L;] =0 € Z/kZ, for allk >
jeJ jeJ

Let k = 1. Set Cp = Z/kZ. By 1y, we denote (1 mod k) € Cj. Let
1# € Cf be the unique form defined by 1%(1;) = 1 mod 1. Let Gj =
Cr®C}. Define g, : Gy, — Q/Z by q(x, o) = a(x). The quadratic form gy, is
hyperbolic. In particular, (G, gx) has no cyclic orthogonal summand. Hence

the characteristic homomorphism vanishes: Xbg, d = 0- Equivalently the

characteristic element is zero. Denote by ¢/ = (¢j)jer € G‘k‘]| the color vector
associated to the ordered sublink £7. By the vanishing condition (Th. 3.4),
(M, L7; qp,¢’) % 0 if and only if de] ® [Lj] = 0. This holds for any

color vector ¢’ = (¢j)jes and for any k > 1. In particular for each k > 1, we

71
cjk)jes € Gy

take c; = ¢ = a] (1,,1F) € Gy. For each k > 1, set ¢f = (c
(aj mod k) ® [£;] = 0. By

We have 3. ;¢; ® [£;] = 0 if and only if 3]
corollary 4.1, we conclude that

Z a;[£;] = 0 if and only if for all k > 1, 7(M, L”; gy, c]) % 0.
JjeJ

jed

In particular the invariant 7 detects whether ;. ; a; [L;] = 0, as claimed.
The order of > ; a; [£;] is the smallest n > 1 such that de] na; [£;] = 0.
It follows that it is the smallest n > 1 such that 7(M, L7; qx,n ck) + 0.

As a particular case, 7 detects whether a given component £; represents a
torsion element in Hy (M) of fixed finite order. [ |
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Step 4. Set F1(M) = Hi(M)/Tors Hi(M). We show how to detect whether
any Z-linear combination Zje 7 aj|L;] projects onto a primitive element in
F1(M). (Recall that a primitive element in a lattice V' is an element z € V
that can be completed to a Z-basis (x, z2,...,zy,) of V.)

We use the notation of the previous step.

LEMMA 4.2. Letk>1. Letc=c’ e G‘k‘” denote the color vector defined by
c;j =cjk=a (1x,17) € Gy, for all je J.

(1) The element 3 ;. y aj[L;] projects onto a nonzero element in k Fy (M)
if and only if the following two conditions are verified:
(1.1) T(M,E;qk,cj) + 0 forc; = ap (1,15) € Gy, je J.
(1.2) For any positive integer k' not multiple of k, for any nonzero
CJ € (Gk/)“]‘, T(M, [,; qk’, CJ) =0.
(2) The element 3. ;. ; a;{L;] projects onto a primitive element in Fy (M)
if and only if T(M, L; qr,c¢’) =0 for all k > 1.

Step 5: we show how to recover ¢™(£;) € Q for all 1 < j < n such that
[L£;] € Tors Hi(M). By Step 3, we know which components represents
torsion elements. Henceforth we assume that there is at least one component
L; that represents a torsion element in H;(M). Consider the set S of all
pairs (G, c) where G is a finite Abelian group and ¢ = (¢1,...,¢,) € G"
is an n-tuple of colors such that [0] = c® [£] = };¢; ® [£;] = 0. Let
(G,c) € S. By Theorem 2.4, choose a triple (V, f,v) over (G,q). Since
[0] = 0e GRH (M), we choose a lift n such that [] = 0. Then the formula
(4.2) reduces to

(4.7)

(M, L3 g, ¢) = e2mi(tr@n)m=sen) YV @Tors Hi(M), J © ¢°)
v(Tors Hy (M), qs)f(w:v)

\HY(M;G)|2.

Since we know the isomorphism class of Ap;, we can freely choose a spin
refinement ¢® of Aj;. Hence we can compute the Gauss sums of the right
hand side of (4.7). We already know the order |H'(M;G)| by Step 1. Since
[0] = 0, we know that the invariant does not vanish if and only if (G, q)
and (Tors H1(M), Aps) have no common cyclic orthogonal summand of even
order. Let (V, f,v) be a triple over (G, q) satisfying this condition and the
condition that (G,c) € S. Then we recover

exp27i ((f @4")(n) = 6(n))
In particular for v = 0, we have §(n) = 0, hence we recover the term
exp 2mi(f ® ¢")(n).

We now prove our claim. Let 1 < j < n. Let d be the order of Tors Hy(M).
Set

{1 ifdis even;
YT 2 ifdis odd.
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For each N > 2, consider the pair formed by the group G = Z/ad¥7Z and
the colors defined by

_ f admod ad" ifk=j
k= 0 if k =+ J.

Clearly
0] =c®[L] =¢;®[L] = 1®ad [£;] € Z/ad"Z ® H (M).

Thus (G,c) € S since d [£;] = 0 in Tors H;(M). Consider the bilinear
lattice f : Z x Z — Z defined by f(z,y) = ad” = -y. Observe that f is
always even (so that v = 0 is a Wu class) and Gy = G. Note that ¢ = ¢y
is a quadratic form over a cyclic group of order ad™. Thus (G,q) and
(Tors Hy(M), A\ps) have no common cyclic orthogonal summand. We lift
0 = (ad mod ad™) ® L;j to n = ad/adY ® L; = 1/d¥~1 @ L;. Given our

choice of (V, f,0), the argument above applies: we recover the term

exp (2mi(f ®¢™)(m) = exp (2mifo(€;, &) ¢ (L))
= exp (2mi el qfr(ﬁj)) .

Hence we recover -yt q"(L;) mod 1 for all N > 2. The lemma below (well
known in the context of p-adic numbers when d is prime) implies that we
recover a ¢'"(£;) € Q and hence ¢"(L;) € Q.

LEMMA 4.3. Let d = 2. Let Qg be the inverse limit of Q/edNZ. The map
Q — Qg, 7+ (r mod d¥)y=1
18 1njective.

The following fact is also well known: a sequence 0 < ry < d of rational
numbers such that ry = ry41 mod dV for all N > 1 corresponds to a
rational number r € Q provided that there exists Ny = 0 such that ry =
TN+1 for all N > No. |

Step 6. Let p: Hi(M) — Fy(M) denote the canonical projection. We show
that the invariant detects the isomorphism class of the pointed (plain) lattice
(F1 (M), p([£1]),---,p([£rn])). From Step 1, we know p = rank(F;(M)).
From the previous two steps, we can find in a finite number of steps the
(unique) maximal subset I € {1,...,n} such that p([£;]) + 0 in Fy(M) for
each i e I.

For all ¢ € Gl (M, L;q,¢") = 7(M,L";q,¢). By Step 4, the invariant
detects whether any Z-combination », a; p([£;]) lies in kFy(M). Apply the

classification of pointed plain lattices (Prop. 3.1) to deduce the isomorphism
class of (F1(M),p([L1]),---,p([£r])). This proves our claim. [ |

Step 7. Let r : Hi(M) — Tors H1(M) be a retraction. We claim that the
invariant 7 determines the isomorphism class of the pointed linking pairing

(Aar, r([£]))-
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Preliminary step: let (G, q,c) be a pointed quadratic form. We prove that
for any choice of a 4-tuple (V, f,v, &) such that (G, ¢r., [£]) = (G, q, c),
(4.8)
YV ® Tors Hi(M), f @ gs, +(fo ® Man)([nur])) =
=1V @ Tors Hi(N), f @ ¢s + (fo ® An) (Inw])).

Set
O :ch®£ka On 220k®jk€G®H1(M)-
% 2

First, notice that according to Th. 2.1, if [#;/] is non characteristic then [0x]
is also non characteristic and both Gauss sums in (4.8) vanish (whatever our
choice for (V, f,v,€)). Hence (4.8) is verified.

Next, suppose that [@as] is characteristic. Then [0x] also is characteristic.
There is an isomorphism v : (Tors Hi (M), Ay) — (Tors Hi(N), An) of
linking pairings (by Step 2), hence idg ;® is also an isomorphism of linking
pairings

(Gf ®TOI"S Hl(M),)\f ®)\M) ~ (Gf ®TOI‘S Hl(N),)\f ®)\N)

Since the characteristic element is preserved under linking isomorphisms (by
(?7)), this is actually an isomorphism

(Gf ® Tors Hl(M),)\f ® A, [QM]) ~ (Gf@TOI"S Hl(N),)\f@))\N, [9]\[])

of pointed linking pairings. Observe that idg, ® ¢ lifts to an isomorphism
idy: ®¢ : Vi@ Tors Hi(M) ~ V#® Tors H;(N). Thus for any lift ¢ of
ce G",

(V@ Tors Hi(M), f @ A, [nm]) ~ (VF® Tors Hi(N), f ® An, [1v])-

This isomorphism lifts to an isomorphism of pointed quadratic forms (f ®
Tsprs [Mr]) = (f ® gsy,, [nn])- Therefore, (4.8) is again verified. This com-
pletes the preliminary step.

Since F1 M is free, there is a commutative diagram of split exact sequences

0—=Vi® Tors H (M) —= V!Q H|(M) —=ViQ F|(M) —=0

! | |

with retractions 1+ ®7 and 1¢®r respectively. If follows that ), ¢, ®[Ly] €
G ® Tors Hy(M) if and only if >, ¢, ® [L] = D) ek @ r[L]. Thus

o] =D & ®[Lr] € VE@ Tors Hi(M) = [n] = Y & @r[Li].
k k
Let (V, f,0) be an even lattice over (G, q) (cf. Th. 2.4). For any homoge-

neous quadratic form ¢, we have

1
f@q: §f®bQ)
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where % f denotes the homogeneous quadratic function defined on the lattice
V by (1/2 f)(z) = @ € Z for all x € V. In particular,

f @ o = 5/ ©Nur
Now equality (4.8) reads
(4.9) s Qars r([£a]); -5 7 ([£n]) = s O, ([T - -5 7 ([T0]))

where h = 3f and s = fo(&)lve = (fo(&)lv.-.., fal&)lv) € (V*)". We
apply Theorem 3.1: Step 1 ensures that condition (1) is satisfied and (4.9)
ensures that condition (2) is satisfied. The isomorphism

(Tors Hy(M), A\pg,m([L1])s - -+, 7([£n])) =~ (Tors Hi(N), An,r([A])s---,7([Tn])))
follows.

Step 8. Steps 7 and 8 imply that the hypotheses of Lemma 3.4 are satisfied.
We conclude that there is an isomorphism of pointed linking groups

(HI(M)7)\M7 [El]a ey [ﬁn]) s (HI(N)a)\Na [\71]7 ey [jn]) .
This concludes the proof. |

5. The extension of the monoid pairing

Theorem 3.1 suggests extending the monoid pairing (—, —) : M x Q¥ — C
defined in §77?. This section is devoted to the construction of this extension.
Our main result is that this extended pairing is nondegenerate.

Let n > 0. Let 9M"(n) denote the monoid of n-pointed linking groups.
In other words, 9™ (n) consists of triples (H,\,¢) where H is a finitely
generated abelian group, A : Tors H x Tors H — Q/Z is a linking pairing
and ¢ = (¢1,...,0,) € H™ is an n-tuple of distinguished elements. The
operation is the expected one, induced componentwise by orthogonal sum
and addition. There is a natural embedding 9™ (n) — M (p) for any n < p
defined by adding p — n zeros on the right on the distinguished n-tuple to
form a distinguished p-tuple. We define also a monoid Q°(n) that consists
of pairs (g, ¢) where g : G — Q/Z is a nondegenerate homogeneous quadratic
function on a finite abelian group G and c is a distinguished element in G™.
Clearly, Q° = Q°(0) embeds in Q%(n) in the usual way for any n > 0. An
ordered link £ = £ u---uU L, in a closed connected oriented 3-manifold M
induces an element

[£] = ([£a], -5 [£n]) € Hi(M)"
and therefore determines an element (Hy(M), Ay, [£]) € DT (n).
LEMMA 5.1. Let (H, A\, ¢) € Mt (n). There exists a closed oriented 3-manifold

M equipped with an oriented and ordered link L = L1 v ...u L, < M such
that (Hy (M), Ay, [L]) = (H, A\ E).

ProoOF. By [33, Th. 6.1], any (nondegenerate) linking pairing can be
realized as the linking pairing of a closed oriented 3-manifold. Actually, the
3-manifold can be chosen as a rational homology 3-sphere M’ (b1(M') = 0).
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Let m be the rank of H. One needs to modify M’ to another 3-manifold
M such that by(M) = m so that Hi(M) = H. The simplest way to do
this is to make connected sums with S' x §%: M = M'jjji}"zlSl x S2. Then
bl(Mﬂﬂ;?lzlSl x S?) = by (M) +m by(St x §?) =0+ m 1 = m. It remains
to choose an ordered oriented link £ < M’ such that its components rep-
resent prescribed homology classes ¢1,...,£¢,. Since the dimension of each
components is one, we can achieve this component by component. Since
the codimension of each component in M is two, we can ensure that the
components are pairwise disjoint. O

Let n > 0. We define a pairing M+ (n) x Q°%(n) — C by

(51) <H,)\,€;Q,C>=T(M,£;Q,C),

where M is any closed oriented 3-manifold equipped with a link £ = £ u
... u L, © M provided by the lemma above. For n = 0 (no distinguished
element), this coincides with the previous definition (see §??7). For n > 1
(when there is at least one distinguished element), the definition is unam-

biguous only if we fix the framing lkp(L;, E;) of torsion components of £
in M. We require that for each 1 < j < n,
p +1
Ikn (L, L5) = N, €Q

where N; is the order of the homology class [£;] in Hi(M). We refer to
this framing as the reference framing of L. For non torsion components, the
framing is undefined. Theorem 3.1 ensures that the pairing (—; —) is well
defined by (5.1).

THEOREM 5.1. The pairing
M (n) x Q) > T, ((H A0, (0:)) = A 0.0

is bilinear, left and right nondegenerate.

Bilinearity is meant with respect to the operations
(HNODH' N )= (HOH XN (L)
and
(@.00@(d.d) =@, cad).
Clearly the pairing above generalizes the pairing introduced in §77:
(H, N\, @5q,¢) =C(H, A\yq, @) = (CH, \; 0) = CH, A 45,9, 0).
Proor. Bilinearity follows from the definition. Th. 3.1 asserts that

—, — is left nondegenerate. It remains to prove that it is also right nonde-
g p g
generate.

Step 1: we recover G by taking the absolute value of 7(M, L; ¢, ¢). This step
is completely symmetric to the first step of the proof of Th. 3.1. We have

v, £q,¢)] = |H'(M; G)? = |G ® Tors Hy(M)['?,

if G and Tors Hy(M) have no common cyclic orthogonal summand of even
order (and is zero otherwise). According to the previous lemma, for any
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pointed linking pairing (X, £) € 9%(n), there is a closed oriented rational ho-
mology 3-sphere M equipped with an oriented link £ such that (\,0,¢) =
(A, 0,[£]). Endow £ with the reference framing. By appropriate choices
of (Tors Hi(M), Apr), we recover all p-components of G, hence the isomor-
phism class of G itself.

Step 2: we establish a formula for 7(M, £;q,c) in a particular case (first
proved in [12, Cor. 4]). Let £ = £ u---UL,, © M be an oriented link whose
components are all homologically trivial: [£;] = 0 in H(M) for 1 < j < n.
We have [n] = >, & ® [Li] = 0 for any lift of [0a] = D3 cx ® [Li] = 0.

Furthermore,

5s(mo) = X, folv,&) (a"(L5) — a*([£5]))

% fo(v,&) (a(£5) —0)

>, fo(v,&)d™ (L),

Since each component is homologically trivial, all framing and linking num-
bers are integers. It follows that

(¢ ®1Ikar)(Onr) = (0 @ lknr) (2 ¢ ®£j) = (f®4¢")(1) = d5(n,) mod 1.
J
It follows from the formula (4.2) that

(5.2) T(M, L;q,c) = exp <2m'(q®1kM)(0)> 7(M,q).

In particular, if M is a Z-homology 3-sphere, 7(M, q) = 1. Hence
(5.3) T(M, L;q,c) = exp <2m'(q ® lkM)(G)) .

for an empty (or zero-framed algebraically split) link, we have

A, B3.q,¢) = A m; q)-
We have noted earlier that the pairing (—, —) : M* x Q0 — C is right non-

degenerate. Hence the (isomorphism class of the) homogeneous quadratic
form (G, q) is determined. In particular, the Gauss sum v(G, q) is recovered.

Step 3: consider the case when M is a Z-homology 3-sphere with an oriented
link £ < M. Then it can be shown ([8, corollary 5]) that

O, 0,[£]5 0,6y = T(M, £:4,¢) = exp(27i(a @ Ac)(0)),

where A, denotes the n x n symmetric integral linking matrix of £ in M.
Hence by varying the zero-framed link £ in M, we can realize any symmet-
ric integral n x n matrix with zeros on the diagonal. It follows that ¢(c;),
by(cj,cx) € Q/Z, 1 < j,k < n, are all determined.

Step 4: given any pointed linking pairing (A, £), we realize it as the pointed
linking pairing (A7, [£]) associated to a closed oriented 3-manifold M equipped
with a zero-framed oriented link £. The pair (M, £) itself can be realized
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as a pair (L,.J) of disjoint links in S% where L is a framed m-component
link (on which the surgery is performed) and J is an oriented framed n-
component link (giving rise to £ once the surgery on L is performed). Such
a pair determines a linking matrix Ay y. This symmetric integral matrix
decomposes as

A _| A ALy
LuJ AJ,L AJ

where Ay, is the linking m x m matrix of L in S, Ay is the linking n x n
matrix of J in S3 and Ay, = AtL7 7 is the n xm matrix of the linking numbers
of the components of L with the components of .J in $3. Hence, for € G™
and ce G™,

(®Arus)(@,c) = (@ AL)(x) + (bg ® Asr) (2, ¢) + (¢ ® Ay)(c),
where ¢® A s is regarded as a quadratic function on GQZ™" = Gt =
G™ x G", q ® Ar, is regarded as a quadratic function on G ® Z™ = G™,
q® Ay is regarded as a quadratic function on G®Z" = G" and b, ® A1 is
regarded as a bilinear pairing (G®Z™) x (GRZ") = G™ x G" - Q/Z. It
follows from the previous step that we recover the term

(q®As)(e) = > aler) Tkga(Jp, Ji) + . beler, &) lkga (i, ).
k k<l

Step 5: with the notation previously introduced, we have
(M, L q,c)
(G, q) e DG ~m/2

= Z exp(2mi(q ® Arus)(x,€)).

xeG™

By Steps 1 and 3, we know the factors (G, ¢) ™€) and |G|~"2. There-
fore, we recover the Gauss sum

D exp(2mi(q®ALLs)(x,¢)) = ). exp(m((q®AL)(x)+(bq®AJ,L)(x,c)+(q®AJ)(c))>.

xXeG™ xXeG™

According to Step 4, we know the term (¢ ® Ar)(c). Hence we recover the
Gauss sum

2 exp (27ri<(q ®Ap)(x) + (by ® AyL)(x, c))) .

xXeG™

Since we know its absolue value |G ® Tors H; (M) |% from Step 1, we recover
the Gauss sum

HCR®Z™,q@ AL + (b ® AsL)(—,0) = 1 (G OW,q®g + (b ® o) ([w]),
where g denotes the symmetric bilinear map on W = Z™ determined the
m x m linking matrix A; and w € G @ W is a lift of § = Zj c; ®[Lj] €
G®W!W = G® Tors Hi(M). Tt follows that we recover all Gauss sums
Yg,5(q, ¢) for all bilinear pairings (W, g). Therefore, applying the classifica-

tion result for homogeneous quadratic functions (Corollary 3.2) yields the
desired result. O






CHAPTER 8

Abelian topological quantum field theory

Let M = (M,X_,X,) be a connected compact oriented 3-cobordism. In
other words, M is a connected compact oriented 3-manifold such that

M= [[-=.

The surfaces ¥4 and ¥ _, called the bases of the cobordism, are closed and
oriented. We also write

E+ = 5+M, E_ = 5_M

If each base is connected, we say that the cobordism is elementary. Note
that a given orientation restricts to an orientation on each of the connected
component. The opposite orientation is denoted by a minus sign. Each con-
nected component ¥ of the base carries a nondegenerate symplectic pairing

Hi (%) x Hi(%) = Z, ([a],[0]) = [a] « [0]

in the first homology with integral coefficients, namely the intersection pair-
ing. If ¥ is not connected (if the cobordism is not elementary), the pairing
may be degenerate. Recall that Hi(—X) = —H;(X) is the same space as
H,(X) but carries the symplectic pairing opposite to that of Hi(X).

We regard two cobordisms as equivalent if they are equivalent by an orien-
tation preserving homeomorphism that is the identity on the boundary. As
is well-known, 3-cobordisms form a category Cob where objects are closed
oriented surfaces and morphisms are oriented 3-cobordisms and the com-
position is provided by the gluing along a common base. The composition
will be denoted by o. For our purpose, this category has the right notion of
morphisms but too many objects (too many noncanonical objects). In order
to reduce the number of objects (to make them more canonical), we need to
enrich somewhat this category.

Once we have defined the right category, we extend the invariant defined
in the previous chapters to cobordisms. There are actually two equivalent
constructions.

The first one is based on the following idea: glue to each base of a cobordism
(M,¥X_,%.) a finite union of standard handlebodies. This yields a closed
3-manifold M with a pair of distinguished framed oriented links L™, L™ in
—Y._ u X, (the links are the images of the meridians of the handlebodies
respectively). Let g~ (resp. g¢") be the total genus of X_ (resp. X.).
Color the links with some elements =z, 2" € GY9- x G9+. According to
the previous chapter, to a pair (M ,L™ u L*) is associated a topological
invariant 7(M,L~ u L*, (¢, g*)) € C. By varying the colors and using a
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normalization factor, we obtain a linear operator 7(M) associated to the
cobordism M.

The second construction uses only linking invariants associated to the cobor-
dism M itself. It relies ultimately on the reciprocity.

Finally the invariant has special functorial properties: it is a topological
quantum field theory (TQFT). It can be approximately regarded as a func-
tor from an appropriate category of cobordisms to the category of finite-
dimensional C-vector spaces.

1. The parametrized cobordism category

Let g be a natural number. For each g, we fix an oriented handlebody H, of
genus g as follows. The standard handlebody Hj of genus 0 is the unit closed
3-ball D? < R3. For g > 1, consider a union Uy of g circles C1,...,Cy of
radius 1 in the plane z = 0 of R? centered on the z-axis such that CinCjt
is a singleton for 1 < j < g — 1. The standard handlebody H, of genus g
is a closed tubular neighborhood of Uy in R3 symmetric with respect to the
planes z = 0 and y = 0. All the standard handlebodies are orientable as
submanifolds of R3: we choose the orientation so that the outward normal
vector is last. The map mir : (z,y, z) — (z,y, —z) is an orientation reversing
homeomorphism that restricts to Hy. It is the standard orientation reversing
homeomorphism of H,;. We also fix a closed oriented surface X, of genus g
by ¥, = 0H,. The j-th simple closed curve  x S' € £, (resp. S x» € ¥)
is the j-th meridian (resp. the j-th longitude) of 3. A closed surface ¥ is
standard if ¥ is empty or if there is g € N such that ¥ = X.

DEFINITION 1.1. A standard 3-cobordism is a 3-cobordism (M,%_ 3 )
whose bases are finite disjoint unions of standard surfaces.

The definition of a standard cobordism is rigid. It is completely dependent
of our geometrical model of a closed surface of genus ¢g. The idea is to
make all the gluings and all the computations using standard cobordisms
and standard surfaces.

Two standard cobordisms (M, X_,%¥) and (N, X", %/ ) such that ¥ = X"
can be composed by gluing along the common basis: No M = N u M.
Composition is an associative operation.

We need to define an equivalence relation on cobordisms. A first attempt
could be to define a weak equivalence between two standard cobordism as an
orientation preserving homeomorphism that sends the bottom (resp. top)
base to the bottom (resp. top) base. If two standard cobordisms are weakly
equivalent then their bottom and top bases respectively coincide. We cer-
tainly want this property to hold. As any homeomorphism restricts to a
homeomorphism of the boundary, the only difference between this defini-
tion and a general homeomorphism is to distinguish between top and bottom
bases.

DEFINITION 1.2. An equivalence between two standard cobordisms is an ori-
entation preserving homeomorphism that induces the identity on the bases.
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Denote equivalence by ~.

LEMMA 1.1. Let M,M’, N, N’ be standard cobordisms. Suppose that N o M
and N'oM' are well-defined. If M ~ M’ and N ~ N’ then NoM ~ N'oM'.

Proor. Trivial. O

LEMMA 1.2. Equivalence classes of standard cobordisms form a small cate-
gory with finite coproducts (disjoint unions).

PROOF. Cobordisms are morphisms between two standard surfaces (pos-
sibly empty). Formally speaking, an object is a finite sequence of elements
in {*,0,1,2,...}. We set ¥, = @. For instance, a morphism between g_
(one term sequence) and g4 (one term sequence) is represented by an el-
ementary standard cobordism (M, %, ,%, ). In general, a morphism be-
tween (g97,...,9,) and (g7 ,...,97) is a standard cobordism with bottom
base (resp. top base) a surface with connected closed components of genus
gy s>, (resp. of genus g ,...,g7) respectively. The notion of equiva-
lence enables to have an identity cobordism for each object g: it is empty if
the object is x or it is the cylinder ¥, x [0, 1] otherwise. U

The category of equivalence classes of standard cobordisms is denoted Cob®.

DEFINITION 1.3. A parametrized 3-cobordism is a 3-cobordism (M,%_, 3 )
equipped with two orientation preserving homeomorphisms f : ¥, — X_
and fy : X, — X, respectively.

ExAMPLE 1.1. The standard handlebody H, of genus g can be regarded as
a parametrized 3-cobordism (Hg, @, ¥,) parametrized by the identity f; =
idp,. More generally, any standard cobordism provides an example of a
trivially parametrized cobordism with identity parametrizations.

DEFINITION 1.4. Let (M,X¥_,%y) and (N,%1,3¥4) be two parametrized
cobordisms such that there is an orientation preserving homeomorphism
sending ¥y to X1. Let g be the genus of ¥y. Denote by fo: Xy — X9 c M
and fi : ¥y — X1 < N the parametrizations of ¥y and ¥; respectively. The
composition N o M of N and M is defined as

NoM=N][Z,x[-1,1]] [ M.
fi fo

Here the identifications are given by (s,—1) = fo(s) for all s € ¥, and
(s,1) = fi(s) for all s € X,.

Loosely speaking, we glue a cylinder (over the basis 3,) to the disjoint union
N[ M via the respective parametrizations. See Fig. 1.1.

DEFINITION 1.5. Let (M,X4,¥_) and (N,Y,,X") be two parametrized
cobordisms. Let g4 (resp. g—) denote the genus of the surface Y. (resp.
g-). Let f_, f+, f", f\. be the parametrizations of ¥_, X, 3" /¥’ respec-
tively. An equivalence between M and N is an orientation preserving home-
omorphism F': M — N inducing homeomorphisms on the bases such that

Fls_ of-=fland Flg, o fy = f}.
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FiGURE 1.1. Gluing two parametrized cobordisms.

LEMMA 1.3. Let M, M’ , N, N’ be parametrized cobordisms. Suppose that
NoM and N' oM’ are well-defined. If M ~ M’ and N ~ N’ then No M ~
N' oM.

PROOF. Let Fy (resp. Fys) be an equivalence between N and N’ (resp.
between M and M'). Let g be the genus of the bottom base of N which
coincides with the genus of the top base of M. Define a map

F:N[[Sx[-L1[[M > N][Z x [-L1]] [M
by
Fn(z) ifzxeN
F(x) = x ifreX x[—1,1]
Fy(x) ifxe M.

This map induces an orientation preservation homeomorphism F': NoM —
N’o M’ which commutes with the parametrizations, hence is an equivalence
between N o M and N’ o M'. O

LEMMA 1.4. Equivalence classes of parametrized cobordisms form a small
category with finite coproducts (disjoint unions).

PROOF. An object is a finite sequence of elements in {*,0,1,2,...}. We
set ¥, = @. For a finite sequence g = (g1,...,9:), let 3, denote the
disjoint union of the standard surfaces X, ,..., %, . A morphism between
(gy,---,97)and (g7 ,...,gF) is represented by a triple (M, f_, f}) where M
is an oriented cobordism (M,¥_,¥.), f-: ¥,  — X_and f; : ¥,, — X4
are orientation preserving homeomorphisms. The identity morphism is rep-
resented by a cylinder with identity parametrizations on the bases. The
other axioms are easily verified. O

The category of equivalence classes of parametrized cobordisms is denoted
CobP?t,

Any parametrized cobordism (M, ¥_, ¥ ) yields a standard cobordism (]\7 ' Xg 5 2g,)
as follows. We set g4 to be the genus of ¥4. (If ¥4 is empty, then we choose
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¥g, to be empty.) We define
M= (e x [0, 1] [ M][(Zg, x[0,1])
I- I+

The identification are given by (s,1) = f_(s) for all s € ¥,_ and (s,0) =
fi(s) for all s € 5y,. Clearly M is a standard cobordism (M,¥, , %)
obtained by gluing the cylinders over 3, (resp. ¥4, ) to ¥_ (resp. ¥1) by
means of the parametrization f_ (resp. fi) along ¥, x {1} (resp. along

Yg, x {0}).

LEMMA 1.5. If M and N are two equivalent parametrized cobordisms then
M and N are two equivalent standard cobordisms.

PROOF. Suppose there is an equivalence F' : (M,X_, %) — (N, X", ¥ )
between two parametrized cobordisms. It follows that the genus of the bases
coincide: g_ = ¢’ and g = ¢/,. Define a disjoint union of maps

Fi (g, x [0, ] ] M ]S x[0,1]) = (g, x[0, 1 [ N [ [(Eg x[0,1])

by
. x ifrxeX, x][0,1]
F(z)=< F(z) ifzeM
x ifzeX, x][0,1].
Since F' commute with parametrizations, the maps glue together to induce
a map (M, Y9, 2g,) & (N,Eg:_, E’%) between standard cobordisms. The
map is easily seen to be an orientation preserving homeomorphism. By

construction, it preserves pointwise the bases. It is therefore an equivalence.
O

PROPOSITION 1.1. The assignment M — M induces a covariant full functor
CobP™ — Cob?.

PrOOF. Lemma 1.5 implies that the assignment is well defined at the
level of equivalence classes. Let F' : CobP® — Cob? denote the correspond-
ing assignment. The identity morphism of the object ¢ = (g1,...,9r) in
CobP?" is represented by the cylinder C' = X, x [0, 1] with the identity as
parametrization of the bases. It follows from the definition that C' = C' in
Cob®. Thus F sends the identity morphism of ¢ in CobP? to the identity
morphism of g in Cob’. The identity F(N o M) = F(N) o F(M) follows
from Fig. 1.2. By Example 1.1, any standard cobordism is realized as the
image of a trivially parametrized cobordism. Hence F' is a full functor. [

2. The Lagrangian cobordism category

Let A be a symplectic lattice. As is customary, we denote by —A the same
underlying lattice A with the symplectic pairing opposite to that of A. In
particular, if ¥ is a closed surface, then Hy(—X) = —H;(X). Any orientation
preserving homeomorphism ¥ — ¥ induces a symplectomorphism H;(X) —
Hy(%).

The following definition should be seen as a motivation.
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FIGURE 1.2. The composition N o M.

DEFINITION 2.1. A Lagrangian cobordism is an oriented compact 3-cobordism
M,¥_, %) endowed with

(1) Lagrangians A~ € H1(X_) and AT € H{(34).

(2) A Lagrangian Ay ¢ Hi1(0M) = —H 1 (X_)@® H1(X4) such that Ay,
is transverse to the Lagrangian A~ @ A" in H1(0M) = —H1(X_)&
H{(34).

REMARK 2.1. The condition (2) is equivalent to A n A= = A n AT = 0.
This follows from Lemma 1.4.

REMARK 2.2. The Lagrangian Aj; associated to the cobordism M is de-
composable. This follows from Lemma 1.2.

EXAMPLE 2.1 (Meridional and longitudinal Lagrangians). For any standard
surface X4, there are two distinguished and transverse Lagrangians, namely
the Lagrangian generated in 1-homology by the meridians of ¥, (the stan-
dard meridional Lagrangian) and the Lagrangian generated in 1-homology
by the longitudes of ¥, (the standard longitudinal Lagrangian).

EXAMPLE 2.2 (The trivial Lagrangian cylinder). Let M = X x [0, 1] be the
oriented cylinder over a standard surface 3 = ;. We endow ¥ x {0} (resp.
¥ x {1} with the longitudinal Lagrangian A" (resp. A~) in H1(X x {1})
(resp. Hi(¥X x {0})) generated in 1-homology by the longitudes l1,...,1,
of ¥ x {1} (resp. Hi(¥ x {0})). We endow M with the Lagrangian Ay
generated in Hy(0M) = —H1(2 x {0}) & H1(X x {1}) in 1-homology by the
meridians of 3 x {1} and ¥ x {0}. Clearly A is transverse to A~ @®AT. The
cobordism acquires a structure of Lagrangian cobordism called the trivial
Lagrangian cylinder.

EXAMPLE 2.3 (Lagrangian cobordism associated to a parametrization). Let
f X4 — ¥ be an orientation preserving homeomorphism (a parametriza-
tion). We associate to f a Lagrangian cobordism C(f) as follows. As a
cobordism, C'(f) is obtained by gluing two cylinders ¥, x [0, 1] and ¥ x [0, 1]
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via f:
C(f) =% x [0,1]] [ 4 x [0,1]
f

with the identification (s,1) = (f(s),0) for all s € ¥. Hence C(f) is an
oriented cobordism between Y, and Y. To the bottom base we associate
the standard longitudinal Lagrangian A~ < H(X,). To the top base we
associated the Lagrangian f(A~) € H;(X). To the cobordism C(f), we
associate A = Graph(f,). Clearly A is transverse to A~ & f(A™). The
case when f = idy, yields the diagonal Lagrangian for A and the trivial
Lagrangian cylinder.

DEFINITION 2.2. The composition of two Lagrangian cobordisms (M, Y_, ¥)
and (N, X, X ) is defined as the underlying composition of the two cobor-
disms N o M = N u M endowed with the Lagrangians of the bottom base
of M and the top base of N and the Lagrangian Ayons = Ay o Apr. (See
Chap. 2, Lemma 1.1, for the composition of Lagrangians.)

LEMMA 2.1. The composition of two Lagrangian cobordism is a Lagrangian
cobordism.

Proor. This follows from Lemma 1.6. O

DEFINITION 2.3. Two Lagrangian cobordisms are equivalent if there exists
a cobordism equivalence (an orientation preserving homeomorphism that
restricts to the identity on the boundary) between them sending Lagrangian
onto Lagrangian.

Equivalence classes of Lagrangian cobordisms form a category Cob'#8 with
trivial Lagrangian cylinders being the identity morphisms. The assignment

(M,X_,54) = (A, Hi(3-), Hi(34))

is a functor Cob®® — Lag_! (Z). As before the category Cob'®® has too
many objects. We now modify this category.

DEFINITION 2.4. A Lagrangian decorated cobordism is an oriented 3-cobordism
(M,>¥_,%.) endowed with

(1) A pair of isotopy classes of oriented framed links L~ € ¥_ and
Lt € X, such that the subgroups A~ and A% generated in 1-
homology by the components of L and L. respectively are La-
grangians in Hi(X_) and H;(X;) respectively.

(2) A Lagrangian A ¢ H1(0M) = —H1(X_) ® H1(X+) such that A is
transverse to the Lagrangian A~ @ AY in H1(0M) = —H,(X_) ®
Hi(X4).

EXAMPLE 2.4 (The trivial Lagrangian decorated cobordism). Let M = ¥, x
[0,1] be the trivial Lagrangian cobordism. If we provide M with the two
underlying sets of longitudes in 3, x {0} and X, x {1}, then M is called the
trivial Lagrangian decorated cobordism.

ExAMPLE 2.5 (Lagrangian decorated cobordism associated to a parametrized
cobordism). Any parametrized cobordism (M,¥_, 3 ) yields a Lagrangian
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decorated cobordism. The cobordism is topologically the same. Let Lt be
the oriented framed link formed by the images of the longitudes of ¥, by the
parametrization f, : X, — X,. Similarly let L™ be the oriented framed
link formed by the images of the longitudes of ¥, by the parametriza-
tion f_ : ¥y, — X_. Let Aj be the Lagrangian in H;(0M) generated
in 1-homology by the images of the meridians of ¥,, and X, under the
parametrizations f, and f_ respectively. Clearly Ajy; and A~ @ At are
transverse. This provides M with the structure of a Lagrangian decorated
cobordism.

We now define the composition of two Lagrangian decorated cobordisms
using standard surfaces.

DEFINITION 2.5. Let (M,¥_,%) and (N, X1,34) be two Lagrangian dec-
orated cobordisms such that there is an orientation preserving homeomor-
phism ¥y — ¥1. Let g be the genus of Xg. Let L (resp. L') be an oriented
framed link inside ¥o (resp. X1). Let 1 < j < g. Denote by [; the j-th lon-
gitude of 3. Choose orientation preserving homeomorphisms fo : 3, — 2o
and fi : ¥y — X1 such that fo(l;) = L? and fi(l;) = L}, 1=1,...,9. The
composition N o M of M and N is defined by

NoM=N][] %y x[-1,1] [[M
fi fo
with the identifications (s, —1) = fo(s) and (s,1) = fi(s) for all s € 3.

REMARK 2.3. Each longitude mj, 1 < j < g, has a natural parallel in X:
at each point p € m;, there is a well defined positive normal of length 1.
The framing of the links L° and LY is inherited from the framing of the
longitudes m;, 1 < j < g, in X,.

REMARK 2.4. The choice of the homeomorphisms fy and f; is not unique
in general. One should complete the definition of fy and f; by defining
for instance on meridians and extending completely the definition of each
homeomorphism to X,. However, we shall soon see that a different choice
will eventually lead to an equivalent Lagrangian decorated cobordism.

LEMMA 2.2. The composition of two Lagrangian decorated cobordisms has a
natural structure of Lagrangian decorated cobordism.

PrOOF. Two Lagrangian decorated cobordisms (M, >, ¥g) and (N, X1, %)
are composable if and only if there is an orientation preserving homeomor-
phism ¥y — ¥ sending the link L° to the link L' (up to isotopy in ¥1). The
link associated to the bottom base (resp. top base) of N o M is the link L~
(resp. L) associated to ¥_ (resp. to X.). The links L™ and L™ generate
Lagrangians A~ (M) and A" (N) in H1(X_) and H;(3,) respectively.

The only point consists in defining the Lagrangian Anops in Hi (N o M) asso-
ciated to the Lagrangian decorated cobordism N oM so that it be transverse
to A= (M) & AT (M). Let Ap; and Ay be the Lagrangians associated to M
and N respectively. Our gluing depends on the intermediate links in g
and X1, so we cannot define Ayopr = Ay o Aps as in the case of Lagrangian
cobordisms.
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The cobordism N o M can be written as the composition of cobordisms (in
the sense of morphisms of Cob)

NoM=NoCO(f1)oC(fy ) oM

where C(f1) and C(f, 1) are Lagrangian cobordisms associated to f; and
f2 respectively. (See Example 2.3.) Now regard M and M as Lagrangian
cobordisms as well. We have expressed N o M as the composition of four
Lagrangian cobordisms, hence N o M is a Lagrangian cobordism. Therefore
(in the usual sense of composition of Lagrangians, by Lemma 2.1)

Anonr = An o Graph(fi4) o Graph(f[;sl) oAy,

where fo, and fi. denote the symplectomorphisms induced in 1-homology
by fo and f; respectively, is a Lagrangian transverse to A~ (M) and A*(M).

We are therefore forced to define the composition Anops by the formula
above which proves the result. O

DEFINITION 2.6. Two decorated Lagrangian cobordisms M and N are equiv-
alent if there is an orientation preserving homeomorphism f : M — N
sending the top base (resp. the bottom base) to the top base (resp. the top
base), sending the oriented framed link in the top base (resp. in the bottom
base) to the oriented framed link in the top base (resp. in the bottom base)
and sending the Lagrangian Aj; to the Lagrangian Ay.

The composition is associative and the trivial Lagrangian decorated cobor-
disms represent the identity morphisms.

DEFINITION 2.7. The category formed by equivalence classes of Lagrangian

decorated cobordisms is denoted Cobi‘;lg .

Example 2.5 shows that a Lagrangian decorated cobordism M is naturally
associated to a parametrized cobordism M.

PROPOSITION 2.1. The assignment M — M induces a full covariant functor
CobP* — Cobgg.

PROOF. Let (M,¥_,%,) be a decorated Lagrangian cobordism with
transverse Lagrangians Ay, © Hi(0M) and A~ © AT < H1(0M) respec-
tively. We show that this cobordism is represented by a parametrized cobor-
dism. First the symplectic group acts transitively on pairs of transverse
Lagrangians.

we need to find parametrizations f_ : ¥, — X_ and f; : ¥, — Xy such
that the images of meridians O

—~ 1
REMARK 2.5. We could introduce a more general category Cobf:g by re-
moving the condition of transversality for the Lagrangians. For all practical
purposes, the category Cobifg will suffice.

In the rest of this paragraph, we make a number of elementary observations
about the nature of Lagrangians.



134 8. ABELIAN TOPOLOGICAL QUANTUM FIELD THEORY

Consider a connected oriented 3-manifold M with non-empty boundary oM.
Such a manifold gives rise to a Lagrangian Ker i, < Hy(0M) where i, :
H,(0M) — Hi(M) denotes the inclusion homomorphism. See for instance
[4, Th. 10.4]. Such a Lagrangian depends only on the topology of M and
will be called standard in the sequel.

In general, there are many other Lagrangians in H;(0M); if we regard M as
some Lagrangian decorated cobordism, the standard Lagrangian generally
differ from the Lagrangian Aj; associated to the cobordism. One way to see
that is to remark that Ker ¢, does not have to be decomposable.

EXAMPLE 2.6. Let M = T? x [0,1], the cylinder over the 2-torus. The
boundary of M consists of two copies

T =Tx0, Ty =T x 1

(with opposite orientations) of the 2-torus. The standard Lagrangian Ker i,
is the Lagrangian generated by pairs (—x,z) € —H 1 (T_)® H1(T). It is not
decomposable. Denote by

ly,mys € Hi(Ty)

the homological classes represented by the longitude S* x x and the meridian
*x St of T} = S' x 8! respectively. They clearly generate H1(T4). Any pair
of primitive elements of Hq(T4) forms a symplectic basis of Hy(Ty) if and
and only if it is uniquely represented by a matrix A € SLy(Z) with respect
to the basis (I4,m4). In particular, there is a one-to-one correspondence
between Lagrangians in H; (7T ) and primitive elements in Hy(Ty). Let now
A e Hi(0M) = —H(T-) & Hi(T;) be a Lagrangian. It is generated by
two independent primitive elements. If one of these two elements can be
taken to be in H1(Ty) then (since it is primitive) it generates a Lagrangian
Ay € Hi(Ty). If both elements can be taken in Hy(7-) and H;(T) respec-
tively, then A is a decomposable Lagrangian and A = A_ & A . Conversely,
any decomposable Lagrangian A ¢ —H(T_) & H;(T) is generated by two
primitive elements in H1(T_) and H;(T;) respectively. For instance,

Ay = )840, Az = A-)B(m), Aot = (M )&y ), Mgz = (m—)S(m1)
are four distinct decomposable Lagrangians of Hy(0M) = H1(—T-)®H(T-).

It is not hard to extend the observation of the previous example.

LEMMA 2.3. Let (M,%X_,%) be a 3-cobordism with 0M consisting of exactly
two connected components, ¥ and ¥,. A Lagrangian A < Hy(0M) is
decomposable (with respect to the decomposition Hi(0M) = —Hi(X_) &
Hy(X4)) if and only if A is generated by elements represented by simple
closed oriented curves.

In the example above for M = T x [0,1], the standard Lagrangian Ay is
generated by pairs (—z,x) € —H1(T-) & H1(T), x € Hi(T). None of these
pairs (except the trivial one) can be represented by one single simple closed
oriented curve.
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PROOF. The representation of generators of A by simple closed oriented
curves is a sufficient condition: each simple closed curve must lie in one
single connected component of ¢M and in particular will induce a well-
defined homological class in Hy(X_) or in H;(X4). Since A is Lagrangian,
there are exactly g+ simple closed curves in >4 where g+ denotes the genus
of ¥4. The result follows.

Conversely, if A is decomposable then A = A n Hi(¥y) is a Lagrangian
in H1(X41). Such a Lagrangian is generated by a system of g independent
primitive elements in H1(¥4). An element in H;(X4) is primitive if and
only if it is represented by a simple closed oriented nonseparating curve (see
e.g., [42]). Hence the result. O

3. Linking pairings and Lagrangians

3.1. The linking pairing of a 3-manifold. Let M be any connected
compact oriented 3-manifold with boundary d M. Poincaré-Lefschetz duality
and the (torsion) universal coefficient theorem lead to the following sequence
of isomorphisms

Tors Hy (M) ~ Tors H*(M,dM) ~ Tors Ext(Hy(M,oM),Z)
~ Hom(Tors H{(M,oM),Q/Z).
There is therefore a nonsingular bilinear pairing
apr : Tors Hi (M) x Tors Hi(M,0M) — Q/Z.

A geometrical definition of this pairing is as follows. First define linking
numbers for cycles. Let x be an integral 1-cycle in M and let y be a rela-
tive 1-cycle in (M, 0M) representing homology classes in Tors Hq(M) and
Tors Hi(M,dM) respectively. We may assume that x and y are in general
position. There exists n € Z and a 2-chain C' in M such that n x = 0C.
We may further assume that C' and y intersect transversally, i.e. in a finite
number of points away from the boundary. Define

C .
knr(z,y) = Ty € Q.

EXAMPLE 3.1. Let M = S' x D? be the solid torus. Let % denote an
arbitrary point on S'. Let = x x 0D? be a meridian and y = S! x 0 be a
longitude. Clearly # bounds a disc C' = * x D? and y is a boundary modulo
OM = S' x 0D? (the torus surface). Since C' and y intersect in exactly one
point, it follows that for a suitable choice of orientations, lk(z,y) = +1.

At the level of homology, define
ant([2], [y)) = k(2 ) mod 1.

Here we denote by a small dot the algebraic intersection number. The linking
pairing Aps associated to M is defined by

AM = ap o (_7* X id),
where j, : Tors Hi(M) — Tors Hy(M,0M) denotes the natural projection
homomorphism. In particular, if j, is an isomorphism or when M has no
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nonempty boundary, the linking pairing Ay is nonsingular. In general when
M has a nonempty boundary, the linking pairing is degenerate.

3.2. Lagrangians. We consider a slight variation of the previous set-
ting. Suppose that M is equipped with an isotropic subgroup A ¢ Hy(0M)
(isotropic with respect to the intersection pairing on Hy(0M)). Let x,y be
two 1-cycles in general position in M such that their homology classes lie
in Tors (Hi(M)/ix(A)). Unravelling the definition, we see that there exist
n € Z, a 1-cycle z whose homology class lies in A and a 2-chain C in M such
that n z = i,z + dC. Assuming that C' is in general position with respect to
y and denoting by a dot algebraic intersection, we define the linking number

C.
lka (,y) = —2 € Q.
LEMMA 3.1. lkp is well-defined, symmetric and bilinear.

REMARK 3.1. The linking number takes values in Z if and only if one of the
2-cycles is a boundary.

PROOF. If n x = i,2' + 0C" is another decomposition, then 0(C' — C") =
ix(2' — z) represents an element in i,(A). In particular, C — C' is a relative
2-cycle, i.e. represents an element in Ho(M,0M). Let p € Z such that
p |y] = ix(w) in Hi(M) for some w € A. Thus the algebraic intersection
(C —C") - py is computed using the homological intersection product e :
Hy(M,0M) x Hi(M) — 7Z. Let a = [C — C'] € Hy(M,0M). Since this
product takes value in Z, no torsion occurs. Hence

(C-C")-y= ;(a-p y) = ;(a orix(w)) = ;(&’a oo w) = 0.
The third equality is a well-known property of intersection products with
respect to the long exact sequence associated to (M, 0M). In the last equal-
ity, the product is the intersection product on H'(6M). Since both da and
w lie in the same isotropic A, their product vanishes. This proves that lky
is well defined.

Since lky is defined for 1-cycles, it is a bilinear pairing. To see that the pair-
ing is symmetric, let C’ be a 2-chain in M and 2’ a 1-cycle whose homology
class lies in i,(A) such that p y = i,2' + 0C’. Assume transversality, the
intersection of two 2-chains C' and C’ is a 1-cycle in M. Hence

0=0(C-C")=0C-C'"—=C-0C" = (nx—isz) - C"—C - (ny —is2)
=naz-C'—C-py—iwz-C' +C-i,2
=nz-C—=C-puy.
Dividing by n p gives 0 = Ik (y, x) — lkp (z,y). O
Given the special role that Lagrangians play in 3-cobordisms (see §...), we
are interested in the special case when A is a Lagrangian.

LEMMA 3.2. Let M be any connected compact oriented 3-manifold with
boundary M. Let A be a Lagrangian in Hi(0M). Let

is 2 Hi(OM) — H1(M)
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be the homomorphism induced by inclusion. The linking pairing on M in-
duces a linking pairing

An : Tors (Hl(M)/i*(A)> x Tors (Hl(M)/z’*(A)) - Q/Z

defined by
Aa([a], [b]) = ka(a,b) mod 1.

REMARK 3.2. The case when dM is empty, we recover the usual linking
pairing. See [25, Chap. 4].

PROOF. See [45, §6]. Another proof follows from Lemma 3.3 below. [

In the sequel, we set
Gpr = Hi(M)/ix(A), TaM = Tors Gj.

According to Lemma 3.2, TA M carries a linking pairing Ax. An important
case arises when the Lagrangian is decomposable.

3.3. Lagrangians and gluings. Consider a disjoint union H of stan-
dard oriented solid handlebodies Hi,..., H, and an orientation reversing
homeomorphism f : u;0H; — 0M. Let M=Mu ¢ H be the closed ori-
ented 3-manifold obtained by gluing the handlebodies to dM via f. Let A
be the Lagrangian generated in Hq(0M ) by the images by f of the meridians
of Hy,...,0H,. Let j denote the map M — M induced by the inclusion
M < M v H and the gluing. The following observation is useful.

LEMMA 3.3. Let x,y be two 1-cycles in general position in M such that some
of their multiples lie in i, A. Then

lka(z,y) = kg (G2, Juy)-

In particular, there is a linking pairing isomorphism

~

(Tors Hi(M), \zz) =~ (TAM, Ap).
In particular, Ap is nondegenerate.

EXAMPLE 3.2. Let M be the solid torus S! x D?. Its boundary is 0M =
S1 x 0D? = S' x S'. The first integral homology of M is freely generated
by a meridian m = * x ¢D? and a longitude [ = S' x . Let A be the
Lagrangian generated by the longitude I = S' x x < S' x dD?. Then
GAM = H(M)/ixA = 0, the linking numbers lka (x, y) are integers and the
linking pairing lky is trivial. Consider a homeomorphism f : 8(S* x D?) —
M sending the meridian * x dD? to the longitude [ of M. Then M = $3.
Hence linking numbers are usual linking numbers in S (hence are integers)
and the linking pairing on S2 is trivial since the homology of S® is trivial.

EXAMPLE 3.3. Consider the same solid torus M = S! x D2. Let n be a
nonzero integer and m and [ the meridian and longitude as before. Let A =
A, be the Lagrangian in H;(0M) generated by m+n {. Then Hy (M) /i, A ~
Z/nZ and Ikp(p [I],q [I]) = +22 mod 1. If f : &(S' x D?) —» M is a

homeomorphism sending the meridian * x D? to m +n [ in M, then M is
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the lens space L(n, 1) and we recover the cyclic linking pairing on L(n, 1) in
this fashion.

Under the hypothesis of this paragraph, any quadratic enhancement ¢p of
AA is nondegenerate. We observe that any quadratic enhancement can be
regarded as partially induced by a relative spin structure s on the 3-manifold
M with boundary. We describe it as follows. With the same notation as
above, endow the disjoint union of oriented solid handlebodies Hy, ..., H,
with relative spin structures si,..., s, respectively, in such a way that

slovr = vif*silom,

Then gluing the handlebodies to M via f yields a closed 3-manifold M
with spin structure 5. Any quadratic enhancement of A is obtained as the
quadratic form induced by § for some suitable choice of s1,..., s;.

REMARK 3.3. We regard the Lagrangian A as a kind of algebraic remnant
of the gluing. Topologically it is easier to think in terms of gluings; alge-
braically (specifically in relation with the Weil representation), it is easier
to think in terms of Lagrangians. This motivates the following definitions.

DEFINITION 3.1. Let K, K’ € M be two disjoint oriented framed knots and
A a Lagrangian in H;(0M). If for any parametrization f : uj0H; — oM
such that A is generated by the images by f of all the meridians of the
standard handlebodies Hj, the framed knot K (thought as an annulus)
bounds a disc in the closed manifold M (resp. the knots K and K’ are
separated by a 2-sphere in M ), then we say that K A-unknotted or is A-
trivial (resp. we say that K and K’ are A-unlinked). Given an oriented
link L € M, we say that L is A-unlinked if all pairs of components of L are
A-unlinked. We say that L is A-trivial if L is A-unlinked and each individual
component of L is A-trivial.

ExaMPLE 3.4. Consider the cylinder M over the 2-torus equipped with the
four closed simples curves m_,m.,l_,l, as depicted in Fig. 2.1. Endow
these curves with collars provided by the orientation of the tori, which turn
them into annuli (framed curves). The curves my and [_ generate in 1-
homology a Lagrangian A. Then both m_ and [; are A-unknotted. Since

Tkp (im_, isly) = +1

the oriented framed link m_ U [ is not A-unlinked.

4. Construction I: filling in

This section is devoted to a first construction of the abelian TQFT asso-
ciated to a quadratic form ¢ : G — Q/Z on a finite abelian group. This
construction relies on “closing” cobordisms by standard handlebodies. The
ground cobordism category is the category CobP* of parametrized cobor-
disms.

Let (M,X_,%.) be a Lagrangian decorated cobordism. For simplicity we
shall assume that ¥>_ and ¥, are connected. By definition, M is endowed
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with two parametrizations f_ : ¥, — Y_ and fi : ¥, — ¥4. Consider
the closed oriented manifold

M=Hy, Up M Ug,omix —H,

obtained by gluing two standard handlebodies to M via the parametrization
maps. Let L™ (resp. L™) be the image in ¥ (resp. in ) of the standard
longitudes of 0H,_ (resp. 0H,, ). Hence L™ (resp. L*) is a g_-component
(resp. g4-component) oriented link that can be colored correspondingly by
an element ¢~ € G9- (resp. ¢t € G9+). Furthermore, since a standard longi-
tude has a preferred standard parallel, each link comes with a framing. Let
A~ (resp. A") denote the abelian group freely generated by L~ (resp. L™).
Let T(X_) =C|G® A7] and T(X+) = C[G® AT]. Define a C-linear map
T(M) : T(X-) — T(X4) in matrix form by 7(M) = (7. o+ )ceqo- cteqo+
with
Tem ot = |G'|_9+/2 T(M, L~ uLtq(c,ch)).

THEOREM 4.1. The assignment T : CobP* — Vectc, (M, X_,X;) — 7(M)
defines a TQFT in dimension 3.

This is a simplified case of Turaev’s construction [61, Chapter IV]. For a
proof, see [9, Theorem 2].

5. The construction II: counting cycles

First we fix some auxiliary algebraic data. We need a fixed homogeneous
nondegenerate quadratic function ¢ : G — Q/Z on a finite abelian group.
We shall use the discriminant construction in the form of a presentation of
(G, q) given by a triple (V, f,v) where f : V x V — Z is a (nondegener-
ate) bilinear lattice equipped with an integral Wu class v € Wu" (f). We
note that there are many choices for the presentation (V, f,v) and for the
lift of coefficients according to a given presentation of (G, q) as a discrimi-
nant quadratic function. However, the outcome of our construction will be
independent of all these choices.

Consider a 3-cobordism (M,¥X_,¥}) in Cobirag. Recall the free abelian
groups A~ = A~, A" generated by the framed 1l-cycles L;, (1 <i < g_)
and L}, (1 <4 < g;) respectively. We shall use the same notation, A~
and A, to denote the Lagrangian they generate in H1(X_) and H;(X,)
respectively. Furthermore, A~ @ A" is a (decomposable) Lagrangian in

Hi(0M)=—H(X_)® H1(X4). Define two state modules by
T(4) =ClG®A™].

These are simply vector spaces of formal combinations over C of certain
framed 1-cycles in M (with coefficients in G) of dimensions |G|9- and |G|9+
respectively. (The algebra structure on 7 (X+) will not be used.)

Consider the two nondegenerate linking pairings b, : G x G — Q/Z and Ay :
TAM x TAM — Q/Z. According to Corollary ??, there is a characteristic
element

0= Hbq,)\]LI € G@TAM C G@GAM
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of order at most 2.

There are natural maps zf G AT > G ® Gy defined as the composition

CRAT =GO Z(5:) —= G® Z1(M) Ge LBl -GGy

where Z1(M) denotes the group of 1-cycles in M and the middle map is
induced by the inclusion homomorphism. For each z € G ® A™, let

H(z) ={ye GRA" | iy (ly) —i. ([z]) = 0 € GRGAM}.

An informal (and probably more inspiring) way of defining the set H(x) is
to declare that a 1-cycle y € G® A™ lies in H(z) if and only if when viewed
inside M, the difference of the cycles z and y lies in the class defined by the
characteristic element § € G ® Ty M. Since G is finite, the set H(x) is finite.
Note that H(x) can be empty.

ExaMPLE 5.1. In the case TAM = 0, then Ay = 0 and 8 = 0. Thus
H(x) ={ye GR®A" | i ([y]) — i, ([z]) =0e G®GAM}.

EXAMPLE 5.2. In the case GaM = 0, then for all y € G ® A", the equality
iy ([y]) — iz ([z]) =0 in G® GAM = 0 is satisfied. Hence H(z) = G® A*.

The 1-cycle kgy = if (y) — i, () (with coefficients in G) inherits a framing
from the original framings of x and y. This cycle lifts to a framed ori-
ented 1-cycle Ky with coefficients in V! by lifting coefficients. Similarly the

characteristic element 0 € G ® Th M lifts to an element fevt RTAM.
Note that there exists a lift K,y such that [K.y| = ge vt ® T M if and only
if [Key] = 0 € GRTAM if and only if y € H(x).

Let R, denote the framed 1-cycle obtained by evaluating (coeflicients of) &,
against the integral Wu class ve Wu" (f) € V: %, = (fo ®id) (v ®id)(Rey)-
We shall need to use the invariant &,(%,) € 3Z/Z defined by (4.1). (As it
was defined, this invariant depends on the choice of a spin structure, but
the spin structure was used only to select a quadratic enhancement of the

linking pairing.) We denote this quadratic form by gx. We denote the
resulting invariant by 65(%,) € 3Z/Z.

(5.1)
CA(M) = ~(TaM, qp)~fe)

'y(V QTAM, f ® s + (f@ ® XA) (5)) G ® GA[V2]GI5+/2.

The number Cx(M) € C is independent of the lift § for 6. It is nonzero
because of Theorem 2.1.

We define a linear operator 7(M) = 7(M,q) : T(X_) = T+(X4) by setting

(5.2) T(M)x =Cyr(M) Z exp <2m' ((f@qfr)(EIy) — 5A(%v)>> Yy

yeH(z)
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for any x € G ® A~ and extending by C-linearity.

In an informal way (forgetting about the choice of the Lagrangian), we may
say that 7(M)x computes a weighted sum of cycles in ¥, almost homologous
to x when viewed inside M.

The major result of the paper [9] is the following theorem.

THEOREM 5.1. The assignment (M,¥_,3) — 7(M) defines a TQFT in
dimension 3.

The assignment actually takes a cobordism (a morphism in the category
CobDeC) to a unitary linear operator (cobordism invariant operator). In
particular, 7(M) depends on a Lagrangian A € Hy(¢M). It is part of the
statement of Th. 5.1 that if M and N are equivalent, then 7(M) = 7(N).

A consequence of the classification theorem (Th. 3.1).

Let us record a particular case of Theorem 5.1.

COROLLARY 5.1. Suppose that G or TAM has odd order. Then
(5.3)

CA(M) = y(TaM, QA)_f@(U’U)V(V(@TAM,f@qA) IG ® Ga|Y2|G|79+/2.

and for any x e GRQ A™,

(5.4) T(M)z = Ca(M) ) exp(2mi(q ®1ka(Kay))) ¥-
yeH(z)

Proor. Either hypothesis implies that the characteristic element 6 is
zero in homology. Then each cycle k., representing 6 can be written as a
linear combination, with coefficients in G, of boundaries, say k;, = Zk L ®
L. Lift coefficients ¢, € G to coefficients &, € V¥ and get a cycle ¥ Ky

with coefficients in V¥. Recall that (G, q) is the discriminant quadratic form
derived from (V, f,v). It follows that

(@®Tkn) (Kay) = g alcn)lka(Li, Ly) + 2554 b

(CJ,Ck)lkM(L Lk)
(2 €6 ® Li) — 2, Q(fk» V)3 tiea (L, L)

= (f®d")

= (f®qfr)(/€xy) D folée,v (%lkA Lk, i) —0)

= (f®qr)(’%y) > fo(&r,v) (3lka( leLk;) aa([Lk]))
(f ®¢")(Ray) — A (Ro)-

Since in homology we can take § = 0 € VI @ Ty M, Cx(M) is as stated in
(5.3) and the result stated follows. O

COROLLARY 5.2. If TAM = 0 then
(5.5) T(M)z =|G®GAIZ|GI™+/2 ' exp(2ri(g ® k) (kay)) y-

yeGRAT
if (WD) =ig ([=])

A complete proof of Th. 5.1 was given in [9] for v = 0. The same proof
carries over in the general case. Here we wish to make a few comments.
The crucial point in the proof of Theorem 5.1 lies in the exact behavior of
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7 under the gluing of 3-cobordisms. To the best of the author’s knowledge,
this is done in an indirect way: the 3-cobordisms are viewed as boundaries
of 4-cobordisms and the composition of the 3-cobordisms is computed as the
boundary of the composition of 4-cobordisms; then Wall’s corrective formula
for the signature of the composition is used to compute the anomaly'. Wall’s
formula involves the Leray-Maslov index. However, the Leray-Maslov index
is an invariant of a triple of Lagrangians (with respect to an antisymmetric
bilinear pairing). We deduce the following result:

THEOREM 5.2. The assignment (M,%_, %) — 7(M) defines a TQFT in
dimension 4k — 1 for any k > 1.

ProoF. Each closed (4k — 2)-manifold is naturally equipped with its
intersection pairing Hog—1(X) X Hog—1(X) — Z which is antisymmetric. In
addition, it is equipped with the isotopy class of framed (2k — 1)-cycles that
generate a Lagrangian. A cobordism M between ¥ and X, is equipped
with a Lagrangian A € Hop_1(0M) = Hop—1(—%_) ® Hop—1(X+). The defi-
nitions of linking number lkp, linking pairing Ay and quadratic enhancement
ga are the same. Then formula (5.2) makes sense for a (4k — 1)-cobordism
M with boundary 0M = —X_][[X;. All the axioms for a TQFT are easily
seen to hold except maybe the gluing axiom. Let N o M be the compo-
sition of two cobordisms (M,¥_,¥) and (N,X,X.). Let A_, A, Ay the
respective Lagrangians in Hog 1(3_), Hor 1(X) and Hop 1(X4). Consider
the standard Lagrangians Ay; = Ker(iy : Hop 1(0M) — Har 1(M)) and
An = Ker(iy : Hop 1(0N) — Ha, 1(N)) respectively. The subspaces

Ao = (Ay)«A- = {y € Hop 1(X) | (x,y) € Aps for some z € A_},

Av = (AN)*As ={y € Hy—1(¥) | (y,2) € Ay for some z € A}
are Lagrangians in Ho,_1(X). As in the case of 3-cobordisms, one finds that

7(N o M) = 7(G,q) A=A M)r(N) o (M),

where p(A_, A, ;) € Z denotes the Leray-Maslov index (see for [64] and
[61, IV 4]) of the three Lagrangians A_, A, Ay in Hop_1(X). O
REMARK 5.1. A careful reader may notice that not only the cobordism
invariant map 7(M) : T(X_) — T(X4) but the state modules 7 (X) them-
selves depend on the extra structure on ¥, namely the oriented framed
links L*. The key dependency is that of the cobordism invariant operator.
If we think of the link L < H;(X) as playing the role of a base of a fixed
Lagrangian, we can identify the module of states 7(X) to a fixed vector
space (thought of as a color module). Suppose first that ¥ has genus g and
let A be the Lagrangian generated in homology by the components of L.
Consider the canonical isomorphism
cany, : C[GY] - CIG®A| =T (), (z1,...,29) » 21 ®@L1+---+2,Q L.

Define the color module of ¥ to be T'(X) = C[GY]. Suppose next that ¥
consists of several connected components X1,...,%,. We define T'(X) to be

IThe exact computation is not needed, for instance, if one is interested only in the
projective representation of the mapping class groups; in this case, Wall’s formula is not
necessary.
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the (non-ordered) tensor product of all the color modules of the components:
T(¥) = @j_, T(2;). The isomorphism can T'(X) — T(X) is defined to be
the (non-ordered) tensor products of the isomorphisms corresponding to the
components. Then we may define the cobordism invariant operator as a
map
T(X.) > T(2y), 7'(M) = canzi o7(M) ocany .

In particular, a cylinder (with extra structures at its bases) on a surface 3 of
genus g gives rise to an operator T(X) — T'(3). This is especially relevant in
the next section when we derive representations of the mapping class group
of surfaces from this TQFT.






CHAPTER 9

The return of the Weil representation

According to the general theory, any TQFT in dimension 3 yields a projec-
tive representation of the mapping class group of surfaces. We shall outline
the procedure in our setting and proceed to the explicit computation of the
representation. Then we state in a more precise form the identification with
the Weil representation.

1. The mapping class group and parametrized cylinders

Let ¥ be an oriented connected compact surface of genus g without bound-
ary. Let M(X) denote the mapping class group of 3, that is the group that
consists of isotopy classes of orientation preserving homeomorphisms of 3.
We begin with a tautological representation of M(X).

DEFINITION 1.1. A parametrized cylinder C, over ¥ is an oriented cylinder
¥ x [0,1] equipped with a homeomorphism ¢ : ¥ x 0 — 3 x 1.

REMARK 1.1. A parametrized cylinder C, over X is equivalently defined
as the oriented cylinder ¥ x [0, 1] equipped with a homeomorphism ¥ —
> x 0, parameterizing the bottom base. Thus a parametrized cylinder is a
particular parametrized cobordism (¥ x [0, 1], ¥ x {1}, ¥ x {0}) where the top
base is parametrized by the identity and the bottom base is parametrized
by a fixed homeomorphism.

DEFINITION 1.2. An equivalence between parametrized cylinders is an ori-
entation preserving homeomorphism ® : Cy — Cy, such that

(1.1) Plsx 1y = ldsx 1} Pluxqoy © ¢(z) = (¥(2),0) forallz e X.

REMARK 1.2. Two parametrized cylinders are equivalent if and only if they
are equivalent as parametrized cobordisms.

Denote by Cyl(X) the set of parametrized cylinders up to equivalence.

LEMMA 1.1. The map ¢ — C, from the group of homeomorphisms to the
set of parametrized cylinders induces a map

M(X) — Cyl(X), [¢] — [Cy].
PROOF. Let (x,t) — ¢(x) be an isotopy between two homeomorphisms

o and @1 of X. We need to show that there is an equivalence between C,,,
and C,,. The map

®: % x[0,1] > X x [0,1], (z,t) = (0rep ", 1)

145
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is clearly a level-preserving homeomorphism and commutes with parametriza-
tions. 0]

LEMMA 1.2. The set Cyl(X) is equipped with a product defined as follows:
for [C,], [Cy] € CYI(D), et

CooCy=(Co ] [Cy)/ ~,

where for any x € ¥, C, 3(¢(x),0) ~ (x,1) € Cy. In other words, Cy, - Cy
is the cylinder ¥ x [0,1] obtained by identifying the top base of a cylinder
with the bottom base of a cylinder via ¢ and compressing the result in the
t-coordinate. Define a product in Cyl(X) by

[Co] 0 [Cy] = [Cpp 0 Cy].

In other words, the top base of Cy is identified via ¢ with the bottom base
of Cy. With this product, Cyl(X) becomes a group so that the natural map

M(X) — Cyl(%)

18 a group isomorphism.

PROOF. The product at the level of Cyl(X) is the composition of (equiv-
alence classes of) parametrized cobordisms. Thus the map [p] — [C,] is
multiplicative. There is obviously a map from the set of parametrized cylin-
ders over ¥ to the mapping class group (X)) that sends Cy, to [¢]. We
claim that this map induces a map Cyl(X) — M(X). Let & : Cp — Cy be
an equivalence between two parametrized cylinders. Let ¢;(z) = @5y for
all x € ¥. Then pi(x) = idy and ¢o(x) o ¢ = . Therefore f; = ¢ 0@
defines an isotopy between ¢ (t = 0) and ¢ (¢t = 1). Hence [¢] = [¢]. So
we have just defined an inverse map Cyl(X) — M(X), [C,]| — [¢]. Cyl(¥)
inherits its group structure from that of M(X). O

REMARK 1.3. This implies that any obvious generalization of Cyl(X), for
instance homology cylinders, will contain the mapping class groups.

DEFINITION 1.3. A geometric symplectic basis for Hy(X) is a system of 2g
oriented simple closed curves (mi,l1,...,mg,ly) on ¥ such that

(1) the complement ¥ — (m; U ... U my) is connected;
(2) the system ([m1],[l1],. .., [mg], [lg]) of their 1-homology classes is a
symplectic basis for the intersection pairing e : Hy(X)x H1(X) — Z.

LEMMA 1.3. For any system (mq,...,m,) of oriented simple closed curves
whose complement is connected, there exists a geometric symplectic basis
extending it.

PROOF. See [17, §1.3]. O

We call the curves my, ..., mgy (vesp. l1,...,l;) meridians (resp. longitudes).

REMARK 1.4. We could have as well defined meridians and longitudes as

images by some parametrization of meridians and longitudes of a standard
surface (Cf. §1).
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The surface 3 shall always be equipped with a geometric symplectic basis.
See Fig. 1.1.

FIiGURE 1.1. The standard oriented surface ¥ of genus g
equipped with 2¢g oriented simple closed curves and g — 1
unoriented simple closed curves. The geometric symplectic
basis of Hi(X) is (m1,l1,...,mg,1lg).

2. Lagrangian cylinders and Seifert pairings

DEFINITION 2.1. A Lagrangian cylinder Cp over an oriented compact surface
¥ is an oriented cylinder C' = ¥ x [0, 1] equipped with Lagrangians A~ <
H{(X_), At € Hi(X;) and A € H1(0C) such that A@A- @At = H,1(0C).

A Lagrangian cylinder is a special case of a Lagrangian decorated cobordism
(and hence, a Lagrangian cobordism). As a consequence, a parametrized
cylinder induces a Lagrangian cylinder (cf. Prop. 2.1) as we recall now. Let
C, be a parametrized cylinder. As a parametrized cobordism, C, comes
equipped with two sets of oriented links L~ and L™ respectively: L~ consists
of the image of the longitudes I7,...,I; in ¥_ by ¢ : ¥_ — ¥_ while L*
consists of the longitudes I{, ..., l; in ¥, . The links L~ and L* are framed
by the framing given by a small positive collar of L~ and L' in ¥_ and X,.
The links L~ and L* generate Lagrangians A_ and A, in H1(X_) = H1(X)
and in Hq(X4) respectively. The Lagrangian A = A, is generated by the
image by ¢ of the meridians in ¥_ and by the meridians in >,.

The observation of this paragraph is that a Lagrangian cylinder over a sur-
face gives rise to a Seifert pairing on the homology of the surface.

Let Cj be a Lagrangian cylinder over an oriented compact surface . Let
Y, =Y x {1} and ¥_ =3 x {0}. We regard ¥ as embedded in ¥ x [0, 1] via
the inclusion ¥ — ¥ x {1/2} < ¥ x [0, 1]. The cylinder structure provides ¥
with a natural bicollar. For a 1-cycle z € ¥ = X x {1/2}, we denote by z*
the 1-cycle corresponding to = x {1} and by x~ the 1-cycle corresponding to
x x {0}. Denote as usual the inclusion homomorphisms by i+ : Hy(X4) —
H;(Xx[0,1]). We keep the same notation for the inclusion homomorphisms
followed by the projection map Hi(X x [0,1]) — Ga = H1(2 x [0,1])/ixA.
Let x,y be two 1-cycles in ¥. We define a map g : H1(X) x Hi(X) — Z by

Blle], [yD) = Ika(iy =™ ify™).
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LEMMA 2.1. The pairing 5 : H1(X) x H1(X) — Z is a Seifert pairing with
respect to the intersection pairing on Y.

ExAMPLE 2.1 (The Hopf Seifert pairing). Let
cylinder over the 2-torus ¥ = —¥_ =%, = 8§
—27 ) E+.

(M,%_,34) be the trivial
1 % S1. Recall that oM =

m

FIGURE 2.1. The cylinder over the torus equipped with a
geometric symplectic basis on the components > and X .
Choose two systems (m~,1~) and (m™,[") of oriented closed curves forming
geometric symplectic basis for > and > respectively. In particular,

m- ey [T =4l=—m"e_y [T =—m" ey 1.
Let A be the Lagrangian in H1(0M) generated by [m*] and [[”]. Then
lkA(’L;m_,Z:lJr) = m+ L) l+ = +1.

Glue two copies of a standard solid torus H = S' x D? of genus g to
¥ x [0,1] as follows. We glue the first solid torus via a homeomorphism
—0H — X x {1} sending the meridian of 0H to m™. We glue the second
solid torus via a homeomorphism 0 H — ¥ x {0} sending the meridian * x 0D?
of 0H to . The resulting closed 3-manifold is S3. We call this gluing the
Hopf gluing. By Lemma 3.3, for any disjoint 1-cycles z,y in ¥ x [0, 1],

Ika(z,y) = lkgs(ixz, ixy),

In particular, 8(m,1) = lkx (i m™,iF1") is the linking number of a positive
Hopf link in S3. For this reason we call the Lagrangian A above the Hopf
Lagrangian and the corresponding Seifert form the Hopf Seifert form.

These considerations extend obviously to the case of an oriented closed con-
nected surface ¥ of arbitrary genus.
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DEFINITION 2.2. Let ¥ x [0,1] be the cylinder over the standard surface
of genus g < 1. Let H, denote the standard oriented handlebody of genus
g. Let fy : ¥4, — ¥ x {1} be the identity and let f_ : ¥, — ¥ x {0}
be an orientation preserving homeomorphism sending the j-th meridian of
¥4 = 0H, onto the j-th longitude of ¥ x {0}. The Hopf gluing is defined as
the gluing that consists in gluing two handlebodies to the cylinder ¥ x [0, 1]
via the parametrization f_ and f, on the bases:

SS = Hg U Y x [O, 1] U f, omir _Hg'

The Lagrangian A € H;(0(X x [0, 1])) generated by the meridians of ¥ x {1}
and the longitudes of ¥ x {0} is called the Hopf Lagrangian. The Hopf
Seifert form is defined similarly.

3. The modular representation

According to the TQFT 7 defined in the previous chapter, the cylinder
M (h) gives rise to a cobordism map 7(h) : T(X_) — T(X4). Note that
7(h) o 7(h™1) is a multiple of 7(idy), hence a multiple of the identity, it
follows that 7(h) is invertible.

The isomorphism 7(h) depends on the quadratic form ¢: when we need
to emphasize this, we write 74(h). It follows from Lemma 1.2 that the
cobordism M (h) depends only on the mapping class [h] € M(X).

Any oriented closed surface can be endowed with a geometric symplectic
basis. Since cylinders form a very particular class of cobordisms, we can be
more specific about our choices here. We choose two geometric symplectic
bases (my, 1y ,...,my, ;) and (m{, 1, ..., mS, 1) for Hi (X )and Hy(3y)
respectively, as follows. Since any cobordism M (h) is a cylinder over X, the
natural inclusion map

it YL > S x {3} e T x[0,1] = M(h)
is a positive embedding which induces an isomorphism
iyt Hi(£54) > Hi(M(h)).
We require the geometric symplectic bases to verify

iy (1) =i (1), iy (my) =i (m]).

In particular, let

my = Z:([mi‘r]% sy Mg = Z:(m;)all = Z:(lf)a .- 'alg = ’L:(l;_)

The set [m1], [l1], ..., [mg], [lg] is a Z-basis for Hi(M(h)).

DEFINITION 3.1. The Lagrangian generated in Hy (M (h)) by l1,...,1, is the
longitudinal Lagrangian and is denoted Y. The state module T(X) associ-
ated to a standard oriented closed surface ¥ is the group algebra C[G ® T].
More generally, the state module associated to an oriented closed surface
endowed with a Lagrangian A € H;(X) is T(X) = C[G ® A].
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For a standard surface, the state module T'(X2) plays the role of a reference
state module. If f : ¥, — ¥ is a parametrization of ¥ sending T to A...

By definition 7(h) depends on the choice of geometrical Lagrangians A~
and AT in ¥_ and ¥,. In the particular setting of parametrized cylin-
ders, A~ (resp. A™) is the lattice generated by the oriented framed link
h(IT), ..., h(l;) (resp. by If,...,I}). Note that A~ and A" both identify
to T in Hy(M(h)) via the maps i, and i} respectively. With this identifi-
cation in mind, we can set T(3X_) = T'(X;) = C[G® T].

The following result is a consequence of Theorem 5.1.

LEMMA 3.1 (Modular representation). The map
M(E) = Auwt(T(%)), [h] = 74(h)

defines a projective representation of M(%).

The fact that the representation is projective and not just linear is a conse-
quence of the non trivial anomaly in the TQFT.

Let us describe more explicitly the modular representation 7, above in terms
of the formulas (5.1) and (5.2) for the TQFT given in the previous section.

By construction, i,(A) is the subgroup generated by i, hu«([m; ]), ..., i, ha([my])
and if ([m{]),..., i} ([m}]). Writing in the basis of Hy(M)

i ha([m3 1) = - (ai (] + e [mal), k=1,....9,
k
we find that Ga = H1 (M (h))/i.A is the abelian group generated by [l1], ..., [l4]
with relations >}, aj [lx]. In particular, G has rank at most g.

Therefore, TAM(h) = Tors Coker(a;i)1<jr<g depends only on the matrix
(ajk)1<jk<g- According to the previous section, this matrix has a simple
interpretation:

ajr = lka (z;h*(m;),z:(l;)) € Z.
On the other hand, linking numbers inside M (h) between images of longi-
tudes are rational in general.

The pair (G, Ap) is the discriminant linking group associated to the matrix
(ajk)1<jk<g- The characteristic element § € G @ Gj is the characteristic

element associated to Ay and A\g. Any choice x = (21,...,24) € G of colors
determines an oriented framed l-cycle > ;x; ® (i~ o h)(I;) in M(h) with
coefficients in G. Similarly any choice y = (y1,...,y4) € GY of colors deter-
mines an oriented framed l-cycle >, y; ® i+(lj+) in M(f) with coefficients

in G. Given z = (21,...,24) € G9, we set

H@) = {y = (1, € 7 (Zyj 1) - ic (S on @) -0},

J
fres]

Choose a lattice presentation (V, f,v) for (G, q) and a quadratic enhance-
ment (G, qa) of (G, \s). Then we may lift 6 to an element 6 € VEQT\M(h)
as before. More generally, we may lift 1-cycles with coefficients in G to
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1-cycles with coefficients in V*. In particular, for any choices of colors z, v,
we obtain a 1-cycle Ry, with coefficients in %43
We define a normalization coefficient C'(h) using (5.1):
(3.1) C(h) = C(M(h).
Given z € G9 and y € H(x), we define the phase weight associated to y by

Oz, y) = exp <27ri ((f ® qfr) (zmy)) - 5U(%v)> .

Let e, = € GY be the standard basis of C[GY]. Then

(3.2) T(f)ea =C(h)- ) Qz,y) ey

yeH(z)

As noted above, it is a consequence of Th. 5.1 that the map
(3.3) M(2) - Aut(C[G?]), [h] — T(h)
is a projective representation of M(X).

PROPOSITION 3.1. The representation [h] — 7(h) is unitary and factors
through the symplectic linear representation

M(Ey) = Sp(H1(X)), [h] — he
induced by homology.

PrROOF. We first show that 7(h) only depends on h, € Sp(H1(X)). O

(Since 7(M) = 1 if M is an integral homology 3-sphere, the representation
[h] — 7(h) factors through the symplectic representation.)

The following theorem is our main goal. It asserts that the Abelian TQFT
representation based on a finite quadratic form ¢ is essentially the Weil rep-
resentation associated to q. Together with our description of the Abelian
TQFT representation (3.2), it provides a new description of the Weil repre-
sentation.

We first define the Weil representation in the appropriate setting. The group
G is endowed with its quadratic form ¢ : G — Q/Z, which turns it into a
quadratic group and in particular, into a linking group. The homology
group H;(X) is endowed with its intersection form e, which turns it into a
symplectic group. In particular, the group G ® H1(X) becomes a symplectic
group with the symplectic form b; @ e.

We endow the standard surface ¥ with the Hopf Lagrangian A and the
corresponding Hopf Seifert pairing 5 : H1(X) x H1(X) — Z (see §2), defined
by

(3-4) B[=], v]) = ka(iy 2, i y™)
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where as usual if : H1(34) — Hy(X x [0,1])/iA denotes the inclusion
homomorphisms. This Seifert pairing 8 induces a Seifert pairing
bq ®ﬁ : H1(27G) X H1(27G) d Q/Z

for the symplectic form b, ® e which we still call the Hopf Seifert pairing.
One needs to select a Lagrangian in G® H1(X) = H1(X; G). We choose the
Lagrangian Lo in H;(X), which induces the Lagrangian G® Lo in H1(X; G).
Define a character x : H1(X;G) — C* by x = exp (27ri(bq ®,6’)>.
Consider the Weil representation

p: Sp(HL(Y)) — U(LAG ® Lo) = U(C[G ® L))
associated to Lagrangian Lo and character y (see §...).

THEOREM 3.1 (“Weil = TQFT”). The TQFT representation |h] — 7(h)
factors through the Weil representation p : Sp(H1(X)) — U(C|G ® Lo|). In
other words, the diagram

Sp(Hy () —= ASp(H, (%: G))

1s commutative.

4. Abelian skein theory

In this section we give a topological (“skein”) interpretation of the Heisen-
berg algebra and the Schrodinger representation of the Heisengerg algebra.
These results are interesting by themselves because they provide state mod-
ules with extra structures. They give a completely skein-theoretic approach
to the construction of Abelian TQFTs and they are building blocks used
in the proof of Theorem 3.1. For this, we develop an appropriate calculus,
called skein calculus, pioneered by J. H. Przytycki and V.G. Turaev.

4.1. Heisenberg skein modules. We fix as before a quadratic form
q : G — Q/Z on a finite abelian group. Denote by b : G x G — Q/Z the
associated linking pairing. Let

U= {tg,t;1 |lge G} and V = {tg,h,t;?}b | {g,h} c G}

be two independent sets of free and commuting variables. The set U has
cardinality 2|G|. The set V is indexed by all nonempty subsets of |G| of
cardinality less or equal to 2. Let V* =V — {t,, t;gl | g € G} the subset of
V' corresponding to indices by all unordered pairs of distinct elements in G.
We have |V*| = |G| - (|G| — 1). Finally we set Sg¢ = U u V*. We shall drop
the subscript G if the group G is understood from the context.

Let M be an oriented compact 3-manifold. A colored link in M is a link L
together with a map
col : mo(L) — G.
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If mo(L) = {L1,..., Ly}, we usually denote col(L;) = g;, 1 < j <n. A
framed link is conveniently thought of as an annulus. We use the black-
board convention for the framing, meaning that the annulus determining
the framing lies in the plane of the figure.

Consider the free module Z(M) over C[U, V] generated by the set of all
isotopy classes of oriented framed colored links in M, including the empty
link denoted @. Figure 4.1 below represents two oriented framed colored
links X (g, h) and X_(g, h) which are identical except in a small embedded
ball in M where they look exactly as shown, where one arc is part of a
component colored by an element g € G and the other arc is part of a
component colored by h € G.

\ /

g h g
X4 X_

Consider now the elements
(41) X+(g7h)_tghX—(gah)7 X—(g7h)_t;}llX+(gah)

where X, (g,h) and X_(g,h) are two oriented framed colored links which
are identical except in a small embedded ball D in M where they look
exactly as shown in the figure, where one arc is part of a component colored
by an element g € G and the other arc is part of a component colored by
h € G. The possibility g = h is accepted, whether the arcs belong to distinct
components or not.

The next figure (Fig. 4.1 below) represents an arbitrary oriented framed link
Xo(g,g) in M, where the interior of a small embedded ball D3 is specified
as shown.

g g
XO

We consider also the elements

(4.2) X (9,9) —tgXo(9,9), X_(9,9) —t, "' Xo(g,9)

where X (g,¢9) and Xo(g, g) are two oriented framed colored links which are
identical except in a small embedded ball in M where they look exactly as
shown in the figure. (Note that the number of components of X4 (g,g) is
the number of components of Xy(g,g) plus or minus one.)
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Let X be an arbitrary element in .Z(M). Denote by XO the element in
Z(M) that consists of X and an extra annulus that bounds in M a disc
disjoint from X (the trivial framed unknot). Consider finally all the elements

(4.3) X - XO.

Let . (M) be the submodule spanned by all elements of the three kinds
enumerated above, respectively by (4.1), (4.2) and (4.3). The corresponding
relations are called skein relations. It is easy to see that the skein relations
preserve the last two Reidemeister moves, hence preserve the isotopy class
of the framed link.

DEFINITION 4.1. The Heisenberg skein module </ (M) is the quotient
Z(M)/. (M)

Elements of o7 (M) are called skeins. The skein represented by an oriented
framed link L will be denoted by {(L). If we need to emphasize the color, we
include it in the notation. For instance, if K is an oriented framed knot, then
(K, gy denotes the skein represented by K colored with g € G. Similarly, if
we need to emphasize that the Heisenberg skein module depends on G, we
denote it by </ (M).

LEMMA 4.1. The following relations hold in </ (M):

(1) The commutativity relations: tgty, = tpty, tgn = thg and tgtp =
thity for all g,h, k€ G.
(2) The doubling relations: tfy =ty for all ge G.

PROOF. (1) The order in which the skein relations are processed is ir-
relevant. (2) The following relations hold in o/ (M):

Xi(9,9) = t4Xo(9), X1(g,9) = tggX_(g9,9) = tggt; Xo(g,9).
Therefore
tgXo0(g,9) = tggt; " Xo(g,9)
for any skein. The result follows. U

EXAMPLE 4.1. Consider the 3-manifold M = S3 (or an integral homology
3-sphere). Let L = Lj U --- U L, be an oriented framed link colored with
Jis---,9n. Then

k(L;,L; Ik(L;, L,
@y= [ ™ T e (o)

1<i<j<n 1<isn

where L, denotes the component parallel to L; determined by the framing.

It follows that <7 (S3) ~ C[U, V*].

ExaMPLE 4.2. Consider the case when G is the trivial group. We can set
to = t and tgg = u. According to the lemma, t2 = w. The relations of
the first kind are X, = tX , X_ = ¢t 'X,. The relations of the second
kind are X, = uXg, X = u 'Xy. The Heisenberg module /(M) is a
C[t,t~']-module.
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ExAMPLE 4.3. Consider the oriented framed and colored two component
link L in the solid torus (oriented handlebody of genus one) S! x D? as
pictured in Fig. 4.1. Denote as usual by m = * x D? a meridian of S x D?
and by [ = S' x x a longitude of S* x D2. Color the meridian by an element
g € G and the longitude by an element h € G.

g

FIGURE 4.1. A skein relation in St x D?2.

Fig. 4.1 shows that in the Heisenberg skein module <7 (S x D?), the follow-
ing relation holds:

(L) = tgnll; h).
Note that both a relation of the first type (4.1) and a relation of the third
type (4.3) were used.

EXERCISE 4.1. In general, nontrivial identities are produced on a link dia-
gram by a combination of Reidemeister moves and skein moves.

Consider the skein (L) represented by two
parallel framed knots with opposite orienta-
tions in an arbitrary 3-manifold M and col-
ored with the same color as represented here !
opposite. Prove that (L) = (&).

-

In the sequel we adopt the normalization (&) = 1.

Consider the 3-manifold M = ¥ x [0,1] where ¥ is a closed oriented sur-
face. Provide M with the product orientation as usual. The product
of two elements L, L' € Z(X x [0,1]) is defined by uniformly compress-
ing L in ¥ x [0,1/2], respectively L' in ¥ x [1/2,1], and juxtaposing in
Y x[0,1] =X x ([0,1/2] U [1/2,1]). The result L - L’ is clearly an oriented
framed colored link in ¥ x [0, 1].

DEFINITION 4.2. The product
(4.4) (L,L)) > L- I
induces a product on &7 (X x [0,1]), called the skein product.

The skein product turns o (3 x [0,1]) into an associative algebra with the
empty link being the unit. The n-th power of a skein (L) is easily seen to be
represented by n parallel copies of L. By Exercise 4.1 and our normalization,
we have (L)™"™ = (—L) where —L denotes L with the reversed orientation.
By definition, (L) = (@) = 1.
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EXAMPLE 4.4. If K is an oriented framed knot in 3 x [0,1] then (K;g) -
(K;hy =(K;hy-(K;g) for any colors g,h € G.

EXAMPLE 4.5. Consider the skein (L) in the cylinder T' x [0,1] over the
torus T2 represented by the two component oriented framed colored link L
as pictured in Fig. 4.2. Denote as usual by m the meridian (here colored by

FIGURE 4.2. A skein relation in 7" x [0, 1].

g € G) and by [ (here colored by k) the longitude of T = 05! x D?. Then Fig.
4.2 shows that the following relations hold in the Heisenberg skein algebra
(T x [0,1]):

(L) =ms gy - hy = tgn KL hy - {ms; g)-
This example shows that <7 (T x [0,1]) is not commutative.

EXAMPLE 4.6. Consider the skein (L) in the cylinder T' x [0,1] over the
torus 1" represented by the two component oriented framed colored link L
as pictured in the left side of Fig. 4.3. This is the same oriented framed
link as in the previous example except that the two components are colored
by the same element ¢ € G. An application of the second skein relation
is pictured in Fig. 4.3. Observe that the integral homology of the link in

FIGURE 4.3. Another skein relation in 7" x [0, 1].

T x [0, 1] is unchanged after the skein relation.
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4.2. A skein multivariable polynomial. We now proceed to gener-
alize Examples 4.3 and 4.5. Let X be a compact oriented connected surface.
Embed ¥ x [0, 1] into S® by the Hopf gluing (see Example 2.1). Denote by
A the corresponding Hopf Lagrangian in H1(0% x [0, 1]).

LEMMA 4.2. Let L be a framed oriented colored link in 3 x [0,1]. There is
an oriented framed colored link Lo € ¥ x {1/2} and a Laurent polynomial
P, € Z[S¢] such that

(4.5) (L) = P -{Loy € # (X x[0,1])
with
Ja (2,0 Ik
(46) PL = H cojl\((]j) C)Ol H 750011\
pairs lemo(L)
7.4emo(L)
J+¢

with the following properties:

(1) The oriented links L and Lo represent the same homology class:
[L] = [Lo] in H1(%; G).

(2) The oriented framed link Lo is A-trivial.

(3) The decomposition is canonical in the sense that the Laurent poly-
nomial Pr, and the skein (Lg) are unique.

Here lky (¢, ¢") denotes the A-linking number of ¢ and its distinguished par-
allel ¢/, i.e., the A-framing number of /.

REMARK 4.1. The link L itself (even up to isotopy) may not be unique:
for instance, the relation of the third type does not affect properties (1), (2)
and (3) (but changes the framed isotopy class).

ProOOF. Using the skein relations and by induction on the number of
crossings of an appropriate generic projection, one easily obtains a decom-
position satisfying the properties (1), (2) and (3) with Pr as stated. The
skein relations in ¥ x [0, 1] do not modify the framing nor the linking numbers
inside S3. Since Py, only depends on the framing and the linking numbers
inside S, Pp, is an invariant of the skein (L). This proves the uniqueness
property. O

COROLLARY 4.1. The Laurent polynomial Py, associated to a link L is an

invariant of the skein (L). In particular, it is an invariant of framed isotopy
of L.

DEFINITION 4.3. The Laurent polynomial Pj associated to the link L is
called the linking number skein polynomial of L.

EXAMPLE 4.7. For the skein (L) of Example 4.5 (see Fig. 4.1), we have
P, = tg,. One verifies that the link represented on the right hand side of
Fig. 4.1 is A-trivial.

We record the behaviour of the linking number skein polynomial under the
skein product.
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LEMMA 4.3. Let J and L be two oriented framed colored links in ¥ x [0,1].
Then Bea (.0
—_— ]7
PrL= H tco?(]),col(l) PyPr.
(3,0)emo(J)xmo(L)

PROOF. There are three Hopf Lagrangians: let Ay (resp. A1) be associ-
ated to the Hopf gluing applied to the first copy of ¥ x [0, 1] which contains J
(resp. applied to the second copy of ¥ x [0, 1] which contains L). Finally let
A be associated to the Hopf gluing applied to ¥ x [0, 1] ~ ¥ x [0, 1]uXx]0, 1].
Abusing notations and denoting by the same letter a component in possi-
bly three distinct manifolds, we have lka,(7,¢) = lka(y,¢) for any pair j7,¢
of components of J. (if 7 = ¢, the framing number lkx (¢, ¢') is meant.)
Similarly, lka, (7,¢) = lka(y,¢) for any pair j,¢ of components of L. Since
mo(JL) is the disjoint union of my(.J) and mo(L), we compute by means of
Lemma 4.2, the skein polynomial Pj; and the product of skein polynomials
PjP;. Comparing the two yields the desired formula. O

4.3. Heisenberg skein modules and homology. We fix a standard
surface of genus g with its geometric symplectic basis (mq, 1, ..., mg,ly).

PROPOSITION 4.1. The Heisenberg skein algebra <7 (X x [0,1]) is a free
C[Si]-module whose basis consists of all elements of the form

g 7j g Sj
(4.7) TTI[¢msszs0- TTT [ v
j=11=1 j=11=1

where the indices 11, ...,7g,51,...,84 lie in Z and the colors x;; and y;; lie

mn G.

The Heisenberg skein module </ (Hg) of the genus g oriented handlebody is
a free C[Sg]-module with basis

g S
1T [ w50

j=11=1

where each longitude is colored with an arbitrary element of G.

PRrROOF. Let (L) be a skein in &/ (X x [0,1]). By Lemma 4.2, (L) =
Pr, - {Lp) where Lg is a A-trivial oriented framed link. It remains to show
that (L) is equivalent to a skein of the form stated in the Proposition. View
Y as the connected sum of g tori. Using isotopy and skein calculus (second
relation), we can realize Ly in such a way that every component lives in no
more than one torus. So each component is a torus knot 1j,, a,b € Z x Z
(see for instance [54, 2C]). Using skein calculus, we see by induction on (a, b)
that (T, ) = (m)® - (1)* (The case a = b = 1 is provided by Example 4.6).
The first statement follows.

For the second statement, view the solid handlebody H as containing the
cylinder over the closed oriented surface ¥ so that 0H identifies with one of
the bases, say X x 0, of the cylinder over ¥. Let (L) be a skein in &/ (H). By
isotopying L is necessary, we may assume that L lies in ¥ x [0,1] € H. By
the previous argument, (L) is proportional to an element of the form (4.7).
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Now in &7 (H), each meridian is a trivial knot so {m) = (&). This gives the
desired result. O

REMARK 4.2. There is a slight abuse of notation in the second statement
of Prop. 4.1. Indeed, o/(H) has not been given yet any natural product
structure. What the second statement really means is that any skein in H
can be geometrically represented by a disjoint union of parallel longitudes
(with the standard orientation) arbitrarily colored.

Let K be an oriented framed knot in M. The orientation and the framing
of K determine an oriented knot K’. Extend the framing of K to a framing
for K'. Let g, h € G be arbitrary colors for K and K’ respectively. Consider
the element

(4.8) (K, 9) v (K' b)) = (K, g+ I

in &/(M). For any arbitrary oriented framed link L € ./(M), consider the
elements

(4.9) (L) — exp(2mig(9))XL), tgn(L) = exp(2miby(g, h)){L)
in o/ (M). Let #(M) be the submodule of o7 (M) spanned by all elements
of the form (4.8) and (4.9) respectively.

o~

DEFINITION 4.4. The reduced Heisenberg skein module < (M) is the quotient
o (M)/7(M). If we need to emphasize that the reduced Heisenberg skein

module depends on the quadratic form ¢ : G — Q/Z, we denote it ,QZ;(M ).

In other words, in the reduced skein module, (1) we replace two paral-
lel knots by one of them and add their original colors; (2) we evaluate
ty = exp(2miq(g)) and ty, = exp(2mwibg(g,h)). The first relation allows in
particular to replace n parallels of a link by the link with n times the original
color and conversely (for any n € Z). In particular, a knot colored by 0 € G
represents (@) = 1.

REMARK 4.3. The skein relations do not affect the 1-homology of the link
with coefficients in GG. There is a natural C-linear epimorphism

¢ (M) — C[H,(M; G)]
which consists in assigning to a skein (L) its homology class
[L]= ) col(t)®[(] € Hi(M;G)
f€ﬂ'0(L)

and extending by C-linearity.

In the case M =¥ x [0,1], the product defined above induces a product on
o/ (M) which turns it into an associative algebra with unit. In particular,

—~

in (2 x [0,1]),
(K;9) - (K;hy =(K;g+h)

for any oriented framed knot K and colors g,h € G.
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PROPOSITION 4.2. Let L be an oriented framed colored link in ¥ x [0, 1].
Let 01, = 2 peny(ry L) @L the framed 1-cycle determined by L in X x [0,1].
Denote by |L| = 01, its homology class in H1(X;G). Then

(4.10) (L) = 2 @®ka)01) . (10N in /(8 x [0,1])

where Lg is an oriented framed colored link such that

- [Lo] = 01 = [L] in H1(%;G);
- Lg is A-trivial.

Furthermore, the decomposition (4.10) is unique.

PROOF. We apply Lemma 4.2 to L in o/(X x [0,1]). Now we observe
that

Py (tg = exp(2miq(g)), ten = exp(2mib(g, b)), g, h € G) = 2mila®ikn)(0r),

This gives the desired formula. O

Let H, be an oriented handlebody of genus g, so that 0H, = ¥,. Recall
the geometric symplectic basis (mq,11,...,mg,ly) for the surface ¥. Then
(I1,...,1y) is a geometric basis for the first homology of H,.

COROLLARY 4.2. The map defined by
(L) = dr
defines a linear isomorphism JZ?\(E x [0,1]) — L*(H1(2;G)). In particular,

—~

the Heisenberg skein algebra o/ (X x [0, 1]) is a vector space over C with basis

(may---{mg) - Cliy -+ ly),

where the geometric elements of the symplectic basis are colored with arbi-
trary elements of G.

PROOF. We apply the extra relations (4.8) (which removes powers of
elementary skeins) and (4.9) (which gives complex coefficients) to the bases
respectively obtained in Prop. 4.1. We obtain the elements described in the

—~

statement above. Therefore they form a set S of generators for &7 (X x [0, 1]).
Consider the linear epimorphism &7 (¥ x [0,1]) — C[H1(X; G)]. A basis for
C[H1(X; G)] consists of all elements in H;(X; G). The image of S under the

epimorphism is precisely that basis. Thus § is also a basis for &/ (2 x [0, 1])
and the map is a linear isomorphism. O

COROLLARY 4.3. Let A be the Lagrangian in H1(X) generated by the longi-
tudes. The map defined by

(L) 0
defines a linear isomorphism JZ?(HQ) — L?>(G®A). In particular, the

Heisenberg skein module </ (Hy) of the genus g oriented handlebody is a
vector space over C with basis

-+ lgy,

where each longitude is colored with an arbitrary element of G.
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PRrROOF. The proof is similar to that of Cor. 4.2. Alternatively apply
Cor. 4.2 to X being the disc with g punctures. U

—~

In other words, an element of the basis of </ (X x [0,1]) is an arbitrary
product of the skeins of the symplectic basis. Similarly, an element of the

—

basis of .7 (H,) is an arbitrary product of the skeins of the basis of the first
homology of H,;. Whether a given skein appears in the product is determined
by the color. In particular dim &7 (¥ x [0,1]) = |G|* and dim o/ (H,) = |G]Y.

—~

DEFINITION 4.5. The product structure on </ (H) is defined by as being
induced by that of L?(G ® A) on the generators given in Cor. 4.3. This

product turns &7 (A) into an algebra isomorphic to L?(G ® A).

—

In particular, the algebra ./ (H) is commutative. The product has a simple
geometric meaning.

PROPOSITION 4.3. Let L and L' be two oriented framed links in H. If L
and L' are topologically disjoint in H or if L' is parallel to L then

(4.11) (L UL =(L)- (L.

In particular, this justifies our previous notation in Corollaries 4.2 and 4.3

(see Remark 4.2) for {l1)---{lg) =1 U -+ Ulg).

PROOF. By means of Prop. 4.2, any link is skein equivalent (up to a unit
complex number) to a disjoint union of oriented framed colored longitudes.
Therefore it suffices to verify the identity for an oriented framed colored link
that is a disjoint union of oriented framed colored longitudes Iy ...,l;. Let
[li] € Hi(H;G) denote the 1-homology class of the colored i-th longitude.
Then

c((L)) = O[] = Opylset[ty] = O[] * +** * O,
This justifies our previous notation: (L) = {l1)---{g) =1 u---ulgy. Ifl;
and [/ denote the same longitude ! with different colors z,y € G, then
daiy<try = Ol * Oy = O] = Oyl
where [I] denotes the integral 1-homology of . Hence

Gy Gy =+ y).

Since for a longitude I’ parallel to [ (determined by the framing of ), {I'; y) =
{l;y), the definition of the reduced Heisenberg module implies that

sy -y = +yy = {Lx) o (5 y).
The result follows. O

REMARK 4.4. If the links are not topologically disjoint or not parallel, then
the formula (4.11) does not hold. For instance, consider the Hopf link LU L’
inside the handlebody of genus 2 depicted below. Denote by x,y € G the
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respective colors of the components. Then (L) -{L"y = {I1)-{lo) = {l1 U ls).
But

= exp(2miby(z,y)) -

Hence (L u L") = exp(2miby(z,y)) - {l1 Ula). Soif by(x,y) # 0 (mod 1), then
(Lol +{Ly-{L).

There is a natural question: do the linear isomorphism ,Q?(E x [0,1]) —
L?(H1(3; G)) of Cor. 4.3 extend to an algebra isomorphism ? It turns out

—~

that the algebra structure on «7(X x [0,1]) defined geometrically above is
not compatible with this linear isomorphism.

We now turn to the study of the natural module epimorphism
(Ly = [L], F(3) — C[H\(%;G)]

defined in Remark 4.3. Can it be extended to an algebra morphism ? The
answer (which is “almost”) is given in the next section (see Th. 4.1).

4.4. Relation to the Heisenberg group algebras. Our goal is to
compare the Heisenberg skein algebra to the group algebra of a suitable
Heisenberg group. Let Z[G] be the group algebra of the group G, which
we identify as usual to the algebra of Z-valued functions over G with the
canonical basis given by all maps d,4 (g € G) defined by d4(h) = 1if g = h
and d4(h) = 0if g # h.

LEMMA 4.4. The assignment, from the set of all isotopy classes of oriented
framed colored links to 1-homology with coefficients in L*G, defined by

L— Z 5col(€) ® [E]
ZGTI’()(L)

induces a map s : < (X x [0,1]) — H1(X; L?G) that verifies
(4.12) x((Ly (L) = =((L)) + (L)) = 3((Ly + (L))

PROOF. It is not hard to verify that the map is invariant under the
skein relations. For instance, let us consider the second skein relation. This
relation does not change the integral 1-homology class of the whole link
but increases (or decreases) by one the number of components. Suppose
that L and L’ are related by a skein relation of the second kind. Suppose
for instance that the skein relation involves two components ¢, ¢ of L (both
labelled by ¢) and that after the skein move, the two components merge into
one component ¢’ (labelled by g) of L'. Then [¢"] = [¢]+[¢'] in Hy (X %[0, 1])
and all other components are unaffected. Hence the result follows. To verify
the identity (4.12), it suffices to observe that mo(L - L) is the disjoint union
of mo(L) and mo(L'). Finally, we extend the map s by taking the action
of the Laurent polynomial algebra C[S] on Hi(3; L2G) to be the trivial
action. U
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We define a set-theoretic map
®: o/ (3 x[0,1]) - C[H(Z; L*G) x Z[S]]

as follows. First, we define a map with values in H(X; L2G) x Z[S] on
generators of &7(X x [0, 1]) by the formulas

0, (LY o> (e(L), 80 Pr),  t0 (L) = (L), 22 Py)

for any skein (L), any pair of distinct elements g,h € G and any integer
n € Z. Secondly, we extend the map by C-linearity.

LEMMA 4.5. The C-linear map ® : &/(Z x [0,1]) - C[H:(Z; L*G) x Z[S]]
18 injective.

Hence ® induces a C-linear isomorphism on its image Im(®).

PROOF. Define a map ¥ : Im(®) — /(X x [0,1]) as follows. Let
(D2 dg, ® [¢],P) € Im(®). Set n = {s € G | deg, P ¥ 0} € N. Lift
D0 0g, ® [€] to some oriented colored n-component link L in ¥ x [0, 1] such
that »(L) = >, 9, ®[¢]. Then we use the monomial P to modify L in such
a way that the linking and framing numbers of the components match the
corresponding partial degrees of P. Namely two components ¢ and ¢ are
linked algebraically degeqip) col(ery P times and a one-component ¢ is framed
algebraically deg.,(s) P times. Using skein relations and the definition of ®,
one observes that the skein (L) obtained in this fashion is independent of
the original choice of L. Thus the map V¥ is well-defined. It is easily seen
that Vo ® = Id,Q/(ZX[O,l])' U

The map ® is not multiplicative but the cocycle is easily computed: »({L)-
(L)) is given by Lemma 4.4 and Pp.;/ is given by Lemma 4.3. This mo-
tivates the following definition. Let #(H;(3; L2G)) be the set of all pairs
(3(L), P) in Im(®). Endow 2 (H;(3; L?G)) with the product defined by

Ika (4,0
(%(L), PL)(%(LI)7 PL’) = (%(L)-ﬁ-?ﬂ([/)7 H tco/l\((g),cc))l(fl) PLPL’>-
(¢,0emo(L)xmo(L)

This turns .2 (H, (X; L2G)) into a Heisenberg group over the group H1(X; L?G).
The (multiplicatively written) value group is Z[S] and any Lagrangian A in
H1(¥) induces a Lagrangian L?G ® A in H1(3; L?G). The corresponding
Seifert form is given by

e, /
BGAL), (L) = [ Teeadheh,

0.0

where (5 is the usual Hopf Seifert form associated to the Hopf Lagrangian
A. The product above turns Im(®) = C[#(H;(X; L2G)] into a C-algebra.
Therefore we have proved

ProposiTION 4.4. With the product above, the map
& : (X x [0,1]) > C[A(H(3; L>G))]

is a C-algebra isomorphism.
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Consider the particular case when G is trivial. Then J#(H;(X; L?G)) is
the Heisenberg group formed by the integral 1-homology group H; (%) (with
multiplicative notation for the value group). The Seifert form 5 : Hy(X) x
Hy(X) — Z[t, t 1] is explicitly given by

B([L],[L]) = PAa(LLIL])
where (§p is the usual Hopf Seifert form associated to the Hopf Lagrangian

A. The algebra Im(®) is isomorphic to the group algebra C[.7°(H1(X)].
Thus we have proved

COROLLARY 4.4 (Trivial color case). For G trivial, the map
D : (X x [0,1]) - C[#(H1(X)]

is an algebra isomorphism.

This result was proved by R. Gelca and A. Uribe in [24, Theorem 5.6]. We
now turn to the quotient (reduced) Heisenberg skein algebra. For this, we
need to define three ingredients which are all dictated by the definition of
the reduced Heisenbrg skein algebra.

First, there is a natural surjective map

t:L’G—> G, f- > flg)g

geG

Clearly t(f *g) = t(f + 9) = t(f) + t(g) for any f,g € L2G. Alternatively t
is defined by setting t(d,) = ¢ and then extending to a Z-map. The map

induces a surjective additive map Hi(X; L2G) — H1(3; G), still denoted t.

The second ingredient is a specialization map. This is the algebra epimor-
phism ev : Z[S] — C defined by

ov(P) = P(tg = exp(2miq(g)), ten = exp(2mib(g, ), g,h € G).
The third ingredient is a quotient of the group algebra of the finite Heisen-
berg group 7 (H1(X; G)). Recall that Z = 0xQ/Z is the center of S (H(X; G)).
Let I, be the two-sided ideal of C[77(H1(X; G))] generated by all combina-

tions

(0,t) - h — x(t)h, teQ/Z, he H(H(%;Q)).

DEFINITION 4.6. The reduced group algebra of the Heisenberg group Hi(X; G)
is defined by

Vol (H1(%; G))] = ClA (Hi (55 G))]/ -
THEOREM 4.1. There is a C-algebra isomorphism

s (S % [0,1]) - Vo[ (H (5 G))]
such that the diagram of algebras

(S x [0,1]) —2> C[# (H (Z; L2G)]

| |

(S x [0,1]) ——= Vo[ (H1(Z: G))]
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is commutative. The left vectical arrow is the natural projection and the
right vertical arrow is the map induced by t x ev.

PROOF. Define an assignment
@~ (L] ev(Pr))

and extend it by C-linearity to a map W : 422;(2 x[0,1]) = V|2 (H1(E; G))].
It follows from definitions that it is an algebra map making the diagram com-
mute. It remains to see that U is a linear isomorphism. For this, we use
Cor. 4.2. The details are left to the reader. O

For each Lagrangian A of H;(X), there is a Schrodinger representation 7y :
H(H(Z;G)) — U(L*(G®A)).
LEMMA 4.6. There is a unique C-linear extension

a Vo[ (H1(2; G))] = Endc(L*(G ® A))

of the Schréodinger representation making the diagram

H(H1(5;G)) —— U(L*(G ® A))

| |

V[ (H (S5 G))] —2> Ende(L2(G ® A))

commute.

PrOOF. Extend mp by C-linearity to a linear map C[77(H1(X;G))]
Endc(L?(G ® A)), that we continue to denote m5. We have 75 ((0,t) - h)
A (0,t) ma(h) = x(t)ma(h), so A (L) = 0. The result follows.

on

4.5. The Schrédinger representation from Abelian skein the-
ory. Let M be a compact oriented 3-manifold with boundary . In this

paragraph, we explain how the skein module 42?(2 x [0,1]) acts on the skein
module 7 (M). We then identity this action to “the” Schrodinger represen-
tation, as defined in Chap. 3, §3.

There is a natural gluing M o (¥ x [0,1]) & M defined by identifying
OM = % with —3 x 0. The result is a “thickened” manifold M which is
homeomorphic to M.

Xx[0,1]

ORE

LEMMA 4.7. The Heisenberg skein algebra <7 (¥ x [0,1]) acts on </ (M) by
the map

(M) x (X x[0,1]) > A (Mu X x]|0,1]) = (M),
defined by
(L), (L) »(LuL).
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This action induces an action ap of the reduced Heisenberg skein algebra
o/ (X % [0,1]) on &/ (M).

Proor. This is a consequence of the definitions. O

Let H, denote the standard handlebody of genus g.

—

PROPOSITION 4.5. The action of the reduced Heisenberg skein algebra of (X x

—~

[0,1]) on o/ (Hy) is induced by the Schrédinger representation mp where A is
the standard longitudinal Lagrangian in H1(X). More precisely, the following
diagram is commutative:

o~ ap —~

o/ (X x [0,1]) ——— Endc(«(H))

@lz :i(s

V[ (H (S5 G))] —2> Ende(L2(G ® A))

|

H(Hy(2;G)) ——= U(L*(G®A))

where the first vertical descending arrow is the isomorphism of Theorem 4.1,
the second vertical descending arrow is the isomorphism induced by § (Cor.
4.3).

—

PROOF. We have already seen that 7 (H,) is isomorphic via § to the

algebra L?(G®A) = C[G®A](Cor. 4.3). We have also seen that 52?(2 x[0,1])
is isomorphic via ¥ to the reduced group algebra V| (H1(3;G))] of the
finite Heisenberg algebra .#°(H1(X; G)) (Theorem 4.1). By Lemma 4.6, It
suffices to identify the representation on the image of the finite Heisenberg
algebra 7 (H1(2; ).

Let {m;; g)x, denote the skein in ¥ x [0, 1] represented by the i-th standard
meridian of ¥ x 1 = ¥ x [0,1] and colored by x € G. Let (l;; hyn, denote
the skein in H = H represented by the j-th standard longitude of H and
colored by h € G. Using skein calculus, we verify that

. . _ GO if i % j;
<mz,9>2 <ljah>H = { e2mibg(g,h) <lj;h>H if i = j.

(In the case when ¥ has genus 1, a proof follows from Fig. 4.1. The gen-
eral case is similar.) Note that Sy (i.m;,i.l;) = 0;;. Therefore, if L is an
arbitrary disjoint union of parallel meridians in ¥ x 1 and L’ an arbitrary
element in .7 (H),

(4.13) (LYs, (L = ™ O@®B)LLIED ¢y

Let {l;; g)s; denote the skein in ¥ x [0, 1] represented by the i-th longitude
of ¥ x 1 < ¥ x [0, 1] and colored by = € G. Let {lj; h)g, denote the skein in
H, represented by the j-th standard longitude of H, and colored by h € G.
We have

i gys -y hym, = s g, - s hw,.-
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Therefore, if L is an arbitrary disjoint union of parallel longitudes in ¥ x 1
and L' an arbitrary element in . (H),

(4.14) (Lys(Lyn ={Lyu -{L)n.
Recall that o7y, .1y, = O] * 0] = O[z)+1z/]- Therefore, longitudes acts
as translations as required. O

4.6. The Weil representation from Abelian skein theory.

5. A direct proof of “Weil=TQFT” theorem

In order to identify the Weil representation, we use Proposition 7.1. It
is therefore sufficient to identify the Weil representation on generators of
Sp(H1(X)). We use the list (7.1) provided by Remark 7.1. In the sequel, we
endow H;(X) with a geometric symplectic basis (See Fig. 1.1 ). There are

three types of generators of Sp(H;(X)), so there are three cases to consider.
First case. Consider a diffeomorphism h : ¥ — ¥_ such that h(m]_) =
lj_ and h(lj_) =-m;j,1<j<g With respect to the symplectic basis

([mi ], Img I [T )5 - - -5 [15 ), we have

_| 0 -1
e [ 1, 0 ]

Hence h represents a generator of Sp(H 1(X)) of the first type. By definition,
A is the Lagrangian generated by m and h(m ) -, 1<j <y

Thus isA is generated by i.([m j]) = [mj] and z*h*([m;]) = —ix([l;]) =

—[l;], 1 < j < g. It follows that Gy = Hi(M(h))/ixA = 0. In particular
TaM(h) =0, Ap =0 and 6 = 0. Since G ® G = 0, for any = € GY, the set
H(x) consists of all elements y € G9. Let

=iy <2 Yi ®lj+) — iy (2 Tj ® W{))
J J
= Z:(;yj ®lj+) +i*<;x]~ ®m7>

be the corresponding framed 1-boundary with coefficients in GG. Since

Ikn (i, i S 1) = Tk (i my yiymy ) =0,

* ]7 * 7 J
we find
(g ®1kp) (Kay) =(g®Tkp) Oy ®id 1 + 25 @i, m;)
J
=3 by )k (i 1 iy my).
<k
We have

k(7 l] Jiymy ) = lkA(i*_m,:,i:l;) lkp(ifmf,i +lj+) =m] ey, l;.r = djk.
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Now apply Corollary 5.2. We obtain
p(ha) ez = G172 Y X(0,® B)(y, 7)) ey
yeGRLo
This is the formula (7.2) as desired.

Second case. We have to consider a diffeomorphism A : 3 — 3 _ such that
with respect to the symplectic basis ([my],...,[m ], [I7],---,[l;]),

1, 0
Maty, oy iy () = { B 1, ]

K3 K3

where B is an symmetric integral square matrix of size g. Note that
Iy 0 | 1, 0 | _ 14 0
B 1, B 1, | | B+B 1,

x(@®B+B))=x(q®B+q®B') =x(q®B) - x(¢®B).

It follows that it suffices to verify the formula for an elementary symmetric
integral matrix B. Let 1 < i < j < g. Let E;; denotes the elementary
matrix defined by (E;;)r = 61 - 6j;. Consider the case when B = E;; 4+ Ej;.
Then A is generated by [m; | and

and

m; + lj if k=1
h*([mlz]) = m,; + Z((Sip(sjk + 5jp5i/§)lp = mj + I, ifk=y;
P m; if k¢ {i,j}
for 1 <k < g. Thus GAM = Hi(M(h))/ixA is the free abelian group of rank
g — 2 generated by [li],...,[l:],[l;],...,[lg]. (Here = denotes deletion.) In
particular, TyA M is trivial, Ay = 0 and 0 = 0. By definition, y € H(z) if and
only if if ([y]) = i ([z]) in GRGAM. Since Gy M is free, Ker(GRH1 (M) —
G®GAM) = G®A. 1t follows that the map i} |ggat : GRAT > GRGAM
are injective. (Here we use the fact that A and A~ @ AT are transverse
Lagrangians in Hy (@M (h)).) It follows that the equation if ([y]) = 5 (|z])
has a unique solution in y. With the identification AT = Ly = A~, this
solution identifies y = .

Third case.

5.1. A second proof.

6. A few computations and examples
7. A modular category

For the definition of a modular category and the construction of quantum
invariants of 3-manifolds from modular categories, we refer to [61, Chap. 2,
Chap. 3]. Let b : G x G — Q/Z be a biadditive pairing on a finite group
G and a : G — Q/Z be a homomorphism such that 2a = 0. In [61, p.77]
(the second “toy example”), V. Turaev defines a modular tensor category
C(G,a,b) as follows.
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e Objects are elements of G.

e The set of morphisms is C between two identical elements of G and
the singleton {0} otherwise.

e Composition of morphisms is the usual product in C.

e Tensor product of morphisms is induced by the usual products in
G and C respectively.

e The dual object to an object g € G is g~

e The braiding cgp, : g®@h = gh — hg = h ® g is defined as
exp(2mib(g, h)) where b is a fixed bilinear pairing.

o The twist ty : g — g is defined as exp(27i(b(g, g) + a(g))) where a.

e The associator (gh)k — g(hk) is the identity (trivial).

1

This category is known to be a semi-simple ribbon category with the set of
simple objects being G itself. Indeed, the (zy)-th entry of the S-matrix is

Tr(cey © cye) = exp(2mi(b(x,y) + b(z,y) + a(z) + a(y)).

By definition a semi-simple category (over C) is modular if the S-matrix is
invertible over C.

PROPOSITION 7.1. Let (G,a,b) be a triple as above with b : G x G — Q/Z
nondegenerate. The following three statements are equivalent:

(1) The form
b: G x G —Q/Z, (z,y) — b(z,y) + by, )

1s non-degenerate.

(2) a =0 and G has no cyclic (left or right) orthogonal summand of
even order.

(3) The semi-simple category C(G,a,b) is modular.

PROOF. Preliminary observation: using adjoint maps one sees that bis
nondegenerate if and only if the linking

(#,y) = bz, y) + az) + aly)
is nondegenerate, which implies a = 0. (1) = (2): suppose (1) satisfied.
Suppose that G has a cyclic orthogonal summand of even order 2k generated
by € G. Then by [8, Lemma 28], = and b(z,z) = 2b(z,z) have the
same order 2k in Q/Z. But this would imply that b(z,z) has order 4k,
a contradiction since 2k b(z,z) = b(2k z,x) = b(0,2) = 0. (2) = (1):
suppose that the linking b is degenerate, i.c. Ann( ) = {z e G| bz, —) =
0} + {0}. It induces a nondegenerate hnkmg ¥ on the quotient G/Ann(b).
Any section of the projection G — G/Ann(b) induces an isomorphism of
linkings
(G,b) ~ (G/Ann(b),¥) ® (Ann(b),0).

By the previous result, since b is nondegenerate, G/Ann(¥') has no cyclic
orthogonal summand of even order. On the other hand, there is zg €
Ann(b) — {0} such that b(zo, —) = 0. In particular,

b(.’L'(), .’L'()) = b(.’II,O 7'7}0) + b(‘r()’ .fU()) = 07
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hence 2 b(xg, o) = 0. This implies that the order of z( is even. It fol-

~

lows that Ann(b) has even order. Note that the direct sum decomposition
of Ann(b) is orthogonal. Hence Ann(b) contains an orthogonal cyclic sum-
mand of even order. This is the desired result. (3) = (1): modularity is
equivalent to the invertibility of the S-matrix. The latter is equivalent to
the nondegeneracy of (z,y) — b(z,y) + a(x) + a(y) which implies a = 0 and
nondegeneracy of b by the preliminary observation. The converse follows
from [5, Prop. 1.1]. O

Any triple (G, a,b) as above gives rise to a homogeneous quadratic form ¢
on G defined, as the sum of the polarization of b and the homomorphism a,
by: ¢(z) = b(x,z) +a(x), z € G. In this case, the bilinear linking associated
to ¢ is the symmetrized form built from b. Conversely:

LEMMA 7.1. Any homogeneous quadratic form q : G — Q/Z is the sum of the
polarization of some bilinear pairing b and a homomorphism a : G — Q/Z
such that 2a = 0 if and only if G has no cyclic orthogonal summand of even
order.

PROOF. If G has odd order then the image of ¢ is an odd (cyclic) sub-
group of Q/Z. Thus we can define b(z,y) = 2(q(z + y) — q(z) — q(y)) for
x,y € G. Then ¢q(x) = b(z,x) for all z € G. If G has even order, consider
any quadratic form ¢ on G that is nondegenerate. Then by [8, Lemma 29],
there exists * € G of order k such that ¢(x) has order 2k in Q/Z, while
b(x,x) + a(x) has order dividing k for any bilinear pairing b: G x G — Q/Z
and homomorphism a : G — Q/Z. Therefore, ¢ is not the sum of the polar-
ization of b and the homomorphism a. O

We consider now the case when C(G, a,b) is not modular. A weaker condi-
tion than the invertibility of the S-matrix is known in order to construct a
topological invariant from a semi-simple ribbon category (see [5, Prop. 1.6],
[6, Appendix A]):

(7.1) > exp(2mi(b(x, 7) + a(x))) + 0.
zeG

This is a Gauss sum. Using Lemma 3.8, we see that Condition (7.1) is
satisfied if and only if

~.

(7.2)  blz,z)+a(x) =0 for all z € G such that 2z € Ann(b) = Ker(b).

Without loss of generality, assume that b is nondegenerate. Then (7.2)
becomes

(7.3) b(x,z) +a(r) =0 for all z € G such that 2z = 0.

Since x + b(z,z) is a homomorphism on {x € G | 2z = 0}, the condition
(7.2), viewed as an equation in a, has always a solution in a € G*.

The next step consists in extending a quantum invariant to a topological
quantum field theory. The modularity is used in a crucial way in this ex-
tension. However, in the case of C(G, a,b), the invertibility of the S-matrix
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is used to ensure that the resulting topological quantum field theory is non-
degenerate (i.e., the cobordism invariant on a cylinder may vanish). It is
not hard to see that in the case when C(G, a, b) is semi-simple and satisfies
(7.1), there is a topological quantum field theory associated to G(G, a,b).

We mention an alternative modular category that produces (possibly up to
a normalization real factor) the invariant 7 above. The category in question
— as opposed to the one above — is not strict and includes a non trivial
associator a : (zy)z — z(yz) defined as a,, . = exp(2mih(x,y, 2)), x,y,2 €
G, where h is a map : G x G x G — Q/Z. The braiding is still defined as
above cgy : ¥y = yz by ¢z = exp(2mib(x, y)) but b is no longer necessarily
biadditive. The maps b and h are required to satisfy the hexagon identity.
It turns out that the pair (b, h) is an Abelian 3-cocycle in the sense of
Eilenberg and McLane [15]. Computations of Abelian Eilenberg-McLane
cohomology were performed by S. Eilenberg and S. McLane themselves [15]
and in particular the identification of H3(A'(G);Q/Z) where A'(G) is a
certain cell complex associated to G, and the set of homogeneous quadratic
functions G — Q/Z. Further computations were performed by A. Joyal and
R. Street [31], F. Quinn [51] and others. The details of the construction of a
modular category from this data are worked out by F. Quinn [51] and S.D.
Stirling in [59]. The fundamental construction of Eilenberg and McLane
has been generalized by C. Ospel to a nonabelian (“quasi-abelian”) setting
in [48], which in turn, has been further used by V. Turaev to construct
enriched modular categories to incorporate a group action [63].
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