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Abstract

We prove the additivity theorem for the K-theory of triangulated derivators. This solves one of the conjec-
tures made by Maltsiniotis in [G. Maltsiniotis, La K-théorie d’un dérivateur triangulé, in: Alexei Davydov,
Michael Batanin, Michael Johnson, Stephen Lack, Amnon Neeman (Eds.), Categories in Algebra, Geom-
etry and Physics, Conference and Workshop in honor of Ross Street’s 60th Birthday, in: Contemp. Math.,
vol. 431, Amer. Math. Soc., 2007, pp. 341–368]. We also review some basic definitions and results in the
theory of derivators in the sense of Grothendieck.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Triangulated categories were introduced in the 1960s to study certain phenomena in homo-
logical algebra. Among the notable early achievements of the theory was Grothendieck’s duality
theorem; even the statement of the theorem makes no sense without derived categories. See [11]
for more detail. In the forty years since then derived and triangulated categories have become
pervasive in mathematics, appearing even in such unlikely places as mirror symmetry in mathe-
matical physics.

Notwithstanding their many achievements, the consensus has always been that triangulated
categories are deeply flawed. Ever since their introduction, in the 1960s, people have been acutely
aware of their shortcomings. There is an extensive literature on the subject. Given that, right
from the start, the consensus was that triangulated categories are inadequate, it is quite surprising
how much has been achieved using them. Anyway, this article is about one of the proposed
improvements on triangulated categories.

Over the years many people have tried to improve on the formalism of triangulated categories.
The idea has always been to construct a gadget with a little more structure and more flexibility.
There is an extensive list of candidates: stable model categories, A∞-categories, DG-categories,
stable Segal categories, quasicategories and triangulated derivators. Each of the constructions has
its advantages and its advocates. Let us confine ourselves to saying that, among the options listed
above, the striking feature of triangulated derivators is that they have the least added structure.
All the other constructions functorially give rise to triangulated derivators.

To motivate our discussion of triangulated derivators let us briefly remind the reader of one
of the defects which triangulated categories have. Given a triangulated category T we basically
do not understand how to produce any others, except for trivial constructions (subcategories and
quotients). In particular, if T is triangulated and X is an arbitrary small category, then the category
Hom(X,T) is not usually triangulated in any reasonable way. The idea of a triangulated derivator
is to fix this problem by defining it away. It might be best to illustrate with an example what a
triangulated derivator is.

Let A be an abelian category, and let Dia be the 2-category of all finite partially ordered
sets. Given any finite, partially ordered set X, that is given an object X ∈ Dia, we can form
Hom(Xop,A), the category of functors Xop −→ A. The category Hom(Xop,A) is abelian, and
we are therefore free to form its derived category. Let

D(X) = D
(
Hom

(
Xop,A

))
.

In this way we obtain a 2-functor D :Diaop −→ CAT. Whatever its properties, the 2-functor D

is the prototype example of a triangulated derivator. Perhaps the most enlightening explanation
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might be that a triangulated derivator is a 2-functor D :Diaop −→ CAT, satisfying a list of ax-
ioms that try to formalize the essential properties of the example given above. The list of axioms
is presented, in some detail, in Section 1.

Among the axioms that a triangulated derivator must satisfy is the following key property.
Suppose we are given a morphism f :X −→ Y in Dia; the fact that D is a functor says there is an
induced map f ∗ = D(f ) : D(Y ) −→ D(X). A crucial feature of derivators is that this functor f ∗
must have a right and a left adjoint. We denote the right adjoint f∗ and the left adjoint f!. If
we think of our motivating example, that is D(X) is the derived category of Hom(Xop,A), the
existence of the adjoints says that, given a chain complex C of objects in Hom(Xop,A) and a
morphism of partially ordered sets f :X −→ Y , then there are two chain complexes f∗C,f!C of
objects in the abelian category Hom(Y op,A) that come for free. If Y = e is the 1-point, terminal
category then the extension of C to f∗C is a homotopy limit, while the extension of C to f!C is
a homotopy colimit. In the world of triangulated derivators, homotopy limits and colimits exist
and are part of the structure. In the next couple of paragraphs we will explain how, starting from
a triangulated derivator D, one can construct new derivators and maps between them. As we
already noted, in the world of triangulated categories no such construction is known.

Let be the partially ordered set given by the commutative square

(0,0) (0,1)

(1,0) (1,1).

The subcategory is

(0,0) (0,1)

(1,0),

and has a subcategory I which is

(0,0) ←− (0,1).

Let f : I −→ and g : −→ be the inclusions. Given an object a ∈ D(I ) we can form first
the object f∗a ∈ D( ), and then g!f∗a ∈ D( ). In the special case where D is our motivating
derivator, that is where D(X) = D(Hom(Xop,A)), it is simple enough to work out explicitly
what g!f∗a is. The object a is a functor from I op to the category of chain complexes in A. That
is, we have a map of chain complexes in A

C0,0
i−→ C0,1.
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Replacing a by an isomorphic object in D(I ) we may assume the map i is a (split) monomor-
phism in each degree. The object f∗a ∈ D( ) turns out to be the diagram of chain complexes

C0,0
i

C0,1

0

and the object g!f∗a ∈ D( ) is nothing more nor less than the diagram

C0,0
i

C0,1

0
C0,1
C0,0

.

In other words the object g!f∗a ∈ D( ) can be thought of as a short exact sequence of chain
complexes, or as a triangle.

So far we have seen how to construct short exact sequences; in this paragraph we form a
derivator Exact(D) of short exact sequences in D, and some maps out of it. We begin with the
maps. Given a derivator D it is possible to define a new derivator D by the formula D (X) =
D(X × ). The inclusions of the objects (0,0) ∈ and (1,1) ∈ induce functors

D(X × )
p(0,0)−−−→ D

(
X × (0,0)

)
, D(X × )

p(1,1)−−−→ D
(
X × (1,1)

)
.

That is, we have two maps p(0,0) : D −→ D and p(1,1) : D −→ D. We can also form yet another
derivator Exact(D). For every X we make Exact(D)(X) a full subcategory of D (X). The objects
of Exact(D)(X) are given by the following rule:

Exact(D)(X) =
{
b ∈ D (X)

∣∣∣ there exists a ∈ D(X × I ), and an
isomorphism b � (1X × g)!(1X × f )∗a

}
.

We have two composites

D

Exact(D) D

p(0,0)

p(1,1)
D .

This concludes the formal facts about derivators which we need in order to state our main theo-
rem.
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To each derivator D, Keller and Maltsiniotis assigned a K-theory space K(D). The above
diagram of derivators induces a diagram of spaces

K(D)

K(Exact(D)) K(D )

K(p(0,0))

K(p(1,1)) K(D).

The main theorem of this article is that the map K(Exact(D)) −→ K(D)×K(D), induced by the
above, is a homotopy equivalence. This was conjectured by Maltsiniotis [20, Conjecture 3, p. 8];
he called it the “additivity conjecture.” It should be mentioned that Garkusha [6] proved a partial
result; he showed that the additivity conjecture is true for the class of triangulated derivators that
come from complicial biWaldhausen categories in the sense of Thomason and Trobaugh [32].
The proof we give here works for general triangulated derivators; see Theorem 3.17.

We should say a little about the history of the subject. The notion of derivator was intro-
duced by Grothendieck in [8,9]. Independently of Grothendieck but later B. Keller [15] and
J. Franke [5] studied similar constructions. A. Heller [12–14] was aware of Grothendieck’s
earlier work, but his theory is still quite independent in spirit. Inspired by the work of A. Gro-
thendieck and J. Franke, G. Maltsiniotis defined the notion of triangulated derivator; his axioms
Der 1–Der 7 are given in Section 1 of this paper. He furthermore proved that these axioms are
sufficient to give rise to a canonical structure of triangulated category; see Theorem 1.17 and
Corollary 7.10 for more precise statements, and [19] for the proofs. During the years 2001–2002
Cisinski, Keller and Maltsiniotis undertook an intensive study of the subject in the Algèbre et
topologie homotopiques seminar at the University of Paris 7. One development to come out of
this seminar was the idea of associating a K-theory to every triangulated derivator D. The idea,
as we have already said, was due to Keller and Maltsiniotis. In his manuscript [20], on derivator
K-theory, Maltsiniotis states three conjectures. The main theorem of this article will prove his
additivity conjecture.

Lastly we should explain the structure of the article. After the introduction comes Section 1,
which contains the axioms of a triangulated derivator. Then follows the K-theoretic component
of the article. Using the techniques developed by Neeman, in his articles on triangulated K-theory
[21–28,30], we give a very simple proof of additivity; it is so formal that there is not much to
check to see that it works in the derivator context. It also works to give a new proof of additivity in
other contexts, for example for Waldhausen’s K-theory; but there already are many other proofs
of the additivity theorem for Waldhausen’s K-theory.

There are facts about triangulated derivators which come up in the proof. These are not diffi-
cult to check, but the checking does involve developing techniques for dealing with triangulated
derivators. The theory becomes very easy if the derivator happens to be the motivating example
we discussed earlier, but constructing it from the axioms requires some work. In Sections 2–5
we give the homotopy theoretic component of the proof, leaving the lemmas about triangulated
derivators till later. We are careful to highlight such occurrences, for the reader’s convenience.
Every time we use an assertion about triangulated derivators, leaving the proof till later, we warn
the reader with a Caution, and give references to the later parts of the article where the assertion
is proved. Starting with Section 6 we study the formalism of triangulated derivators, and provide
the proofs promised in the Cautions of Sections 2–5.
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Our treatment of triangulated derivators is minimal; we develop almost only those aspects
of the theory we absolutely need. The only exception is Appendix A, which proves that K(D)

is always an infinite loop space. This is not a fact we need in the proof of additivity. Since
Garkusha, in his paper [6], said that for a general triangulated derivator he could not make K(D)

into a spectrum,1 we felt we ought to include the argument here. But the infinite loop space
structure is irrelevant to the proof of additivity, and hence it is consigned to Appendix A.

A fuller account, of the theory of triangulated derivators, should appear in [18,19].

1. Triangulated derivators

In this section, we recall the definition of a (triangulated) derivator following Grothendieck
[8,9]. The reader will find a more complete exposition in [18–20]. The theory of derivators is also
very close to A. Heller’s theory of homotopy theories (see [12–14]), and the theory of triangulated
derivators is similar (and in some sense equivalent) to the notion of systems of triangulated
categories defined by Franke [5].

1.1. We denote by Cat the 2-category of small categories. The empty category will be written ∅,
and the 1-point category (i.e. the category with one object and one identity morphism) will be
written e. If X is a small category, Xop is the opposite category associated to X. If u :X −→ Y

is a functor, and if y is an object of Y , one defines the category X/y as follows. The objects of
X/y are the pairs (x, f ), where x is an object of X, and f is a map in Y from u(x) to y. A map
from (x, f ) to (x′, f ′) in X/y is a map ξ :x −→ x′ in X such that f ′u(ξ) = f . The composition
law in X/y is induced by the composition law in X. Dually, one defines y\X by the formula
y\X = (Xop/y)op. We then have canonical functors

X/y −→ X and y\X −→ X

defined by the projection (x, f ) 
−→ x. One can check easily that one gets the following pullback
squares of categories

X/y

u/y

X

u

y\X
y\u

X

u

Y/y Y y\Y Y.

If X is any category we let pX :X −→ e be the canonical functor. Given any object x of X we
will write x : e −→ X for the unique functor which sends the object of e to x. As we will often
want to think of small categories as spaces the objects of X, or equivalently the functors e −→ X,
will be called the points of X.

If X and Y are two categories we denote by Hom(X,Y ) the category of functors from X to Y .

1.2. We assume that the reader is familiar with the basic notions of 2-categories and of 2-functors
(see for example [17, XII.3]). If C is a 2-category one writes Cop for its dual 2-category: Cop has

1 Garkusha shows that K(D) is a spectrum if D comes from a biWaldhausen complicial category.
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the same objects as C and, for any two objects X and Y , the category HomCop(X,Y ) of 1-arrows
from X to Y in Cop is HomC(Y,X)op.

A category of diagrams is a full subcategory Dia of the category of small categories satisfying
the following axioms.

D0 Any finite partially ordered set (seen as a category) is in Dia.
D1 Dia is stable under finite sums and under pullbacks.
D2 For any X in Dia and any point x of X, the categories X/x and x\X are in Dia.
D3 For any X in Dia, Xop is in Dia.
D4 For any Grothendieck fibration (in the sense of [7, Exposé VI]) p :X −→ Y , such that Y is

in Dia, and such that all the fibers of p are in Dia, the category X is in Dia.

We will consider Dia as a 2-category with the structure induced by the canonical structure of
2-category on Cat. Some examples of categories of diagrams are Cat, the 2-category Catf of
finite categories and the 2-category Posetf of finite partially ordered sets.

In all that follows we assume that a fixed category of diagrams Dia is given.

Definition 1.3. A prederivator (of domain Dia) is a strict 2-functor from Diaop to the 2-category
of categories

D :Diaop −→ CAT.

More explicitly: For any small category X ∈ Dia one has a category D(X). For any functor
u :X −→ Y in Dia one gets a functor

u∗ = D(u) : D(Y ) −→ D(X).

For any morphism of functors

X

u

v

α Y,

one has a morphism of functors

D(X) D(Y ).

v∗

u∗

α∗

Of course, all these data have to verify some coherence conditions, namely:

(a) For any composable maps in Dia, X
u−→ Y

v−→ Z,

(vu)∗ = u∗v∗, 1∗
X = 1D(X).
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(b) For any composable 2-cells in Dia, X

u

α

w

βv
Y,

(βα)∗ = α∗β∗, 1∗
u = 1u∗ .

(c) For any 2-diagram in Dia, X

u

u′
α Y

v

v′
β Z,

(βα)∗ = α∗β∗.

1.4. Let X be a small category in Dia and let x be an object of X. Given an object F of D(X)

we will write Fx = x∗(F ). The object Fx will be called the fiber of F at the point x.

1.5. For a prederivator D, define its opposite to be the prederivator D
op given by the formula

D
op(X) = D

(
Xop)op for all X ∈ Dia .

Example 1.6. Let M be any category. We obtain a prederivator

X 
−→ M(X)

where M(X) = Hom(Xop,M) is the category of presheaves over X with values in M.
Let M be a category endowed with a class of maps called weak equivalences (for example M

can be the category of bounded complexes in a given abelian category, and the weak equivalences
can be the quasi-isomorphisms). For any category X in Dia, we define the weak equivalences
in M(X) to be the morphisms of presheaves which are termwise weak equivalences in M. We
can then define DM(X) as the localization of M(X) by the weak equivalences. It is clear that,
for any functor u :X −→ Y in Dia, the inverse image functor

M(Y ) −→ M(X), F 
−→ u∗(F ) = F ◦ u.

respects weak equivalences, so that it induces a well-defined functor

u∗ : DM(Y ) −→ DM(X).

The 2-functoriality of localization implies that we have a prederivator DM. All the (pre)derivators
we know can be obtained this way. Note that, by definition, the category DM(e) is the homotopy
category of M, that is the universal category obtained from M by inverting the weak equiva-
lences.

Definition 1.7. Let D be a prederivator. A map u :X −→ Y in Dia has a cohomological direct
image functor (respectively a homological direct image functor) in D if the inverse image functor

u∗ : D(Y ) −→ D(X)
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has a right adjoint (respectively a left adjoint)

u∗ : D(X) −→ D(Y )
(
respectively u! : D(X) −→ D(Y )

)
,

called the cohomological direct image functor (respectively homological direct image functor)
associated to u.

1.8. Let X be a category in Dia, and p = pX :X −→ e. If p has a cohomological direct image
functor in D, one defines for any object F of D(X) the object of global sections of F as

Γ∗(X,F ) = p∗(F ).

The object Γ∗(X,F ) can be viewed as some kind of cohomology of the ‘space’ X with coeffi-
cients in F . This also corresponds to what algebraic topologists think of as the homotopy limit
of F indexed by the category X. Dually, if p has a homological direct image in D then, for any
object F of D(X), one sets

Γ!(X,F ) = p!(F ),

which can be regarded as the homology of X with coefficients in F or as a homotopy colimit,
according to the taste of the reader.

1.9. Let D be a prederivator, and let

X′

α

v

u′

X

u

Y ′
w

Y

be a 2-diagram in Dia. By 2-functoriality one obtains the following 2-diagram

D(X′) D(X)
v∗

D(Y ′)

u′ ∗

D(Y ).

u∗

w∗

α∗

If we assume that the functors u and u′ both have cohomological direct images in D one can
define the base change morphism induced by α

β :w∗u∗ −→ u′∗v∗
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D(X′)

u′∗

D(X)
v∗

u∗β

D(Y ′) D(Y )
w∗

as follows. The counit u∗u∗ −→ 1D(X) induces a morphism v∗u∗u∗ −→ v∗, and by composition
with α∗u∗, a morphism u′ ∗w∗u∗ −→ v∗. This gives β by adjunction.

This construction will be used in the following situation. Let u :X −→ Y be a map in Dia, and
let y be a point of Y . According to 1.1 we have a functor j :X/y −→ X, defined by the formula
j (x,f ) = x, where f :u(x) −→ y is a morphism in Y . If p :X/y −→ e is the canonical map
one obtains the 2-diagram below, where α denotes the 2-cell defined by the formula α(x,f ) = f

X/y
j

p
α

X

u

e
y

Y.

With the notations of 1.8, the associated base change morphism gives rise to a canonical mor-
phism

u∗(F )y −→ Γ∗(X/y,F/y)

for any object F of D(X), where F/y = j∗(F ). Dually one has canonical morphisms

Γ!(y\X,y\F) −→ u!(F )y

where y\F = k∗(F ) and k denotes the canonical functor from y\X to X.

1.10. Let X and Y be two categories in Dia. Using the 2-functoriality of D, one defines a functor

dX,Y : D(X × Y) −→ Hom
(
Xop,D(Y )

)
as follows. Setting X′ = X × Y , we have a canonical functor

Hom(Y,X′)op −→ Hom
(
D(X′),D(Y )

)
which defines a functor

Hom(Y,X′)op × D(X′) −→ D(Y )

and then a functor

D(X′) −→ Hom
(
Hom(Y,X′)op

,D(Y )
)
.
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Using the canonical functor

X −→ Hom(Y,X × Y), x 
−→ (
y 
−→ (x, y)

)
,

this gives the desired functor.
In particular, for any category X in Dia, one gets a functor

dX = dX,e : D(X) −→ Hom
(
Xop,D(e)

)
.

If F is an object of D(X), then dX(F ) is the presheaf on X with values in D(e) defined by

x 
−→ Fx.

Given a presheaf G on X with value in D(e), we will say that an object F of D(X) is locally of
shape G if dX(F ) is isomorphic (as a presheaf) to G.

Definition 1.11. A derivator is a prederivator D with the following properties.

Der 1 (Non-triviality axiom). For any finite set I and any family {Xi, i ∈ I } of categories in
Dia, the canonical functor

D

(∐
i∈I

Xi

)
−→

∏
i∈I

D(Xi)

is an equivalence of categories.
Der 2 (Conservativity axiom). For any category X in Dia, the family of functors

x∗ : D(X) −→ D(e), F 
−→ x∗(F ) = Fx,

corresponding to the points x of X is conservative. In other words: If ϕ :F −→ G is a
morphism in D(X), such that for any point x of X the map ϕx :Fx −→ Gx is an isomor-
phism in D(e), then ϕ is an isomorphism in D(X).

Der 3 (Direct image axiom). Any functor in Dia has a cohomological direct image functor and
a homological direct image functor in D (see 1.7).

Der 4 (Base change axiom). For any functor u :X −→ Y in Dia, any point y of Y and any object
F in D(X), the canonical base change morphisms (see 1.9)

u∗(F )y −→ Γ∗(X/y,F/y) and Γ!(y\X,y\F) −→ u!(F )y

are isomorphisms in D(e).
Der 5 (Essential surjectivity axiom). Let I be the category corresponding to the graph

0 ←− 1.

For any category X in Dia, the functor

dI,X : D(I × X) −→ Hom
(
I op,D(X)

)
(see 1.10) is full and essentially surjective.
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1.12. A functor j :U −→ X is an open immersion if it is injective on objects, fully faithful, and
if, for any morphism x −→ j (u′) in the category X, we have that x = j (u) for some u ∈ U .
Dually a functor i :Z −→ X is a closed immersion if iop :Zop −→ Xop is an open immersion.
One can show easily that open immersions and closed immersions are stable by composition and
pullback.

Definition 1.13. A derivator D is pointed if it satisfies the following property.

Der 6 (Exceptional axiom). For any closed immersion i :Z −→ X in Dia, the cohomological
direct image functor

i∗ : D(Z) −→ D(X)

has a right adjoint

i! : D(X) −→ D(Z)

called the exceptional inverse image functor associated to i. Dually, for any open immer-
sion j :U −→ X in Dia, the homological direct image functor

j! : D(U) −→ D(X)

has a left adjoint

j ? : D(X) −→ D(U)

called the coexceptional inverse image functor associated to j .

1.14. Let be the category given by the commutative square

(0,0) (0,1)

(1,0) (1,1).

We are interested in two of its subcategories. The subcategory is

(0,1)

(1,0) (1,1),
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and is the subcategory

(0,0) (0,1)

(1,0).

We thus have two inclusion functors

σ : −→ and τ : −→
(σ is an open immersion and τ a closed immersion). A global commutative square in D is an
object of D( ). A global commutative square C in D is thus locally of shape

C0,0 C0,1

C1,0 C1,1

in D(e).
A global commutative square C in D is cartesian (or a homotopy pullback square) if, for any

global commutative square B in D, the canonical map

HomD( )(B,C) −→ HomD( )

(
σ ∗(B), σ ∗(C)

)
is bijective. Dually, a global commutative square B in D is cocartesian (or a homotopy pushout
square) if, for any global commutative square C in D, the canonical map

HomD( )(B,C) −→ HomD( )

(
τ ∗(B), τ ∗(C)

)
is bijective.

As is isomorphic to its opposite op, one can see that a global commutative square in D

is cartesian (respectively cocartesian) if and only if it is cocartesian (respectively cartesian) as a
global commutative square in D

op.

Definition 1.15. A derivator D is triangulated if it is pointed and satisfies the following axiom:

Der 7 (Stability axiom). A global commutative square in D is cartesian if and only if it is co-
cartesian.

Example 1.16. By [3], any Quillen model category gives rise to a derivator with Dia = Cat
(defined as in 1.6).

Similarly any complicial biWaldhausen category in the sense of Thomason and Trobaugh [32]
gives rise to a triangulated derivator with Dia = Posetf ; see [2]. One can use this to define, for
any exact category E, a triangulated derivator D

b E such that D
b E(e) is the derived category of E.

See [16] for a direct proof.
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Theorem 1.17 (Maltsiniotis). For any triangulated derivator D, the category D(e) has a canon-
ical structure of a triangulated category.

The proof of Theorem 1.17 will appear in [19]. We also note that a very similar result has
been proved by Franke [5].

Remark 1.18. Maltsiniotis’ proof is explicit; it tells us concretely how to construct the dis-
tinguished triangles in D(e). The reader can find a description in 7.9. It may be shown from
Theorem 1.17 that, for any category X in Dia (not only X = e), the category D(X) is triangu-
lated; also the functors j∗ : D(Y ) −→ D(X) are all triangulated. See Corollary 7.10.

2. Regions

Let D be any triangulated derivator. Maltsiniotis associated to it a K-theory space K(D),
and it is time to remind ourselves how this is done. Since we want to set up the simplicial
preliminaries in a framework general enough so that we can prove something, we will divide
this into three sections. In this section and the two that follow we will explain some of the
simplicial background we will need for the proof of the Maltsiniotis additivity conjecture [20,
Conjecture 3, p. 8]. We try to keep the notation as consistent as possible with Neeman’s work
on triangulated K-theory [21–28]. However, familiarity with Neeman’s work is not assumed; the
account we give here is hopefully sufficiently self-contained to help the non-experts. The reader
might also wish to look at [30], which gives another elementary account of triangulated K-theory.
The survey in [30] is more ambitious than the short version we will attempt here; the longer and
more thorough description tries to outline the results, the methods and the open problems in the
field.

In this section we discuss the subcategories of Dia that arise in the definition of K-theory.
The category Z will be the ordered set Z of all integers; the objects are the integers n ∈ Z, and
the morphisms are given by the usual formula

Hom(m,n) =
{ {1} if m � n,

∅ otherwise.

The subcategories we care about will all be subcategories of Z
3 = Z × Z × Z. Let us therefore

make this a definition:

Definition 2.1. We define the following three concepts:

(i) A region is a full subcategory of Z
3.

(ii) Let k ∈ Z be any integer. The slice kR ⊂ R of the region R ⊂ Z
3 is the full subcategory

kR = {
(x, y, k) ∈ R

}
.
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(iii) A morphism from a region R ⊂ Z
3 to a region R′ ⊂ Z

3 is a functor F :R −→ R′ satisfying
the following restriction. First of all for every k ∈ Z we must have F(kR) ⊂ kR

′; that is, F

respects the slices. But furthermore, for every k ∈ Z there exists a commutative square

kR
F

kR
′

Z
2

f1×f2
Z

2

where f1 : Z −→ Z and f2 : Z −→ Z are two functors (that is increasing maps). Note that
f1 = kf1 and f2 = kf2 may depend on k.

Remark 2.2. In this way the regions R ⊂ Z
3 form a category (even a 2-category), which we will

call Regions.

Example 2.3. For example we can take the region Rmn = [0, n]× [0,m]× [0] in Z
3. The picture

is

(0,m) · · · (n,m)

...
...

(0,0) · · · (n,0).

Note that since the region Rmn is planar, that is contained in Z
2 ⊂ Z

3, we omit the third coordi-
nate in the picture.

As is customary, we let Δ be the category whose objects are the finite totally-ordered sets,
and whose morphisms are the order-preserving maps.

Definition 2.4. An r-fold cosimplicial region is a functor

Δr −→ Regions.

Example 2.5. Let us denote by [0, n] the object of Δ

0 < 1 < 2 < · · · < n.

The natural embedding is a functor [0, n] −→ Z. Any object of Δ is canonically isomorphic to a
unique [0, n] ⊂ Z. The map sending [0, n] ∈ Δ to
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[0, n] × [0] × [0] ⊂ Z
3

is a functor F :Δ −→ Regions.

Example 2.6. Slightly more interesting is the fact that we can concatenate. There is a functor
D :Δ × Δ −→ Δ which takes a pair of ordered sets S,T to the disjoint union S ∪ T , with the
order that any element of S is less than any element of T . We can iterate this to form functors
Di :Δi+1 −→ Δ, by the rule

Di = D
(
Di−1 × 1

)
.

The resulting functor Di takes an object of Δi+1, that is (i + 1) ordered sets S0, S1, . . . , Si , and
forms the disjoint union, with the order that the elements in Sj are less than the elements of Sk if
and only if j < k.

Example 2.5 gave us a functor F :Δ −→ Regions, and the paragraph above produced a func-
tor Di :Δi+1 −→ Δ. Composing the two we have a functor F ◦Di :Δi+1 −→ Regions. We have
an (i + 1)-fold cosimplicial region.

Remark 2.7. Despite the many cosimplicial structures, this region is still very 1-dimensional.
The points in this region all have coordinates (i,0,0) in Z

3. After all the map F ◦ Di :Δi+1 −→
Z

3 still factors through F :Δ −→ Regions whose image is 1-dimensional.

Example 2.8. Next we do the 2-dimensional version. We have a functor F :Δ −→ Regions
where Regions is the category of regions in Z

3. Of course the Z
3 is a little ridiculous since the

image lies in Z ⊂ Z
3. The functor we plan to name F × F will be a functor

F × F :Δ × Δ −→ Regions.

It will take the pair [0, n], [0,m] ∈ Δ to F([0, n]) × F([0,m]) ⊂ Z
6. Very concretely, F × F

takes the pair of objects [0, n], [0,m] ∈ Δ to

[0, n] × [0,m] × [0]4

which we are free to consider as lying in Z
3 ⊂ Z

6. The image is nothing other than the region
Rmn of Example 2.3. There is a functor F × F :Δ × Δ −→ Regions with

{F × F }([0, n], [0,m]) = Rmn.

We have a 2-dimensional example of a 2-fold cosimplicial region.

Remark 2.9. We can also combine this with the concatenation functor of Example 2.6, forming
the (i + j +2)-fold cosimplicial regions {F ◦Di}×{F ◦Dj }. That is, we consider the composite

Δi+1 × Δj+1 Di×Dj−−−−→ Δ × Δ
F×F−−−→ Regions.
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Notation 2.10. Our notation for the (i + j + 2)-fold cosimplicial regions of Remark 2.9 will be

The cosimplicial regions we will consider are all very specific cosimplicial subregions of the
regions {F ◦ Di} × {F ◦ Dj } of Remark 2.9. One way to obtain a cosimplicial subregion is
simply to delete some of the boxes; the region

should hopefully be self-explanatory. It is also a functor Δi+1 × Δj+1 −→ Regions. Any object
of Δi+1 × Δj+1 is mapped to the subregion indicated; the parts crossed out are left out of the
region.

The next construction is slightly more subtle.
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Construction 2.11. Example 2.8 gave us a 2-fold cosimplicial region, that is a functor
F × F :Δ × Δ −→ Regions. The functor takes the pair of objects [0, n], [0,m] ∈ Δ to the
region [0, n] × [0,m] × [0] ⊂ Z

3. Of course we can consider the composite

Δ
diagonal−−−−−→ Δ × Δ

F×F−−−→ Regions

getting a 1-fold cosimplicial region. The object [0, n] ∈ Δ is mapped to

[0, n] × [0, n] × [0] ⊂ Z
3.

The virtue of diagonalizing is that now the sets of points

An = {
(x, y,0) ∈ [0, n] × [0, n] × [0] ∣∣ y � x

}
,

Bn = {
(x, y,0) ∈ [0, n] × [0, n] × [0] ∣∣ y � x

}
define cosimplicial subregions. Given any morphism ϕ : [0,m] −→ [0, n] in Δ, the map
F(ϕ)×F(ϕ), which is just ϕ ×ϕ : [0,m]× [0,m] −→ [0, n]× [0, n], clearly carries Am ⊂ Rmm

into An ⊂ Rnn and Bm ⊂ Rmm into Bn ⊂ Rnn. Thus we have two functors A,B :Δ −→ Regions,
with A taking [0, n] to An and B taking [0, n] to Bn. They give cosimplicial subregions. Under-
standably enough we denote these subregions diagramatically by

and

Remark 2.12. We next want to combine this with the concatenation. Recall that in Remark 2.9
we considered the amusing cosimplicial regions that can be obtained as {F ◦ Di} × {F ◦ Dj }.
This gives a functor Δi+1 × Δj+1 −→ Regions. There is nothing to stop us from embedding a
Δ by some diagonal. Consider the composite

{Δa × Δb} × Δ × {Δi−a × Δj−b}
1×{diagonal}×1

{Δa × Δb} × {Δ × Δ} × {Δi−a × Δj−b} Δi+1 × Δj+1

Di×Dj

Δ × Δ

F×F

Regions.

As we learned in Notation 2.10 we will be denoting this cosimplicial region by
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Until now we have been thinking of this as a region possessing (i +j +2) cosimplicial structures,
but we have now forced the action on the (a + 1) column and (b + 1) row to be diagonal. This
means that, in the (a + 1, b + 1) box the two cosimplicial subregions of Construction 2.11 make
sense. We are now free to draw subregions

The meaning of each triangle is that

(i) In the row and column of the triangle the cosimplicial action is diagonal.
(ii) In the intersection of the row and column we take the subregion of Construction 2.11.

Remark 2.13. So far all our regions have been contained in a plane in Z
3. Given any planar

cosimplicial region, that is a functor G :Δr −→ Z
2, we can make it 3-dimensional by multiplying

by a fixed subset I ⊂ Z. That is, we define G′ :Δr −→ Z
3 by the formula
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G′(x) = G(x) × I ⊂ Z
3.

In our constructions I will be I = [0,1] ⊂ Z.

Remark 2.14. It is now time to leave the world of generalities and become specific. Our proof
of the Maltsiniotis conjecture will study the following regions. In Remark 2.9 and Notation 2.10
we learned how to form the 6-fold cosimplicial region

In Notation 2.10 and Construction 2.11 we learned how to form subregions, either by leaving out
one of the boxes or by taking a triangular piece. The region we really wish to consider is

Note that this subregion has only four cosimplicial structures. We start with a 6-fold cosimplicial
region, but to form the triangular subregions we had to diagonalize. In our specific case the action
on the first row and column is diagonal, as is the action on the third row and column. This reduces
the 6-fold to a 4-fold cosimplicial region.

Since all of our regions in the plane Z
2 will be subregions of the above, we will slightly

simplify the notation and write the region
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As indicated in Remark 2.13 we will consider the cosimplicial region in Z
3 obtained by multi-

plying by I = [0,1]. And we will actually study a subregion of this. The real region we wish to
look at will be

What this picture means is that in the cosimplicial region in Z
3
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we consider the subregion whose intersection with Z
2 × [0] and Z

2 × [1] are, respectively,

Notation 2.15. Our 4-fold cosimplicial region will, as already said, be denoted

Its intersections with Z
2 × [0] and Z

2 × [1] will be written



D.-C. Cisinski, A. Neeman / Advances in Mathematics 217 (2008) 1381–1475 1403
For all other subregions, and we will have to consider several, we will explicitly write which
subregions are deleted; for example

has a meaning which should hopefully be obvious.

3. K-theory

In Section 2 we defined cosimplicial regions. Given a cosimplicial region F and a derivator D

there is a way to form a simplicial set, whose geometric realization is a topological space with a
homotopy which might be interesting. We will describe the recipe in this section. The K-theory
of the derivator D is defined this way, and the idea of Section 2 was to set up the machinery in
sufficient generality to be able to prove something about this K-theory. We begin with the key
definition.

Definition 3.1. Let H :Δr −→ Regions be an r-fold cosimplicial region in Z
3. Let D :Diaop −→

CAT be a prederivator. Suppose that Dia contains the image of the functor H ; this happens, for
example, if H(x) ⊂ Z

3 is finite for any object x ∈ Δr . We form the r-fold simplicial groupoid
g(D,H) by declaring that, for every x ∈ Δr ,

g(D,H)(x) = {
groupoid of isomorphisms in D

(
H(x)op)}.

That is we take the category D(H(x)op), and consider g(D,H)(x) to be the groupoid of all
isomorphisms in this category.

Remark 3.2. Let us first note that the variance is right. Since D :Diaop −→ CAT is contravariant,
the composite

{
Δr

}op H op−−→ {Regions}op D−−→ CAT

does have the right variance; it is a functor D◦H op : {Δop}r −→ CAT. We have an r-fold simpli-
cial category, and the subcategory of isomorphisms is an r-fold simplicial groupoid.
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Remark 3.3. The cosimplicial regions to which we wish to apply the constructions are the ones
of Section 2, most especially the ones of Remark 2.14. Let H :Δr −→ Regions be such an r-fold
cosimplicial region. We next define the simplicial groupoid we really care about:

Construction 3.4. Suppose D is a triangulated derivator, not just any prederivator. Let
H :Δr −→ Regions be one of the 4-fold cosimplicial categories of Remark 2.14; that is H

is a subregion of the cosimplicial region we have been denoting

In Definition 3.1 we defined a 4-fold simplicial groupoid g(D,H)(x). Inside this simplicial
groupoid we wish to consider a simplicial subgroupoid. It is a full subcategory of g(D,H)(x),
of all objects A ∈ g(D,H)(x) satisfying the following restrictions:

(i) The restriction of A ∈ D(H(x)op) to the diagonal lines in the boundary of the region van-
ishes.

(ii) Suppose we consider the slices of the region H(x), as in Definition 2.1(ii). We remind the
reader: if k ∈ Z is any integer, then the slice kH(x) is the full subcategory

kH(x) = {
(x, y, k) ∈ H(x)

}
.

In our case only 0H(x) and 1H(x) are non-empty. Take any square contained in kH(x); it
gives a map −→ H(x). The restriction of A ∈ D(H(x)op) to D( op) is a global com-
mutative square, and we insist that all such squares should be cartesian (or equivalently
cocartesian by Der 7; see Definition 1.15).

Remark 3.5. Perhaps it would help to rewrite more explicitly the conditions (i) and (ii) above. For
x ∈ Δr we have a region H(x) ⊂ Z

3, and the region H(x) consists of some points (α,β, γ ) ∈ Z
3

with γ ∈ {0,1}. We could consider separately the cases γ = 0 and γ = 1; that is what we meant
when we said, in (ii) above, that we consider the “slices” 0H(x) and 1H(x). If we separately con-
sider the two slices what we have is two regions in the plane, and it is easy enough to concretely
visualize such regions. The two regions are pictured, in explicit coordinates, on the following
page:
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Given any inclusion of categories δ :J −→ H(x) there is an induced map D(δop) :
D(H(x)op) −→ D(J op). We can impose restrictions on the objects A ∈ D(H(x)op) by speci-
fying that, for certain inclusions δ :J −→ H(x), the image of A ∈ D(H(x)op) by the functor
D(δop) : D(H(x)op) −→ D(J op) should satisfy some properties. This is precisely the nature of
the conditions imposed in Construction 3.4(i) and (ii). In Construction 3.4 we define a full subcat-
egory of D(H(x)op) by imposing restrictions on the objects. An object A ∈ D(H(x)op) belongs
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to the subcategory if it satisfies (i) and (ii), both of which are stated in terms of certain maps
δ :J −→ H(x). More explicitly, we require

(i) If, in the picture on the previous page for the category H(x), we let J ⊂ H(x) be the full
subcategory of all points

J = {
(i, i,0)

∣∣ 0 � i � a
} ∪ {

(j, j,1)
∣∣ d � j � e

}
then the restriction of A ∈ D(H(x)op) to D(J op) is isomorphic to zero. The reader is re-
minded that D(J op) has a zero object; see 7.9.

(ii) Suppose we choose five integers i � i′, j � j ′ and k ∈ {0,1}. Suppose that the following
square

(i, j ′, k) (i′, j ′, k)

(i, j, k) (i′, j, k)

is entirely contained in H(x). It gives a map δ : −→ H(x), and therefore any object
A ∈ D(H(x)op) restricts to a global commutative square D(δop)(A) ∈ D( op) = D( ).
For A to lie in our subcategory we require that all such global commutative squares be
cartesian (= cocartesian).

Notation 3.6. In Construction 3.4 we defined a simplicial subgroupoid of the simplicial groupoid
g(D,H); in Remark 3.5 we elaborated and explained the construction in more detail. We have
not given this groupoid a name. The reason is that we will freely confuse it with H . The symbol
for the cosimplicial region H will also be used, interchangeably, to stand for the simplicial sub-
groupoid of g(D,H) given in Construction 3.4. Since the derivator D will be fixed throughout
this should not cause confusion.

This means that, from now on, the symbols

can stand either for the 4-fold cosimplicial regions or for the 4-fold simplicial groupoids. The in-
clusion of cosimplicial regions induces, by the contravariance of D, a map of simplicial groupoids
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in the opposite direction. From the direction of the arrows it should be obvious whether we mean
inclusions of cosimplicial regions or maps of simplicial groupoids.

Remark 3.7. Our regions have many cosimplicial structures. Since we agreed that they are all
subregions of a 4-fold cosimplicial region, they all have 4 independent cosimplicial structures.
The simplicial groupoids are therefore 4-fold simplicial groupoids; as simplicial sets they have
five commuting simplicial structures (there is one that comes from realizing the groupoid). Our
aim is to study some maps between them and show that these maps induce homotopy equiva-
lences.

It is helpful to exploit the many simplicial structures. To prove that a map between 5-fold
simplicial sets is a homotopy equivalence it suffices to show that, after realizing some subset of
the 5 simplicial structures, the map of simplicial spaces is a homotopy equivalence. We will use
this often.

This means we need a notation for the simplicial structures which we plan to realise. Our
notation will be the following: we do not touch any of the regions surrounded by a double box,
and realise all other simplicial structures. Thus the map

is the map of 5-fold simplicial sets induced by the obvious inclusion. But we realize only 3 of
the simplicial structures; we realize the groupoid structure, as well as the two structures which
leave alone the highlighted region. In the explicit drawing of the region, given with coordinates
in Remark 3.5, the integers a and e − d are allowed to change but the integers c − b and y − x

are held fixed.

Remark 3.8. The careful reader, examining the diagram in Remark 3.5 giving the explicit de-
scription of H(x) ⊂ Z

3 in terms of coordinates, will note that the integers b, d and x are arbitrary
and correspond to our choice of embedding of the region in the plane. The integers a, c − b, e − d

and y − x, on the other hand, are not arbitrary. The diagram is a description of the region H(x)

with x ∈ Δ4, and

x = [0, a] × [0, c − b] × [0, e − d] × [0, y − x].



1408 D.-C. Cisinski, A. Neeman / Advances in Mathematics 217 (2008) 1381–1475
When we fail to realize two of the simplicial structures we do not allow two of the integers to
change. In the map pictured in Remark 3.7 the integers we leave untouched are c − b and y − x.
The result is a map of bisimplicial spaces.

Remark 3.9. The definition of the simplicial groupoid can be extended to regions more general
than the subregions of our favorite 4-fold cosimplicial region of Remark 2.14. We leave the
obvious extension to the reader.

Definition 3.10. The K-theory of the triangulated derivator D is defined to be the loop space of
the geometric realization of the 2-fold simplicial groupoid

Q(D) = .

Remark 3.11. It follows from Corollary A.8 that the K-theory of a triangulated derivator is an
infinite loop space.

Remark 3.12. We promised the reader that all our regions will be subregions of the 4-fold cosim-
plicial region of Remark 2.14. We have told no lies: the simplicial set of Definition 3.10 can also
be described as

In this description it is a 4-fold simplicial groupoid, but two of the simplicial structures are
degenerate; even at the level of regions two of the cosimplicial structures have no effect.

Remark 3.13. It is also possible to define the K-theory of the triangulated derivator D using a
Waldhausen-like simplicial set. We define

S(D) = .
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It can be shown that S(D) and Q(D) are homotopy equivalent. We will not need the result, hence
will not include a proof. But it is not difficult to give a proof using the techniques we develop.

Caution 3.14. We are now about to use theorems concerning derivators, whose proofs will come
in the later part of the paper. The theorems tell us about constructions of new triangulated deriva-
tors out of old ones. Let us be given a triangulated derivator D. We will use now and prove later
the following:

(i) For any object W ∈ Dia, the formula

DW(X) = D(X × W)

produces a triangulated derivator DW .
(ii) An object F ∈ DW( ) = D( × W) is cartesian if and only if, for every point w ∈ W , the

object Fw = (1X × w)∗(F ) is cartesian in D( ).
(iii) There is a construction of a triangulated derivator Exact(D). It is a subderivator of the

derivator D .

For (i) and (ii) the reader is referred to Section 7; for (iii) the reader is referred to Section 11.

Remark 3.15. Putting W = I = [0,1] in Caution 3.14(i) we note that, from a triangulated deriva-
tor D, Proposition 7.8 allows us to form another triangulated derivator DI , given by the formula
DI (X) = D(X ×[0,1]). The K-theory space of DI is the loop space of the geometric realization
of the simplicial groupoid

Keeping our promise only to consider subregions of the 4-fold cosimplicial region of Re-
mark 2.14, the K-theory of DI can also be described as the loop space of the geometric real-
ization of the simplicial groupoid
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Remark 3.16. In identifying the K-theory of DI with the spaces of Remark 3.15 we are making
use of Caution 3.14(ii), applied to the case W = I = [0,1]. An object belongs to the simplicial
groupoid defining the K-theory of DI provided certain objects in DI ( ) = D( × [0,1]) are
cartesian. Caution 3.14(ii) tells us that this is equivalent to checking that each of the restrictions
to D( × [0]) and D( × [1]) is cartesian.

The main theorem of this article is the following, which proves the Maltsiniotis additivity
conjecture:

Theorem 3.17. Let D be a triangulated derivator. Let Exact(D) be the derivator of short exact
sequences in D (see 11.8). Let

(s × s)∗ : Exact(D) −→ D, (t × t)∗ : Exact(D) −→ D

be the morphisms of 11.11. Then the natural map

(
Q

(
(s × s)∗

)
,Q

(
(s × s)∗

))
:Q

(
Exact(D)

) −→ Q(D) × Q(D)

is a homotopy equivalence.

Caution 3.18. Strictly speaking the theorem is meaningless until after reading Section 11, since
the derivator Exact(D) and the morphisms of derivators

(s × s)∗ : Exact(D) −→ D, (t × t)∗ : Exact(D) −→ D

will not be defined until then. But the results of Section 11 permit us to reformulate the main
theorem as in Remark 3.19 below, and the rephrased version makes sense without having to read
Section 11.

Remark 3.19. By Proposition 11.12, Theorem 3.17 is equivalent to the assertion that the natural
map
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is a homotopy equivalence. In our way of viewing all the regions as subregions of the 4-fold
cosimplicial region of Remark 2.14, this map becomes

The next few sections are devoted to proving δ a homotopy equivalence.

4. An easy example of a homotopy

We could immediately launch into the proof that the map δ of Remark 3.19 is a homotopy
equivalence. The purpose of this section is to proceed a little more gently, reminding the reader
of simplicial homotopies generally, and more particularly of the simplicial homotopies we will
use.

Recall that an r-fold simplicial set is a functor F : {Δop}r −→ Set, and a simplicial
map between two r-fold simplicial sets is a natural transformation ϕ :F �⇒ F ′, where
F,F ′ : {Δop}r −→ Set are two functors. Simplicial homotopies are slightly more confusing in
general. But there is a cheap way to produce them, which suffices for this article. In this section
we will explain the very easy, simple homotopies we will use.

The first observation is that we are dealing with 2-categories. Let us make this precise.

Remark 4.1. Suppose we have a 2-category C ⊂ Cat and a functor G :Cop −→ Set. One way to
obtain an r-fold simplicial set is to take a functor H :Δr −→ C and form the composite

{Δop}r H op−−→ Cop G−−→ Set.

And perhaps the most important thing to keep in mind is that all the simplicial sets we have been
considering are of this type. The category Regions ⊂ Cat of regions in Z

3 is a 2-category, and in
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Section 2 we learned how to form several interesting functors H :Δr −→ Regions. For most of
what follows we can confine ourselves to the subcategory of Regions consisting of subregions of
our favorite region

That is, the most important example to keep in mind is the following. We define the category
C ⊂ Regions to have for its objects the subregions of the above, and the morphisms are maps of
regions preserving the diagonal lines in the boundary; see Remark 3.5(i) for the meaning of the
diagonal lines in the boundary. The 2-morphisms in C are all the natural transformations between
1-morphisms in C. Because all the objects in C are finite the 2-category C is contained in Dia.

Given a triangulated derivator D and an object I ∈ C, the recipe of Section 3 constructs for us
a groupoid G(I). The objects are the objects in D(I op) satisfying the restrictions of Construc-
tion 3.4(i) and (ii), and the morphisms are the isomorphisms in D(I op). This defines G(I) for
objects I ∈ C; we leave it to the reader to check that the definition extends to morphisms in C. It
defines a functor G :Cop −→ Groupoid. All the simplicial groupoids we will consider are of the
form G ◦ H op for some H :Δr −→ C, and all the simplicial sets are the nerves of the simplicial
groupoids G ◦ H op.

In this paper we will need to look at r-fold simplicial sets where r > 1. As is customary in
this subject we reduce the case of r-fold simplicial gadgets, with r > 1, to the special case where
r = 1. The trick is to allow the categories to change. That is we look at simplicial objects F in
a category T. A simplicial object in T is a functor F :Δop −→ T. Thus an r-fold simplicial set
becomes a simplicial object in the category of (r − 1)-fold simplicial sets.

Remark 4.2. As in Remark 4.1 let C ⊂ Cat be a 2-category. Let G :Cop −→ T be some fixed
functor. In Remark 4.1 we saw that a functor H : Δ −→ C gives in T a simplicial object
GH op :Δop −→ T. What we wish to note here is

(i) Given two functors H,H ′ :Δ −→ C and a natural transformation ϕ :H −→ H ′, then Gϕ is
a simplicial map of simplicial objects in T: it is a natural transformation GH ′op −→ GH op.

(ii) Next we want a method to produce homotopies. Suppose we are given two 1-morphisms
H,H ′ :Δ −→ C, two 2-morphisms ϕ,ϕ′ :H −→ H ′ and a 3-morphism α :ϕ �⇒ ϕ′. We
would like to conclude that α induces a homotopy Gϕ �⇒ Gϕ′. This is true, as long as the
following hypothesis holds:
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(iii) (Technical condition to guarantee that (ii) holds):
(i) In Cat we must be given a map λ :H [0,1] −→ [0,1]. Given a pair of morphisms in Δ

y −→ x, y −→ [0,1] we produce maps

Hy −→ Hx, Hy −→ H [0,1] λ−→ [0,1],
that is we have in Cat a map Hy −→ [0,1] × Hx. The composite with αx : [0,1] ×
Hx −→ H ′x gives us in Cat the map Hy −→ H ′x; we insist that this be a morphism
in C ⊂ Cat.

(ii) Note that in the category Δ there are two maps [0] −→ [0,1]; let us denote them i0, i1.
Let x ∈ δ be an arbitrary object. Since the object [0] ∈ Δ is terminal there is a unique
map p :x −→ [0]. We can therefore form the two composites

Hx

(Hp

1
)

−−−→ H [0] × Hx
Hi0×1−−−−→ H [0,1] × Hx

λ×1−−→ [0,1] × Hx
αx−→ H ′x,

Hx

(Hp

1
)

−−−→ H [0] × Hx
Hi1×1−−−−→ H [0,1] × Hx

λ×1−−→ [0,1] × Hx
αx−→ H ′x.

The first composite must be the map ϕx :Hx −→ H ′x, and the second must be
ϕ′

x :Hx −→ H ′x.

Remark 4.3. Let us very briefly remind the reader how to construct the homotopy of Re-
mark 4.2(ii). To give a natural transformation H −→ H ′ is to give, for every object x ∈ Δ,
a morphism ϕx :Hx −→ H ′x. In the category C ⊂ Cat the morphisms are functors. For every
x ∈ Δ we have a functor ϕx : Hx −→ H ′x. To give a 3-morphism α :ϕ �⇒ ϕ′ is to give, for
every object x ∈ Δ, a 2-morphism in C of the form ϕx �⇒ ϕ′

x . Another way of saying this is that
for every object x we give, in Cat, a functor αx : [0,1] × Hx −→ H ′x. Of course these functors
satisfy compatibilities as we vary x ∈ Δr , which we are suppressing.

In general a simplicial homotopy takes a pair of morphisms in Δ

y −→ x, y −→ [0,1]
to a map Hy −→ H ′x in C. Remark 4.2(iii)(i) gives the recipe for producing this morphism. We
leave it to the reader to check the compatibilities that make this a simplicial homotopy.

This homotopy connects two simplicial maps. The fact that these maps are ϕ and ϕ′ is a
computation we are leaving to the reader; it comes down to computing the map Hy −→ H ′x for
the special cases where the pair y −→ x, y −→ [0,1] factors as

y −→ x, y −→ [0] i−→ [0,1]
with i = i0 or i1. The hint is that the computation reduces to the condition stipulated in Re-
mark 4.2(iii).

Remark 4.4. This way of constructing homotopies is very limited. The authors know of very few
homotopies which can be defined this way. The fact that these are the only homotopies we will
use in the proof of additivity is an indication of the very formal nature of our proof.

In practice all our homotopies are very special cases of the above. We now discuss this.
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Example 4.5. Recall the functor D :Δ×Δ −→ Δ of Example 2.6. The functor takes a pair of ob-
jects S,T ∈ Δ to the disjoint union S ∪T , with the order that every element of S is less than every
element of T . Now suppose we fix an object S ∈ Δ, and consider the functor D(S,−) :Δ −→ Δ

which takes T ∈ Δ to D(S,T ). We have produced a functor H = D(S,−) :Δ −→ Δ, and
Δ ⊂ Cat is a 2-category.

Now the identity gives a 1-morphism 1 :H −→ H . There is another 1-morphism ϕ :H −→ H .
To define it we must give, for every object T ∈ Δ, a morphism ϕT :HT −→ HT . That is, for
every T we must produce a morphism S ∪ T −→ S ∪ T in Δ. The formula is:

ϕT (i) =
{

i if i ∈ S,

max(S) if i ∈ T .

In this formula max(S) means the maximum of the totally ordered finite set S.
Because the order in S ∪T is such that every element of T is bigger than max(S) we conclude

that ϕT (i) � i for every i ∈ S ∪ T . This produces for us, for every T , a natural transformation
αT :ϕT −→ 1. Taking the collection of all αT , as T varies over the objects of Δ, this assembles
to a 3-morphism α :ϕ �⇒ 1.

Finally we observe that the technical assumptions of Remark 4.2(iii) are satisfied. The object
H [0,1] is, by definition of H :Δ −→ Δ, the object S ∪ [0,1]. We define a map λ :H [0,1] −→
[0,1] by the formula

λ(i) =
{

0 if i ∈ S,

i if i ∈ [0,1].

The conditions of Remark 4.2(iii) are easy.

Example 4.6. For a fixed object S ∈ Δ, Example 4.5 produces a 1-morphism H :Δ −→ Δ,
a 2-morphism ϕ :H −→ H , a 3-morphism α :ϕ �⇒ 1, and the conditions of Remark 4.2(iii)
hold. To make this more immediately applicable to our favorite simplicial sets we multiply by
an object R ∈ Δ. Note that our embedding F × F :Δ × Δ −→ Regions, given in Example 2.8,
permits us to map objects in Δ×Δ into regions in Z

2 ⊂ Z
3. The regions we are considering are of

the form R ×D(S,−) with R and S fixed; in our notation the functor T 
→ F(R)×F(D(S,T )),
which is a functor Δ −→ Regions, would be written

This is a functor (= 1-morphism) taking T ∈ Δ to F(R) × F(H(T )). Multiplying the 2-
morphisms and 3-morphisms of Example 4.5 by R ∈ Δ and applying F × F , we have a 2-
morphism FR × Fϕ :FR × FH −→ FR × FH , a 3-morphism FR × Fα :FR × Fϕ �⇒ 1,
and the technical conditions of Remark 4.2(iii) hold. We have a simplicial homotopy, and it
connects the identity with a map FR × Fϕ, which is easy enough to compute. An immediate
consequence is
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Lemma 4.7. The map of 3-fold simplicial groupoids

induces a homotopy equivalence.

Proof. As we have already observed in Remark 3.7, it suffices to prove the stronger assertion
that the map

induces a homotopy equivalence. That is, we realize only the simplicial structure leaving unaf-
fected the box on the left. In fact, we will not even realise the groupoid structure. We assert that
the map is a homotopy equivalence after realizing just one of the four simplicial structures.

Of course on the 4-fold simplicial set

the only simplicial structure being realized is degenerate. The realization gives us a discrete
3-fold simplicial space. To show that α is a homotopy equivalence we need to show that the
homotopy type of the simplicial set

is also discrete. In other words we need to find homotopies which contract the many components
of this space.
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The point is that Example 4.6 gives us homotopies, and they are all contractions. For each R

and S we have a homotopy. It connects the identity to a map we called FR × Fϕ. The map is
explicit, and now we will show it to be a contraction.

The map induced by FR × Fϕ is eminently computable. The natural transformation ϕ is
given, for every object T ∈ Δ, by a map ϕT :S ∪ T −→ S ∪ T . This map ϕT has the explicit
formula

ϕT (i) =
{

i if i ∈ S,

max(S) if i ∈ T .

For each T the map ϕT :S ∪ T −→ S ∪ T factors through

S ∪ T −→ S −→ S ∪ T

and the factoring is compatible with morphisms T −→ T ′ in Δ. We have that ϕ factors, as a
functor on Δ, through the above. If we multiply by R we have a factorization

We conclude that ϕ, which is homotopic to the identity, factors through the trivial space. �
Remark 4.8. It might help the reader to write the homotopy more explicitly, in coordinates. For
any T ∈ Δ let the region H(T ) = F(R) × F(D(S,T )), with R,S ∈ Δ fixed as above, be given
in coordinates by

The solid box tells us that the integers a, d are fixed. They correspond to the fixed R,S ∈ Δ. All
points (i, j) with 0 � i � a and 0 � j � d lie in the region, independently of the choice of T ∈ Δ.
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The simplices in the simplicial set (recall that we use the same symbol
for the region as for the simplicial set) are strings of isomorphisms of objects in D(H(T )op) for
some T ∈ Δ. An object in D(H(T )op) induces a functor M :H(T ) −→ D(e) and this functor is
what, in 1.10, we referred to as the local shape of the object. It is sometimes illuminating to draw
the local shape of the objects we are talking about.

In coordinates our region H(T ) = F(R) × F(D(S,T )) is pictured above. A functor
M :H(T ) −→ D(e) is a commutative diagram in D(e)

When we wish to write such diagrams we will adopt the following conventions.

(i) We will write Mji for M(i, j).
(ii) In a region made up of several boxes, as above, we will use different letters to denote the

objects M(i, j) for (i, j) belonging to different boxes. Thus in the above we will write
Aji = M(i, j) if 0 � i � a, and Bji = M(i, j) if b � i � c. Our local shape of the object in
D(H(x)op) becomes the commutative diagram in D(e)
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With these conventions, a typical cell in the homotopy of the proof of Lemma 4.7 is the diagram
in D(e)

The reader can hopefully see that this is nothing but the usual contraction to the initial object.

Remark 4.9. Many of our homotopies will be minor variants of the homotopy of the proof of
Lemma 4.7. By “minor variants” we mean that we feel free to dualize, and to concatenate to larger
simplicial regions as in Remark 2.9. Because this homotopy is ubiquitous we need a notation for
it. Our notation will be

Remark 4.10. The reader might be puzzled why we adopt the curious conventions of Remark 4.8.
Why do we switch the subscripts in Aji = M(i, j), and why do we use different letters for
different parts of the region?

The first reason is that we wish to be consistent with the notation of [21–28]. Of course this is
a copout; the reader would still need a satisfactory explanation why, in the previous articles, we
adopted this curious notation.

The reason for using different letters for the different parts of the diagram should be clear; we
want to make it visually apparent which part of the region we are in. It also permits us to recycle
the subscripts. Instead of using subscripts j lying in the ranges 0 � i � a and b � i � c for the
various M(i, j), we can put Aji = M(i, j) if 0 � i � a and Bji = M(b + i, j) if 0 � i � c − b.
The effect is that the arbitrary choice of the integer b disappears. The possible subscripts i for Bji

range naturally over the integers in [0, c − b], and [0, c − b] is the object in Δ that the data came
from.
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And finally we come to the switching of the indices. The logic is that when we represent
a point in Z

2 it is customary to write it as (i, j) where i is the x-coordinate and j is the
y-coordinate. When we write a matrix Aji the convention is the reverse; usually j stands for
the row and i for the column that the entry is in. That is j is usually the y-coordinate, and i the
x-coordinate. We are trying to be simultaneously consistent with both conventions.

Remark 4.11. In Remark 4.10 we said that many of our homotopies are minor variants of the
homotopy of the proof of Lemma 4.7. This is correct; we can make the statement stronger
by saying there is exactly one other homotopy we plan to use. Once again this homotopy is
given by a 3-morphism in the category of functors Δ −→ C, as in Remark 4.2. Let us ex-
plain.

Let us again fix an object S ∈ Δ. Now we consider a functor H :Δ −→ Cat taking an ob-
ject T ∈ Δ to the ordered set HT = S ∪ {[0,1] × T }, where the order is that every element of
S is smaller than every element of [0,1] × T , while in each of S and [0,1] × T the order is
obvious.

Next we define a 2-morphism ϕ :H −→ H . For every T ∈ Δ we need to produce a functor
ϕT :HT −→ HT . The formula is

If s ∈ S, ϕT (s) = s;

If t ∈ T , ϕT

(
(i, t)

) =
{

max(S) if i = 0,

(1, t) if i = 1.

The formula makes it clear that ϕT (j) � j for all j ∈ HT , hence there is a (unique) map
αT :ϕT −→ 1. It defines a 3-morphism.

Finally we need to establish the technical conditions of Remark 4.2(iii). For T = [0,1] we
have that HT = S ∪ {[0,1] × T } = S ∪ {[0,1] × [0,1]}. We define a map λ :H [0,1] −→ [0,1]
by the formula

H(s) = 0 if s ∈ S,

H(i, j) = j if (i, j) ∈ [0,1] × [0,1].

We leave it to the reader to check the condition of Remark 4.2(iii).

Remark 4.12. The construction in Remark 4.11 gives a simplicial homotopy. As in Example 4.6,
we can multiply by a fixed object R ∈ Δ and return to familiar territory. We explain this with
coordinates.

Let us embed the fixed objects R,S ∈ Δ respectively as [0, d], [0, a] ⊂ Z. Let us embed the
object T ∈ Δ as [b, c] ⊂ Z, with a < b. The category HT = S ∪ {[0,1] × T } can be embedded
in Z × Z as
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Multiplying by the fixed R = [0, d] ⊂ Z we embed R = R×HT as the union of the two slices 0R

and 1R (see Definition 2.1 for slices), pictured in coordinates below:

and

In other words the region is nothing other than
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What we learn is that on this region there is a homotopy, the product with R ∈ Δ of the homotopy
of Remark 4.11. We will denote this homotopy by the symbol

We will feel free to use this homotopy, its dual, and concatenate it into larger regions as in
Remark 2.9. On the slice 0R of our region R the homotopy is the contraction to the initial object,
that is the homotopy

of Example 4.6 and Remarks 4.8 and 4.9. On the slice 1R we have the trivial homotopy, connect-
ing the identity map to the identity map.

5. The proof

It is now time to get down to the proof. We need to prove that the map δ of Remark 3.19
induces a homotopy equivalence. To do so we embed δ in the following commutative dia-
gram:
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We need to prove that δ is a homotopy equivalence. The commutativity of the diagram means
it suffices to show that α, β and γ are homotopy equivalences.
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The maps β and γ are similar, so we will deal with them first. Let us take γ . The map γ is a
product γ = f × g of two projections, as below:

and

We want to show that the two projections f and g are homotopy equivalences. The two being
dual, it suffices to show that f is a homotopy equivalence. We factor the map f as a composite

and it suffices to show that μ and ν are homotopy equivalences. For each of μ and ν we realise
only one simplicial structure. In the notation of Remark 3.7 we prove that the two maps
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are both homotopy equivalences. The fact that ν is a homotopy equivalence is dual to Lemma 4.7.
We need to show that μ is a homotopy equivalence; we note

Caution 5.1. This is one of the points that requires us to know a little more about derivators.
After developing the theory of triangulated derivators, we will show that the map μ induces an
equivalence of groupoids. See Proposition 8.13.

So far we have shown that, in the diagram on page 1422, the map γ is a homotopy equivalence.
Next we move to the map β; the map β is the composite of
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and it suffices to prove i and j are homotopy equivalences. Once again, we are free to realise
any of the simplicial structures we wish. For the map j we realize the simplicial structures as
indicated below

There is a homotopy which, in the notation of Remark 4.9 and the obvious dual, we would write

This homotopy shows, as in the proof of Lemma 4.7, that the map j is a homotopy equivalence.
The map i is more subtle. We realize only the groupoid structure; that is, we consider the

simplicial map
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Caution 5.2. Once again, to prove that this map is a homotopy equivalence is more subtle and
requires information we do not yet have, about triangulated derivators. As in Caution 5.1, Propo-
sition 8.13 will show us that the map i is an equivalence of groupoids.

Combining the results so far we have established that, in the diagram on page 1422, the maps β

and γ are homotopy equivalences. Only the map α remains. We first note that in the diagram

it suffices to prove that both the map f × g and the composite (f × g) ◦ α are homotopy
equivalences; it then formally follows that so is α. To see that each of f and g are homotopy
equivalences we first note that the two are dual to each other, hence it suffices to consider f . To
show that f induces a homotopy equivalence first note that it can be factored as the composite
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and it suffices to show that each of i and j induces a homotopy equivalence. For i we study the
map

and, as in the proof of Lemma 4.7, the homotopy
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contracts the fibers. For the map j the simplicial structure we realize is as below

and the fiber is contracted by the homotopy

It remains therefore to show that the composite (f × g) ◦ α is a homotopy equivalence. The
map is just
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As always, we are free to realise any simplicial structures we wish. The map we will show to be
a homotopy equivalence is

We will show that the simplicial set on the left contains a deformation retract on which the map
(f × g) ◦ α is an equivalence of groupoids. The key is to produce the deformation retraction. To
do it we need four homotopies. The first two of these are, in the notation of Remark 4.12,

We saw quite explicitly how to compute these homotopies in Section 4. What is relevant to us
now is that the homotopies connect the identity to a map ϕ. We will describe ϕ by giving its local
shape; see 1.10. Given an object x ∈ Δ2 our cosimplicial region gives H(x) ⊂ Z

3, and a simplex
in the corresponding simplicial set is a string of isomorphisms of objects in D(H(x)op). We split
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H(x) into its two slices 0H(x) and 1H(x), which have been drawn explicitly, with coordinates,
in Remark 3.5. With the conventions of Remark 4.8 the local shape is a pair of diagrams in D(e)

together with a map from the lower diagram to the upper diagram.
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The simplicial map ϕ, which is homotopic to the identity, takes the simplex with the local
shape above to the simplex

In other words the effect of the map ϕ is to replace the Qij −→ Q′
ij by Pi� −→ Ri0. We can

follow this by the homotopy of Remark 4.12
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This homotopy connects the map ϕ above to a map ψ . Now remember that Y�� and Z00 are

both isomorphic to the zero object in D(e); see Construction 3.4(i). The map ψ takes an object

in D(H(x)), with local shape pictured on page 1430, to the very special cell
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We have a deformation retraction of the simplicial set onto a subset. And now we note

Caution 5.3. The objects, with local shape as above, decompose functorially as direct sums of
objects vanishing on all but the top right and objects vanishing on all but the bottom left. This is
true, but requires a more subtle understanding of triangulated derivators; the fact may be found
in Proposition 9.7.

Modulo Proposition 9.7 we have that the map (f × g) ◦ α is homotopic to an equivalence of
groupoids, finishing the proof of Maltsiniotis’ conjecture.
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6. Cofinality and base change maps

This section sets up the elementary lemmas which we will use, time and again, in manipulating
(triangulated) derivators.

Lemma 6.1. Let D be a prederivator, let X,Y be objects of Dia and let u :X −→ Y be left
adjoint to the map v :Y −→ X. Then u∗ : D(Y ) −→ D(X) is left adjoint to v∗ : D(X) −→ D(Y ).
Furthermore if u is fully faithful then so is v∗, and if v is fully faithful then so is u∗.

Proof. Apply the 2-functor D to the unit η : 1 �⇒ vu and counit ε :uv �⇒ 1 of the adjunction,
to obtain the counit and unit of the adjunction u∗ � v∗. �
Proposition 6.2. Let D be a prederivator, and let X be a category in Dia with a terminal object v.
Then the functor p∗

X : D(e) −→ D(X) is fully faithful, its right adjoint

Γ∗(X,−) : D(X) −→ D(e)

exists, and Γ∗(X,−) is canonically isomorphic to the evaluation functor at the point v ∈ X

v∗ : D(X) −→ D(e).

Proof. Apply Lemma 6.1 with u = pX : X −→ e. �
Proposition 6.3. Let D be a derivator. Let u :X −→ Y be a map in Dia. Assume that u has a left
adjoint. Then the following assertions are true.

(i) For any object F of D(e), the canonical map

u!(FX) = u!u∗(FY ) −→ FY

is an isomorphism.
(ii) For any object G in D(Y ), the canonical map

Γ∗(Y,G) −→ Γ∗
(
X,u∗(G)

)
is an isomorphism.

Proof. Let us first see that (i) implies (ii). Let p = pY be the projection p :Y −→ e. By (i) the
natural map u!u∗p∗ �⇒ p∗ is an isomorphism. Taking right adjoints we have an isomorphism
p∗ �⇒ p∗u∗u∗, meaning that (ii) follows.

It remains to prove (i). Fix an object F ∈ D(e). By Der 2 it suffices to show that, for every
point y ∈ Y , the map

(∗) u!(FX)y = (
u!u∗(FY )

)
y

−→ (FY )y

is an isomorphism. Now note that (FY )y = F , that y\FX = Fy\X , and that Der 4 gives us a
canonical identification

Γ!(y\X,Fy\X) � u!(FX)y.
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Hence the map (∗) identifies with

Γ!(y\X,Fy\X) −→ F,

which is an isomorphism by the dual of Proposition 6.2 and because y\X has an initial ob-
ject. �
Remark 6.4. Proposition 6.3 has a dual version (just apply it to D

op): if a map u :X −→ Y has a
right adjoint then, for any object F of D(Y ), the canonical map

Γ!
(
X,u∗(F )

) −→ Γ!(Y,F )

is an isomorphism.

6.5. For a functor f :X −→ Y in Dia, and an object y of Y , we denote by Xy = f −1(y) the fiber
of f over the point y. If f is a fibration in the sense of Grothendieck (see e.g. [7, Exposé VI]),
then the functor

Xy −→ y\X, x 
−→ (x,1y)

has a right adjoint. Dually, if a map f :X −→ Y in Dia is an opfibration then, for any point y

of Y , the canonical functor Xy −→ X/y has a left adjoint.

Example 6.6. For us, the most important example of an opfibration will be the projection
X × W −→ W ; see the proof of Lemma 7.6. The most important example of a fibration will
be the map X/y −→ X; see the proof of Proposition 7.8.

6.7. We set up a little more notation. Let u :X −→ Y be map in Dia, let y be a point of Y and let
F be an object of D(X). If i is the inclusion i :Xy −→ X, we will write Fy = i∗(F ) for the object
Fy ∈ D(Xy). If j :Xy −→ X/y denotes the canonical functor, one then has j∗(F/y) = Fy . We
thus have a canonical morphism

Γ∗(X/y,F/y) −→ Γ∗(Xy,Fy).

One can check that the composed map

u∗(F )y −→ Γ∗(X/y,F/y) −→ Γ∗(Xy,Fy)

is the base change morphism associated to the pullback square below (see 1.9)

Xy
i

X

u

e Y.

Now that the notation is in place we make the following observations, about the way derivators
behave with respect to fibrations and opfibrations.
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Lemma 6.8. Let D be a derivator. Let f :X −→ Y be an opfibration in Dia and F an object
of D(X). Then for any point y of Y the canonical map

f∗(F )y −→ Γ∗(Xy,Fy)

is an isomorphism.

Proof. In (6.7) we saw that the map of Lemma 6.8 factors as

f∗(F )y
α−→ Γ∗(X/y,F/y)

β−→ Γ∗(Xy,Fy).

The fact that α is an isomorphism is by Der 4. The fact that β is an isomorphism follows from
Proposition 6.3(ii), because the canonical functor Xy −→ X/y has a left adjoint. �
Proposition 6.9. We consider the following pullback square in Dia

X′ v

g

X

f

Y ′
u

Y.

If the functor u is a fibration or if the functor f is an opfibration, then the base change map (1.9)

u∗f∗(F ) −→ g∗v∗(F )

is an isomorphism for any object F of D(X).

Proof. We first prove the result assuming that f is an opfibration. By Lemma 6.8 we already
know this property locally (i.e. when Y ′ is the point). Moreover, as opfibrations are stable by
pullback (see [7, Exposé VI, Corollaire 6.9]), the functor g is also an opfibration. Let y′ be a
point of Y ′, and consider the pullback diagram

X′
y′

i

π

X′ v

g

X

f

e
y′ Y ′

u
Y.

We can now apply Lemma 6.8 to the two pullback squares

X′
y′

i

π

X′

g

X′
y′

vi

π

X

f

e
y′ Y ′ e

u(y′)
Y
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obtaining isomorphisms, for every object F ∈ D(X),

y′ ∗u∗f∗(F ) � y′ ∗g∗v∗(F ) � π∗i∗v∗(F ).

That is the base-change map u∗f∗(F ) −→ g∗v∗(F ), which is a morphism in D(Y ′), induces an
isomorphism in D(e) for any y′ : e −→ Y ′. By Der 2 we conclude that u∗f∗(F ) −→ g∗v∗(F ) is
an isomorphism.

The case where u is a fibration is a direct consequence of the opfibration case. If u is a
fibration, then uop is an opfibration. But cohomological direct image functors in D

op correspond
to homological direct image functors in D. Thus, for any object F in D(Y ′), the base change map
of D

op comes to

v!g∗(F ) −→ f ∗u!(F ),

and must be an isomorphism. The right adjoint of the isomorphism v!g∗ �⇒ f ∗u! is the base
change map u∗f∗ �⇒ g∗v∗ of D. �
7. Basic properties of global cartesian squares

In this section we study global cartesian squares and their functoriality properties.

Proposition 7.1. Let D be a derivator and let u :X −→ Y be a map in Dia. If u is fully faithful
then the two direct image functors

u! : D(X) −→ D(Y ) and u∗ : D(X) −→ D(Y )

are both fully faithful.

Proof. The statements being dual, it suffices to prove that the functor u∗ is fully faithful. This is
equivalent to proving that, for any object F in D(X), the counit map

εF :u∗u∗(F ) −→ F

is an isomorphism. Let F ∈ D(X) be an object and x ∈ X a point. We have the following identi-
fications

(
u∗u∗(F )

)
x

= u∗(F )u(x)

= Γ∗
(
X/u(x),F/u(x)

)
.

But as the functor u is fully faithful the canonical map from X/x to X/u(x) is an isomorphism.
Hence there is a canonical isomorphism

Γ∗
(
X/u(x),F/u(x)

) � Γ∗(X/x,F/x).

As the category X/x has a terminal object (x,1x), Proposition 6.2 identifies

Γ∗(X/x,F/x) � (F/x)(x,1x ) = Fx.
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In conclusion we get a canonical isomorphism from (u∗u∗(F ))x to Fx , and one checks easily that
this is the evaluation of the counit map εF at the point x. The result now follows from Der 2. �
Proposition 7.2. As in Proposition 7.1 let D be a derivator, and let u :X −→ Y be a fully faithful
functor in Dia. An object F ∈ D(Y ) belongs to the essential image of u∗ : D(X) −→ D(Y ) if
and only if, for every object y ∈ Y − u(X), the unit of adjunction ηF :F −→ u∗u∗F induces an
isomorphism

(ηF )y :Fy −→ u∗u∗(F )y.

Dually, the essential image of u! : D(X) −→ D(Y ) consists of the objects F ∈ D(Y ) so that, for
all y ∈ Y − u(X), the map

(εF )y :u!u∗(F )y −→ Fy

is an isomorphism.

Proof. The two statements being dual, it suffices to prove the assertion for u∗. Proposition 7.1
tells us that the functor u∗ is fully faithful. Formal properties about adjoints of fully faithful
functors yield that

(1) The natural transformation ε :u∗u∗ −→ 1 is an isomorphism.
(2) An object F ∈ D(Y ) belongs to the essential image of u∗ if and only if the map ηF :F −→

u∗u∗F is an isomorphism.

The axiom Der 2 (the conservativity axiom) says that the map ηF :F −→ u∗u∗F will be an
isomorphism if and only if, for every point y ∈ Y , the induced map

(ηF )y :Fy −→ u∗u∗(F )y

is an isomorphism. What the proposition asserts is that it suffices to check the points y ∈ Y −
u(X); in other words we will show that, for every y ∈ u(X), the map (ηF )y is automatically an
isomorphism.

Formal facts about adjoints tell us that the composite

u∗F u∗ηF−−−→ u∗u∗u∗(F )
εu∗(F )−−−→ u∗F

is the identity. The fact that u∗ is fully faithful gives (see fact (1) above) that the map εu∗(F ) is
an isomorphism. It follows that u∗ηF must be the 2-sided inverse of the isomorphism εu∗(F ); it
is invertible. But then, for any point x ∈ X, we have that

x∗u∗ηF :x∗u∗F −→ x∗u∗u∗u∗(F )

is an isomorphism. This precisely asserts that (ηF )u(x) :Fu(x) −→ u∗u∗(F )u(x) must be an iso-
morphism. �
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Proposition 7.3. Let D be a derivator. We will use the notations of 1.14. We have a func-
tor σ : −→ from the ‘corner category’ to the ‘square category.’ We consider an object C

of D( ). Then the following conditions are equivalent:

(i) The global commutative square C is cartesian.
(ii) The unit map C −→ σ∗σ ∗(C) is an isomorphism.

(iii) The object C lies in the essential image of the functor σ∗ : D( ) −→ D( ).
(iv) One has a canonical isomorphism C0,0 � Γ∗( , σ ∗(C)).

Proof. The equivalence (i) ⇐⇒ (ii) is almost by definition; C is cartesian if and only if, for
every object B ∈ D( ), the map

HomD( )(B,C) −→ HomD( )(σ
∗B,σ ∗C) ∼= HomD( )(B,σ∗σ ∗C)

is an isomorphism. This is equivalent to C −→ σ∗σ ∗(C) being an isomorphism.
Next observe that the inclusion σ : ↪→ is fully faithful, and Proposition 7.1 tells us that

σ∗ : D( ) −→ D( ) is also fully faithful. The formal properties of adjoints of fully faithful
functors say that (ii) is equivalent to (iii). Proposition 7.2 tells us that (iii) happens if and only if
Cy −→ σ∗σ ∗(C)y is an isomorphism for the one point in − , that is for the point y = (0,0).
The base change axiom tells us that σ∗σ ∗(C)y � Γ∗( , σ ∗(C)) and hence the equivalence of (iii)
and (iv). �
7.4. Given a triangulated derivator D and an object W ∈ Dia, it is possible to form a new trian-
gulated derivator DW . We saw, in Caution 3.14(i), the role this derivator plays in the additivity
theorem and in its proof. In the remainder of this section we will define DW , prove that it sat-
isfies the axioms of a triangulated derivator, and study the relation between cartesian squares
in DW( ) and cartesian squares in D( ).

Let D be a derivator and W a category in Dia. One defines a prederivator DW as follows. For
any category X in Dia,

DW(X) = D(X × W).

For a functor u :X −→ Y in Dia, one has an inverse image functor given by

u∗ = (u × 1W)∗ : DW(Y ) −→ DW(X),

and similarly for 2-cells. For any point w of W and any category X in Dia, one defines a functor

DW(X) −→ D(X), F 
−→ Fw

by the formula Fw = (1X × w)∗(F ). This notation is compatible with the similar one introduced
in 6.7.

Any functor u :X −→ Y in Dia has a (co)homological direct image functor in DW . For exam-
ple, the cohomological direct image u∗ of u in DW is defined as the cohomological direct image
of u × 1W in D.
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Lemma 7.5. Let X be a category in Dia. The family of functors indexed by points w of W

DW(X) −→ D(X), F 
−→ Fw

is conservative.

Proof. Immediate, since the family of functors DW(X) −→ D(X) −→ D(e), taking F to Fw

to F(x,w), is conservative. �
Lemma 7.6. Let X be a category in Dia and F an object of DW(X). Then, for any object w

of W , the canonical map

Γ∗(X,F )w −→ Γ∗(X,Fw)

is an isomorphism in D(e).

Proof. We consider, for any point w of W , the following cartesian square

X
(1X,w)

q

X × W

p

e
w

W

where p denotes the canonical projection. If we consider F as an object of DW(X), then
Γ∗(X,F ) = p∗(F ) in DW(e) = D(W). But p is an opfibration so that, by Lemma 6.8, we have a
canonical isomorphism

p∗(F )w � Γ∗
(
X, (1X × w)∗(F )

) = Γ∗(X,Fw).

If we translate, using the notations of 7.4, we obtain a canonical isomorphism

Γ∗(X,F )w � Γ∗(X,Fw).

Hence the result. �
Proposition 7.7. A global commutative square C in DW is cartesian if and only if, for any point w

of W , the global commutative square Cw is cartesian in D.

Proof. Let σ : −→ be the canonical inclusion. Applying Lemma 7.6 with X = and
F = σ ∗(C), we obtain a canonical isomorphism

Γ∗
(

, σ ∗(C)
)
w

� Γ∗
(

, σ ∗(C)w
) = Γ∗

(
, σ ∗(Cw)

)
.

The result now follows from criterion (iv) of Proposition 7.3 and Lemma 7.5. �
Proposition 7.8. Let D be a derivator and let W be a category in Dia. Then DW is also a
derivator. Moreover, if D is pointed (respectively triangulated) then so is DW .
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Proof. It is straightforward to check Der 1, 3 and 5. The conservativity axiom (Der 2) comes
from Lemma 7.5. We need to check the base change axiom (Der 4). We proceed as follows. Let
u :X −→ Y be a functor in Dia, y a point of Y , and F an object of DW(X) = D(X × W). We
then have the canonical pullback square below (see 1.1)

X/y
i

u/y

X

u

Y/y
j

Y.

The product with W thus gives the following pullback square

X/y × W
i×1W

u/y×1W

X × W

u×1W

Y/y × W
j×1W

Y × W.

The functor j is a Grothendieck fibration. As Grothendieck fibrations are stable by pullback, the
functor j × 1W is a fibration as well. From Proposition 6.9 we have a canonical isomorphism

(j × 1W)∗(u × 1W)∗(F ) � (u/y × 1W)∗(i × 1W)∗(F )

in D(Y/y × W) = DW(Y/y). If we consider F as an object of DW(X) and use the notations
of 1.9, this isomorphism can also be written

u∗(F )/y � (u/y)∗(F/y).

This leads to an isomorphism

Γ∗
(
Y/y,u∗(F )/y

) � Γ∗
(
Y/y, (u/y)∗(F/y)

) � Γ∗(X/y,F/y).

As the category Y/y has a final object (namely (y,1y)), Proposition 6.2 (applied to DW ) tells us
that one has a canonical isomorphism

u∗(F )y = y∗u∗(F ) = (y,1y)
∗(u∗(F )/y

) � Γ∗
(
Y/y,u∗(F )/y

)
.

Hence we have produced a canonical isomorphism

u∗(F )y � Γ∗(X/y,F/y).

The base change axiom is thus proved for DW .
It is easy to see that Der 6 for D implies Der 6 for DW . In other words, if D is pointed then so

is DW .
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Now assume Der 7 holds for D. Proposition 7.7 and its dual tell us the following. If C is a
global commutative square in DW then the following are equivalent

⎧⎨
⎩

C is
cartesian
in DW

⎫⎬
⎭ ⇐⇒

⎧⎨
⎩

Cw is
cartesian

in D, ∀w ∈ W

⎫⎬
⎭ ⇐⇒

⎧⎨
⎩

Cw is
cocartesian

in D, ∀w ∈ W

⎫⎬
⎭ ⇐⇒

⎧⎨
⎩

C is
cocartesian

in DW

⎫⎬
⎭

which means that Der 7 holds for DW . In other words if D is triangulated then so is DW . �
7.9. Let D be a triangulated derivator. In Theorem 1.17 we learned that the category D(e) is tri-
angulated. The proof, which we do not include in this article, teaches us further that the triangles,
as well as the suspension functor, can be described explicitly as follows.

Since D is a pointed derivator, Der 1 and Der 3 ensure that the category D(e) has finite prod-
ucts and coproducts, and Der 6 implies that D(e) also has a zero object that we denote by 0 (that
is 0 is both an initial and a terminal object in D(e)). Let I be the category associated to the graph

0 1.

We then have two functors

s = 0 : e −→ I and t = 1 : e −→ I.

The functor s is a closed immersion, and the functor t an open immersion. We define two endo-
functors of D(e), the suspension functor Σ = t?s∗, and the loop functor Ω = s!t!. It is clear, by
construction, that the suspension functor is left adjoint to the loop functor. Der 7 implies that the
suspension functor is an equivalence of categories. We sketch the argument: One can produce
in a functorial way, for any object F in D(e), a cocartesian global commutative square that is
locally of the shape

F 0

0 Σ(F).

(We invite the reader to have a look at the situation described in 9.4 to understand the manipula-
tion of the functors s! and t?.) One can also show that if Σ is invertible, then the category D(e)

is additive. For this one proceeds as in algebraic topology. One can also define a class of distin-
guished triangles in D(e) as follows. Let 2 be the category corresponding to the graph

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2).

We have three embedding functors from the square category (see 1.14) to 2.
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a : −→ 2, (i, j) 
−→ (i, j),

b : −→ 2, (i, j) 
−→ (i, j + 1),

c : −→ 2, (i, j) 
−→ (i,2j).

A global triangle in D is an object T of D( 2) such that T1,0 � T0,2 � 0 and such that a∗(T )

and b∗(T ) are cocartesian. The object T is then locally of shape

T0,0 T0,1 0

0 T1,1 T1,2.

One can show that for any global triangle T , one has a canonical isomorphism ΣT0,0 � T1,2.
Hence we get a triangle in D(e)

T0,0 −→ T0,1 −→ T1,1 −→ ΣT0,0.

We say that a triangle in D(e) is distinguished if it is isomorphic (as a triangle) to a triangle
obtained from a global triangle as above. A precise statement of Theorem 1.17 is that, with
these definitions of the suspension functor Σ and of distinguished triangles, one has defined
a triangulated category structure on D(e). Note that Der 5 allows us to extend any morphism
in D(e) to a distinguished triangle.

Corollary 7.10 (Maltsiniotis). Let D be a triangulated derivator. For any category X in Dia the
category D(X) is canonically endowed with a structure of a triangulated category. Furthermore
for any functor u :X −→ Y in Dia the inverse image functor u∗ : D(Y ) −→ D(X) is triangulated.

Proof. Let X be any category in Dia. By Proposition 7.8 the derivator DX is triangulated, and by
Theorem 1.17 the category DX(e) = D(X) is triangulated. The second assertion, on the exactness
of inverse image functors, comes from the definition of distinguished triangles (7.9) and from
Proposition 7.7. �
8. Completion by pullback

In the proof of the additivity theorem we twice run into the following situation. We are given a
morphism j :V −→ X in Dia, and we want to know that some (explicit) subcategory C ⊂ D(X)

maps fully faithfully, onto its image C′ ⊂ D(V ), under the functor j∗ : D(X) −→ D(V ).
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Example 8.1. Consider a triangulated derivator D and let X be the category associated to the
following poset

(0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4).

Define C to the full subcategory of D(X), made up of objects F which are locally of the shape

F(0,1) F(0,2) F(0,3)

F(1,0) F(1,1) F(1,2) F(1,3) F(1,4)

F(2,0) F(2,1) F(2,2) F(2,3) F(2,4),

and furthermore satisfy

(i) The object F(0,3) is isomorphic to zero in D(e).
(ii) All the commutative squares are homotopy cartesian; this can be reformulated saying that,

for any map of regions i : −→ X, the pullback i∗(F ) is cartesian in D( ).

Consider also the subcategory V of X defined by the diagram below

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4).

If j :V −→ X denotes the inclusion (which is an example of open immersion), then the functor

C −→ D(V ), F 
−→ j∗(F )

is fully faithful. The image may be identified as the full subcategory C′ ⊂ D(V ), whose objects
satisfy the analog of (ii) above; all commutative squares are homotopy cartesian. The proof is by
a combination of Proposition 8.13 and Remark 8.10 below.

Remark 8.2. The above is a very simple example. The examples that come up in the proof of
additivity may be found in Cautions 5.1 and 5.2. Note that, in the proof of the additivity theorem,
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we only need to know that the functor j∗ : D(Y ) −→ D(X) takes the isomorphisms in C ⊂ D(Y )

bijectively to the isomorphisms in the image C′ ⊂ D(X); we care only about the groupoids.
In what follows we formulate some facts, ever so slightly more general than we need. Together

with their duals they easily cover what is used in Cautions 5.1 and 5.2.

8.3. Let us fix a derivator D. Let n � 1 be an integer, and let n be the category associated with
the graph

(0,0) (0,1) . . . (0, n)

(1,0) (1,1) . . . (1, n).

We consider given a region X (see 2.1) and a closed immersion in Dia

k : n −→ X.

For an integer 0 � i � n, we define Ui to be the full subcategory of X made of objects x �= k(0, j)

for 0 � j � n − i − 1. In other words Ui contains the points of X − k( n), as well as the
subdiagram of k( n) below:

k(0, n − i) . . . k(0, n)

k(1,0) . . . k(1, n − i) . . . k(1, n).

For 1 � i � n, we denote by ji :Ui−1 −→ Ui the inclusion functors, which are open immersions.
Remember that = 1 is the square category (see 1.14). We have functors

ui : −→ Ui

defined by the formula ui(ε, η) = k(ε, η + n − i). Let be the corner category, and
σ : −→ the inclusion functor. Then we have the cartesian square below, which defines
the functor vi : −→ Ui−1

σ

vi ui

Ui−1
ji

Ui.

We know from Proposition 7.1 that the cohomological direct image functor

(ji)∗ : D(Ui−1) −→ D(Ui)

is fully faithful. The next lemma and proposition will describe its essential image.
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Lemma 8.4. Let G be an object of D(Ui−1). Then there is a canonical isomorphism

(ji)∗(G)k(0,n−i) � Γ∗
(

, v∗
i (G)

)
.

Proof. By the base change axiom we know that

(ji)∗(G)k(0,n−i) � Γ∗
(
Ui−1/k(0, n − i),G/k(0, n − i)

)
.

It is clear that the functor vi factors canonically through a functor

w : −→ Ui−1/k(0, n − i).

Since v∗
i (G) = w∗(G/k(0, n − i)) we have first that

Γ∗
(

, v∗
i (G)

) = Γ∗
(

,w∗(G/k(0, n − i)
))

.

We deduce a canonical map

Γ∗
(
Ui−1/k(0, n − i),G/k(0, n − i)

) −→ Γ∗
(

,w∗(G/k(0, n − i)
)) = Γ∗

(
, v∗

i (G)
)
,

and we have to show that it is an isomorphism. By Proposition 6.3(ii) it suffices to prove that the
functor w has a left adjoint, which is easily verified. �
Proposition 8.5. An object F of D(Ui) is in the essential image of the functor (ji)∗ if and only if
the global commutative square u∗

i (F ) is cartesian.

Proof. By Proposition 7.2 the object F belongs to the essential image of (ji)∗ if and only if, for
the unique point y = k(0, n − i) in Ui − Ui−1, the map Fk(0,n−i) −→ (ji)∗j∗

i (F )k(0,n−i) is an
isomorphism. Lemma 8.4, applied to G = j∗

i (F ), gives us an isomorphism (ji)∗j∗
i (F )k(0,n−i) �

Γ∗( , v∗
i j∗

i (F )) = Γ∗( , σ ∗u∗
i (F )), while Fk(0,n−i) is clearly isomorphic to u∗

i (F )0,0. That is
F belongs to the essential image if and only if the natural map

u∗
i (F )0,0 −→ Γ∗

(
, σ ∗u∗

i (F )
)

is an isomorphism. Now Proposition 7.3, applied in the case of C = u∗
i (F ), ends the proof. �

8.6. We keep the notation of 8.3. Let j = j0 :U0 −→ X be the inclusion functor. For any integer i,
1 � i � n we had maps ji : −→ Ui , where the composite −→ Ui −→ X is the functor
defined by the commutative square in X of shape

k(0, n − i) k(0, n − i + 1)

k(1, n − i) k(1, n − i + 1).

We can now characterize the essential image of the functor j∗ as follows.
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Proposition 8.7. An object F of D(X) is in the essential image of the functor j∗ : D(U0) −→
D(X) if and only if, for any integer i, 1 � i � n, the global commutative square j∗

i (F ) is carte-
sian.

Proof. In the category Dia we have an identity j = jnjn−1 · · · j2j1. Because D is a strict
2-functor we conclude that j∗ = j∗

1 j∗
2 · · · j∗

n−1j
∗
n . Taking right adjoints we have that j∗ is canon-

ically isomorphic to the composition of the functors

D(U0)
(j0)∗

D(U1)
(j2)∗ · · · (jn−1)∗

D(Un−1)
(jn)∗

D(Un) = D(X).

Proposition 8.5 characterizes for us the essential image of each of the fully faithful functors (ji)∗;
the proposition amounts to concatenating these characterizations. �

Of course there are other possible characterizations of the essential image of the map
j∗ : D(U0) −→ D(X). For example one can prove the following:

Proposition 8.8. For each i, 1 � i � n, define a functor �i : −→ X by taking isomorphically
to the square

k(0, n − i) k(0, n)

k(1, n − i) k(1, n).

An object F of D(X) is in the essential image of the functor j∗ : D(U0) −→ D(X) if and only if,
for any integer i, 1 � i � n, the global commutative square �∗

i (F ) is cartesian.

Proof. The proof is a minor variant of what we have seen above so will give only a sketch,
leaving the details to the reader. By Proposition 7.2 we know that F is in the essential image
of j∗ if and only if, for all points y ∈ X − U0, the map Fy −→ j∗j∗(F )y is an isomorphism.
The points y ∈ X − U0 are of the form k(0, n − i) with 1 � i � n, which means that each such
y = k(0, n− i) can be written as �i(0,0) with �i : −→ X as in the statement of the proposition.
It is trivial that Fy = y∗(F ) = (0,0)∗�∗

i (F ) = �∗
i (F )0,0. As in Lemma 8.4 we identify j∗j∗(F )y

with Γ∗( , σ ∗�∗
i (F )). Thus F is in the essential image of j∗ if and only if all the maps

�∗
i (F )0,0 −→ Γ∗

(
, σ ∗�∗

i (F )
)

are isomorphisms. By Proposition 7.3, applied in the case of C = �∗
i (F ), the result follows. �

Corollary 8.9. With the notation as above, let F be an object in D(X). We have the equivalence
of

(i) The global commutative squares j∗
i (F ) are cartesian, for all 1 � j � n.

(ii) The global commutative squares �∗
i (F ) are cartesian, for all 1 � j � n.
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Proof. By Propositions 8.7 and 8.8 each of (i) and (ii) is equivalent to F being in the essential
image of j∗. �
Remark 8.10. Let us look at the special case where n = 2 and X = 2 is the category

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2).

The inclusions j1 and �1 are identical; we have three functors −→ X, namely j1 = �1, �2
and j2. They give subcategories

(0,0) (0,1) (0,0) (0,2) (0,1) (0,2)

(1,0) (1,1) (1,0) (1,2) (1,1) (1,2).

Of these the first is the image of j2, the second of �2 and the third of j1 = �1. We learn that, for F

an object of D(X), we have

{
j∗

1 (F ) and j∗
2 (F )

are both cartesian

}
⇐⇒

{
j∗

1 (F ) and �∗
2(F )

are both cartesian

}
.

Dually,

{
j∗

1 (F ) and j∗
2 (F )

are both cocartesian

}
⇐⇒

{
j∗

2 (F ) and �∗
2(F )

are both cocartesian

}
.

If D is a triangulated derivator this simplifies to saying that the three global commutative squares
j∗

1 (F ) = �∗
1(F ), j∗

2 (F ) and �∗
2(F ) are cartesian = cocartesian if any two of them are.

Next we make a general observation about pointed derivators. Recall that, for any pointed
derivator D, the categories D(X) all have zero objects 0.

Proposition 8.11. Let D be a pointed derivator and v :V −→ U an open immersion in Dia. Then
the functor

v! : D(V ) −→ D(U)

is fully faithful, and its essential image consists of the objects F of D(U) such that Fu � 0 for
any point u of U that is not in the image of v.

Proof. The fact that v! is fully faithful comes from Proposition 7.1. By Proposition 7.2, F be-
longs to the essential image of v! if and only if, for every point u ∈ U − v(V ), the natural map
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(v)!v∗(F )u −→ Fu is an isomorphism. To prove the proposition it suffices to show that (v)!(G)u
vanishes for every object G of D(V ).

But now the facts that v is an open immersion, and that u ∈ U does not lie in the image of v,
mean that u\V = ∅. Der 1 says that D(u\V ) = D(∅) = {0}. Der 4 gives the formula

(v)!(G)u = Γ!(u\V,u\G) = Γ!(∅,0) = 0.

Hence the result. �
8.12. We return to the assumptions and notations of 8.3 and 8.6. We assume furthermore that the
derivator D is pointed. We denote by V the full subcategory of X made of objects x of X such
that x �= k(0, i) for 0 � i � n. Let v0 :V −→ U0 be the inclusion functor. One sees easily that it
is an open immersion. We will write v :V −→ X for the inclusion functor.

Proposition 8.13. Let D(X)′0 be the full subcategory of D(X) whose objects are the F ’s such
that, for any integer i, 0 � i � n − 1, j∗

i (F ) is cartesian, and furthermore Fk(0,n) � 0. Then the
functor

D(X)′0 −→ D(V ), F 
−→ v∗(F )

is an equivalence of categories.

Proof. The inclusion v0 :V −→ U0 is an open immersion, hence Proposition 8.11 applies. The
essential image of (v0)! : D(V ) −→ D(U0) is the subcategory D(U0)0 ⊂ D(U0), whose objects
are the F ’s such that Fk(0,n) � 0. The adjoint v∗

0 : D(U0) −→ D(V ) maps the essential image
of (v0)! by an equivalence of categories onto D(V ). Hence v∗

0 :D(U0)0 −→ D(V ) is an equiva-
lence of categories.

Next let D(X)′ be the full subcategory of D(X) whose objects are the F ’s such that, for any
integer i with 1 � i � n, the global commutative square j∗

i (F ) is cartesian. Proposition 8.7 tells
us that the functor

D(X)′ −→ D(U0), F 
−→ j∗(F )

is an equivalence of categories. The combination of the two equivalences of categories above
implies the result. �
9. Split gluing

It may happen that the category D(X) has a natural subcategory which splits as a product. In
Caution 5.3 we met such a situation; we made an assertion, which this section will prove.

Proposition 9.1. Let D be a pointed derivator and let i :Z −→ X be a closed immersion in Dia.
Then the functor

i∗ : D(Z) −→ D(X)

is fully faithful, and its essential image consists of the objects F of D(X) such that Fx � 0 for
any point x of X that is not in the image of i.
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Proof. Apply Proposition 8.11 to D
op. �

9.2. In the remainder of this section we consider the following situation. Let

U
j−→ X i←− Z

be two maps in Dia such that j is an open immersion, i is a closed immersion and j (U) =
X − i(Z). First we prove

Lemma 9.3. Let D be a pointed derivator. With the notation as in (9.2) and F ∈ D(X) any object,
we have the equivalence

{
j∗(F ) � 0

} ⇐⇒ {
F � i∗(G) for some G ∈ D(Z)

}
.

Proof. Proposition 9.1 asserts that F lies in the essential image of i∗ if and only if Fx � 0 for all
x ∈ X − i(Z). By assumption X − i(Z) = j (U), so F is in the essential image of i∗ is and only
if Fj(u) = j∗(F )u � 0 for all u ∈ U . Der 2 implies that this is equivalent to j∗(F ) � 0. �
9.4. With j :U −→ X, i :Z −→ X as in 9.2, assume further that D be a triangulated derivator.
The fully faithful functor j! : D(U) −→ D(X) has a right adjoint j∗ : D(X) −→ D(U). Corol-
lary 7.10 tells us that these are exact functors of triangulated categories. Lemma 9.3 tells us that
the kernel of j∗ is the image of the fully faithful functor i∗ : D(Z) −→ D(X). It follows that j∗
is naturally identified as the map from D(X) to the Verdier quotient D(X)/i∗ D(Z); the reader
can find this, for example, in the statement and proof of [29, Proposition 9.1.18]. We have the
following triangulated functors between triangulated categories

D(U)
j!−→ D(X)

i∗−→ D(Z),

D(U)
j∗←− D(X)

i∗←− D(Z),

D(U)
j∗−→ D(X)

i!−→ D(Z).

The middle row is naturally identified as i∗ D(Z) −→ D(X) −→ D(X)/i∗ D(Z), the top row
is obtained by taking left adjoints and the bottom row by taking right adjoints. We have the
following vanishing formulæ

i∗j! � 0, j∗i∗ � 0, i!j∗ � 0,

and the functors j!, j∗ and i∗ are fully faithful (Proposition 7.1). In other words, we are in the
situation of the six gluing functors as defined in [1] (see also [29, §9.2]). The functor j! can be
thought of as the functor that extends a ‘sheaf’ on U by 0, and dually, the functor i∗ can be
regarded as the functor extending a ‘sheaf’ on Z by 0.

Let E be a full triangulated subcategory of D(X) stable by the functors j!j∗ and i∗i∗. Denote
by EU (respectively by EZ) the full subcategory of E whose objects are the F ’s in E such that
i∗(F ) � 0 (respectively such that j∗(F ) � 0). We then obtain a functor

S : E −→ EU × EZ, F 
−→ (
j!j∗(F ), i∗i∗(F )

)
.

We want to find sufficient conditions for S to be an equivalence of categories.
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Example 9.5. Let X = 2 (see 8.3 for the notation). Define U to be the full subcategory of X

whose objects are the pairs (i, j) for i = 0,1 and j = 1,2, and set Z = X−U . Then the inclusion
of U in X is an open immersion. Define E to be the full subcategory of D(X) whose objects are
the objects F which are locally of shape

F(0,0) 0 F(0,2)

F(1,0) 0 F(1,2).

Then EU (respectively EZ) is simply the full subcategory of D(X) whose objects are the ob-
jects F such that F(i,j) � 0 for j �= 2 (respectively for j �= 0). Proposition 9.7 will show that the
map S : E −→ EU × EZ is an equivalence of categories. The technical condition, that needs to
be verified in applying Proposition 9.7, comes down to saying that for any (i, j) ∈ X − U (this
just means that j = 0), (i,1) is a terminal object of the poset U/(i, j), and that the objects of E

vanishes on the points (i,1).

Remark 9.6. Example 9.5 is very simple. In the proof of additivity we apply Proposition 9.7 to
more complicated regions; see Caution 5.3.

Proposition 9.7. With the hypothesis given in 9.4, suppose that, for any point z of Z, the category
U/i(z) has a terminal object. Suppose further that, for any point z of Z and for any object F

of E, we have Fj(u) � 0, where (u,f ) is any terminal object of U/i(z).2 Then the functor

S : E −→ EU × EZ, F 
−→ (
j!j∗(F ), i∗i∗(F )

)
is an equivalence of categories.

Proof. We define a functor

T : EU × EZ −→ E

by the formula T (F,G) = F ⊕ G. The proof will consist in showing that the functor T is an
equivalence of categories. Since ST : EU × EZ −→ EU × EZ is clearly naturally isomorphic to
the identity, it would then follow that S is a quasi-inverse of T , in particular an equivalence.

Formal facts, about fully faithful triangulated functors with adjoints, tell us that, for any ob-
ject F of D(X), we have the following canonical distinguished triangle:

j!j∗(F )
ε−→ F

η−−→ i∗i∗(F ) −→ Σj!j∗(F ). (1)

Here ε : j!j∗ �⇒ 1 is the counit of adjunction, while η : 1 �⇒ i∗i∗ is the unit. The reader can find
this, for example, in the proof of [29, Proposition 9.1.18]. We will show that, for any F and G

in E, one has

Hom
(
i∗i∗(F ), j!j∗(G)

) = 0. (2)

2 Recall: u is an object of U , and f a map from j (u) to i(z).
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If we let G = ΣF in (2) above, we find that the triangle (1) above splits whenever F is in E.
That is F � j!j∗(F ) ⊕ i∗i∗(F ) = T S(F ). It follows that the functor T is essentially surjective.
Since we always have

Hom
(
j!j∗(G), i∗i∗(F )

) = Hom
(
j∗(G), j∗i∗i∗(F )

)
and j∗i∗ = 0, the assertion (2) also implies that any map G ⊕ F −→ G′ ⊕ F ′, with G,G′ ∈ EU

and F,F ′ ∈ EZ , must be of the form g ⊕ f for some g :G −→ G′ and f :F −→ F ′; that is (2)
implies that the functor T is fully faithful. It remains to prove (2).

The formula

Hom
(
i∗i∗(F ), j!j∗(G)

) = Hom
(
i∗(F ), i!j!j∗(G)

)
shows that it suffices to prove that, for any object F of E, one has

i!j!j∗(F ) � 0.

For any object G of D(X) one has a canonical distinguished triangle

i∗i!(G) −→ G −→ j∗j∗(G) −→ Σi∗i!(G).

Putting G = j!j∗(F ) we obtain a distinguished triangle

i∗i!j!j∗(F ) −→ j!j∗(F ) −→ j∗j∗j!j∗(F ) −→ Σi∗i!j!j∗(F ).

Remembering that j∗j! is naturally isomorphic to the identity this simplifies slightly to

i∗i!j!j∗(F ) −→ j!j∗(F ) −→ j∗j∗(F ) −→ Σi∗i!j!j∗(F ).

Applying the functor i∗ we obtain a distinguished triangle

i∗i∗i!j!j∗(F ) −→ i∗j!j∗(F ) −→ i∗j∗j∗(F ) −→ Σi∗i∗i!j!j∗(F ).

Recalling that i∗i∗ is naturally isomorphic to the identity and i∗j! � 0, this simplifies to an
isomorphism

i∗j∗j∗(F ) � Σi!j!j∗(F );
we want to show the vanishing of i!j!j∗(F ), which is equivalent to the vanishing of i∗j∗j∗(F ).
By Der 2 this reduces further to showing that, for all points z ∈ Z, we have (i∗j∗j∗(F ))z � 0.

Let z be a point of Z. We have the canonical identifications

(
i∗j∗j∗(F )

)
z
= (

j∗j∗(F )
)
i(z)

� Γ∗
(
U/i(z), j∗(F )/i(z)

)
.

By assumption the category U/i(z) has a terminal object (u,f ), so Proposition 6.2 tells us that

Γ∗
(
U/i(z), j∗F/i(z)

) � (
j∗F/i(z)

)
(u,f )

= Fj(u) � 0.

Hence the result. �
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10. Exact morphisms of derivators and strictification

It is time to worry about the functoriality of derivator K-theory. In this section we define
morphisms of derivators. It is clear from the definitions that any strict, exact morphism of deriva-
tors Φ : D −→ D

′ will induce a map in K-theory. Unfortunately this is not enough for us; in
Section 11 we will want to look at maps induced by non-strict, exact morphisms of derivators.
In this section we will learn how to construct such morphisms, and why they induce maps in
K-theory.

10.1. We define morphisms of prederivators as morphisms of 2-functors. More explicitly, a mor-
phism of prederivators (Φ,β) : D(X) −→ D

′(X) consists of two items of data

(i) For any object X ∈ Dia there is given a functor ΦX : D(X) −→ D
′(X).

(ii) For any map u :X −→ Y in Dia there is given a natural isomorphism βu :u∗ΦY −→ ΦXu∗.

These must satisfy the following properties:

(1) If u :X −→ Y and v :Y −→ Z are composable maps in Dia, then the composite of the two
2-cells

D(Z)
v∗

ΦZ

D(Y )
u∗

ΦY

D(X)

ΦX

D
′(Z)

v∗ D
′(Y )

u∗

βv

D
′(X)

βu

equals the 2-cell

D(Z)
u∗v∗

ΦZ

D(X)

ΦX

D
′(Z)

u∗v∗ D
′(X).

βvu

(2) For any 2-cell in Dia

X

u

v

α Y

one has α∗βv = βuα
∗.

A morphism of prederivators Φ : D −→ D
′ is strict if, for any map u :X −→ Y in Dia, the iso-

morphism βu is an identity (so that we then have u∗ΦY = ΦXu∗ in a coherent way). Prederivators
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form a 2-category; the composition of morphisms of prederivators is hopefully obvious, and the
2-morphisms are the natural isomorphisms.

Let D and D
′ be two derivators and Φ : D −→ D

′ be a morphism of derivators. Then, for any
map u :X −→ Y in Dia, we have the canonical 2-cells

ru :ΦY u∗ −→ u∗ΦX, (3)

lu :u!ΦX −→ ΦY u!. (4)

The map ru is defined as follows. It corresponds by adjunction to the map

u∗ΦY u∗ � ΦXu∗u∗ −→ ΦX

obtained by composing the counit u∗u∗ −→ 1D(X) with ΦX and then composing with βuu∗. The
map lu is defined in the dual way, using u! instead of u∗ and β−1

u instead of βu.
A morphism of derivators Φ : D −→ D is right exact (respectively left exact) if, for any in-

creasing map u :X −→ Y between finite partially ordered sets, the 2-cell ru (respectively lu) is
an isomorphism. A morphism of derivators is exact if it is both right exact and left exact.

Remark 10.2. A morphism of derivators Φ : D −→ D
′ is right exact if and only if the induced

morphism Φop : Dop −→ D
′op is left exact.

Example 10.3. For any exact functor E −→ E′ between exact categories, the induced morphism
of derivators D

b
E −→ D

b
E′ is exact (see for example [2, 4.11 and 4.12]).

Proposition 10.4. A morphism of derivators Φ : D −→ D
′ is right exact if and only if, for any

finite partially ordered set X and any object F of D(X), the canonical map

ΦeΓ∗(X,F ) −→ Γ∗
(
X,ΦX(F)

)
is an isomorphism in D

′(e).

Proof. This is obviously a necessary condition. To prove that it is sufficient, let u :X → Y be a
map between finite partially ordered sets in Dia and F be an object of D(X). We want to show
that the map

ru(F ) :ΦY u∗(F ) −→ u∗ΦX(F)

is an isomorphism in D
′(Y ). But using Der 2 in D

′ it is sufficient to check that, for any point y

of Y , the map

(
ΦY u∗(F )

)
y

� Φe

(
u∗(F )y

) −→ (
u∗ΦX(F)

)
y

is an isomorphism in D
′(e). The base change axiom in D gives

u∗(F )y � Γ∗(X/y,F/y)
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and the base change axiom in D
′ gives

(
u∗ΦX(F)

)
y

� Γ∗
(
X/y,ΦX(F )/y

) � Γ∗
(
X/y,ΦX/y(F/y)

)
.

We are thus reduced to proving that the canonical map

ΦeΓ∗(X/y,F/y) −→ Γ∗
(
X/y,ΦX/y(F/y)

)
is an isomorphism in D

′(e), which is true by assumption. �
Example 10.5. Let D be a derivator and let a :V −→ W be a map in Dia. We have two deriva-
tors DV and DW (see 7.4). There is a strict morphism of derivators

a∗ : DW −→ DV ;

the formula is that, for every object X ∈ Dia,

a∗
X = (1X × a)∗ : DW(X) = D(X × W) −→ D(X × V ) = DV (X).

We assert that the morphism a∗ is exact.
To prove this, first note that it suffices to show the right exactness: this will imply that

(
aop)∗ : Dop

W op −→ D
op
V op

is right exact too, which implies that a∗ is left exact. Next we use Proposition 10.4. Let F be an
object of DW(X). We want to prove that the canonical map

a∗Γ∗(X,F ) −→ Γ∗
(
X,a∗(F )

)
is an isomorphism in DV (e) = D(V ). By virtue of Lemma 7.6 we have, for any point v of V ,

(
a∗Γ∗(X,F )

)
v
= Γ∗(X,F )a(v)

� Γ∗(X,Fa(v))

� Γ∗
(
X,a∗(F )v

)
� Γ∗

(
X,a∗(F )

)
v
.

Hence our claim is proved using Der 2.

Example 10.6. Let D be a derivator and a :V −→ W be a map between finite partially ordered
sets in Dia. We can then define a (non-strict) morphism of derivators

a∗ : DV −→ DW

by

(a∗)X = (1X × a)∗ : DV (X) = D(X × V ) −→ D(X × W) = DW(X)
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for any category X in Dia. For any map u :X −→ Y in Dia, we still have to define an isomor-
phism

βu : (a∗)Y u∗ = (1Y × a)∗(u × 1V )∗ −→ (u × 1W)∗(1X × a)∗ = u∗(a∗)X.

The base change map (1.9) associated to the commutative square

X × V
u×1V

1X×a

Y × V

1Y ×a

X × W
u×1W

Y × W

gives a map

αu : (u × 1W)∗(1X × a)∗ = u∗(a∗)X −→ (1Y × a)∗(u × 1V )∗ = (a∗)Y u∗.

The map αu is an isomorphism: this is a reformulation of the fact that the morphism of derivators
u∗ : DY −→ DX is right exact (see 10.5). We define βu = α−1

u . It is obvious that the morphism of
derivators a∗ is right exact: for any map u :X −→ Y in Dia one has, by functoriality,

(1X × a)∗(u × 1W)∗ = (u × 1V )∗(1Y × a)∗.

This implies that

(1Y × a)∗(u × 1V )∗ � (u × 1W)∗(1X × a)∗

which can be rewritten (a∗)Y u∗ � u∗(a∗)X . Dually, we also have a left exact morphism

a! : DV −→ DW

defined by the formula

(a!)X = (1X × a)! : DV (X) = D(X × V ) −→ D(X × W) = DW(X)

for any category X in Dia.

Proposition 10.7. Let D be a triangulated derivator, and let X be a finite partially ordered set.
Then the category D(X) is generated as a triangulated category by the objects x∗(M), where x

runs over the set of points of X, and M over the objects of D(e). In other words, the smallest full
triangulated subcategory of D(X) that contains the x∗(M)’s is the category D(X) itself.

Proof. We proceed by induction on the number n of elements of X. If n � 1 the assertion is
obvious, so that we can suppose that n � 2. Let U be the set of minimal elements of X, and
let j :U −→ X be the inclusion. It is clear that j is an open immersion. Set Z = X − U , and
i :Z −→ X the inclusion. If Z is empty then X = U has to be discrete, and once again our
assertion is trivial. Hence we may suppose that Z is not empty, which implies that the number of
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elements in U and in Z is strictly smaller than n. Moreover, according to 9.4, we are in the six
gluing functors situation. In particular, we have a natural distinguished triangle in D(X)

(∗) j!j∗(F ) → F −→ i∗i∗(F ) −→ Σj!j∗(F )

for any object F of D(X). It therefore suffices to show that:

(i) For any object F ′ ∈ D(U) the object j!(F ′) lies in the category generated by x∗(P ), where
x is a point of X and P an object of D(e).

(ii) For any object F ′′ ∈ D(Z) the object i∗(F ′′) lies in the category generated by x∗(P ), where
x is a point of X and P an object of D(e).

To prove (i) it helps to take the distinguished triangle (∗) and put F = j∗G for an object
G ∈ D(U). We deduce a distinguished triangle

j!j∗j∗(G) → j∗(G) −→ i∗i∗j∗(G) −→ Σj!j∗j∗(G).

If we recall that j∗j∗ is naturally isomorphic to the identity, this becomes

j!(G) → j∗(G) −→ i∗i∗j∗(G) −→ Σj!(G).

In other words j!(G) is in the triangulated category generated by j∗(G) and i∗(F ′′), for suit-
able F ′′. We conclude that, in the presence of (ii), proving (i) reduces to showing that every
object j∗(G) lies in the category generated by x∗(P ), where x is a point of X and P an object
of D(e).

But now induction applies. Every object F ′′ ∈ D(Z) is in the subcategory generated by z∗(N),
with z a point in Z and N an object of D(e). This means that i∗(F ′′) is generated by the objects
i∗z∗(N), which are isomorphic to i(z)∗(N) with i(z) a point in X. Similarly every object G ∈
D(U) is generated by the objects u∗(M), with u a point in U and M an object of D(e). This
means that j∗(G) is generated by the objects j∗u∗(M) � j (u)∗(M). �
10.8. Let D be a triangulated derivator. Remember that is the following category:

(0,0) (0,1)

(1,0)

=

(1,1).

Proposition 10.9. Let Φ : D −→ D
′ be a morphism of triangulated derivators. The following

conditions are equivalent.

(i) The morphism Φ : D −→ D
′ is exact.

(ii) The morphism Φ : D −→ D
′ is right exact.

(iii) The morphism Φ : D −→ D
′ is left exact.

(iv) The functor Φe : D(e) −→ D
′(e) sends the zero object to the zero object, and the func-

tor Φ : D( ) −→ D
′( ) sends global cartesian squares (see 1.14) to global cartesian

squares.
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(v) For any X in Dia, the functor ΦX : D(X) −→ D
′(X) is triangulated, and for any map

u :X −→ Y in Dia, the 2-cell βu :u∗ΦY −→ ΦXu∗ (see 10.1) is an isomorphism of tri-
angulated functors.

Proof. It is obvious that (i) implies (ii) and (iii). Using Proposition 7.3, it is also clear that
either (ii) or (iii) implies (iv). If condition (iv) is true for Φ : D −→ D

′ then, by Proposition 7.7,
it is also true for the morphisms

ΦX : DX −→ D
′
X

defined by the formulas

(ΦX)Y = ΦY×X : DX(Y ) = D(Y × X) −→ D
′(Y × X) = D

′
X(Y ).

Using the definition of distinguished triangles (see 7.9), we conclude that (iv) implies (v). To
finish the proof it suffices to prove that (v) implies (i). We will prove that (v) implies (ii). Dually
we will have that (v) implies (iii), and (ii) and (iii) together are clearly equivalent to (i).

From now we assume that condition (v) is true, and will prove (ii). Let X be a finite poset
and x a point of X. If x : e −→ X is the inclusion then the category e/y is either empty or the
terminal category, depending on whether x � y. The base change axiom for the derivator D gives
the formula, for any object M ∈ D(e),

x∗(M)y �
{

M if x � y,
0 otherwise.

We compute therefore that

(
ΦXx∗(M)

)
y

= y∗ΦXx∗(M)

� Φey
∗x∗(M) since y∗ΦX � Φey

∗

= Φe

(
x∗(M)y

)
� (

x∗Φe(M)
)
y
,

where the isomorphism Φe(x∗(M)y) � (x∗Φe(M))y is because both sides are Φe(M) when
x � y and 0 otherwise. By Der 2 the canonical map must be an isomorphism

ΦXx∗(M) −→ x∗Φe(M).

Let u :X −→ Y be a map in Dia between two finite posets. We want to prove (ii); we want to
show that, for any object F of D(X), the map

ΦY u∗(F ) −→ u∗ΦX(F)

is an isomorphism. Now the functors ΦX , ΦY and u∗ are triangulated by (v), and Proposition 10.7
implies that it is sufficient to consider the case where F = x∗(M), with x a point of X and M an
object of D(e). In this case, we have the following canonical isomorphisms
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ΦY u∗x∗(M) � ΦY u(x)∗(M)

� u(x)∗Φe(M)

� u∗x∗Φe(M)

� u∗ΦXx∗(M).

This ends the proof. �
Example 10.10. Let D be a triangulated derivator and let i :Z −→ W be a closed immersion of
finite partially ordered sets. We define an exact morphism of triangulated derivators

i! : DW −→ DZ

by the formula

(
i!
)
X

= (1X × i)! : DW(X) = D(X × W) −→ D(X × Z) = DZ(X)

for any category X in Dia. As in Example 10.6, we still have to define the coherent isomor-
phisms βu for any map u in Dia (with the notation of 10.1). Let u :X −→ Y be a map in Dia. By
Example 10.6 the morphism u! : DX −→ DY is left exact, and the equivalence of (ii) and (iii) in
Proposition 10.9 allows us to deduce that u! : DX −→ DY is also right exact. Hence u! commutes
with the operators i∗. In other words we have a canonical isomorphism of functors

(u × 1W)!(1X × i)∗ −→ (1Y × i)∗(u × 1Z)!.

By adjunction this provides an isomorphism of functors

βu : u∗(i!)
Y

= (u × 1Z)∗(1Y × i)! −→ (1X × i)!(u × 1W)∗ = (
i!
)
X
u∗.

It remains to show that the morphism i! is exact. By Proposition 10.9 it suffices to prove that the
functors (i!)X = (1X × i)! are triangulated for any category X in Dia. But this follows from the
fact that (i!)X is a right adjoint of the triangulated functor

(1X × i)∗ : D(X × Z) −→ D(X × W).

10.11. A morphism of prederivators Φ : D −→ D
′ is an equivalence if, for any category X in Dia,

the functor

ΦX : D(X) −→ D
′(X)

is an equivalence of categories. It is a standard fact about 2-functors that a morphism of pred-
erivators Φ : D −→ D

′ is an equivalence if and only if there exists a morphism Ψ : D′ −→ D such
that ΦΨ is isomorphic to the identity of D

′ and Ψ Φ is isomorphic to the identity of D. Such a
morphism Ψ is called a quasi-inverse of Φ .
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Remark 10.12. Let D and D
′ be two prederivators and let Φ : D −→ D

′ be an equivalence. Then
D is a derivator (respectively a pointed derivator, respectively a triangulated derivator) if and only
if D

′ is a derivator (respectively a pointed derivator, respectively a triangulated derivator). If D

and D
′ are derivators, then any equivalence Φ is exact.

Remark 10.13. If Φ : D −→ D
′ is a strict morphism of prederivators which is an equivalence,

then there is no reason in general for there to exist a strict quasi-inverse of Φ . This is one of the
reasons we are not only dealing with strict morphisms of derivators. Nevertheless, we can always
strictify morphisms of (pre)derivators as follows.

Proposition 10.14. Let Φ : D −→ D
′ be a morphism of prederivators. Then there are two strict

morphisms of prederivators

Φ ′ : D′′ −→ D and Φ ′′ : D′′ −→ D
′,

with Φ ′ an equivalence, and an isomorphism ΦΦ ′ � Φ ′′. In other words, there is an essentially
commutative diagram of prederivators

D
′′

Φ ′ Φ ′′

D
Φ

D
′

where the morphisms Φ ′ and Φ ′′ are strict, and Φ ′ is an equivalence.

Proof. We first define the prederivator D
′′. For a category X in Dia, the objects of the category

D
′′(X) are the triples (F ′, f,F ) where F ′ is an object of D

′(X), F is an object of D(X), and f is
a given isomorphism f :F ′ −→ ΦX(F) in the category D

′(X). A map (F ′, f,F ) −→ (G′, g,G)

in D
′′(X) is a couple (a′, a), where a′ is a map from F ′ to G′ in D

′(X), where a is a map from F

to G in D(X), and the square

F ′ f

a′

ΦX(F)

ΦX(a)

G′
g

ΦX(G)

commutes in D
′(X). For a functor u :X −→ Y in Dia, we define an inverse image functor

u∗ : D′′(Y ) −→ D
′′(X)

by the formulas:

(i) On objects: The functor u∗ : D′′(Y ) −→ D
′′(X) takes an object (F ′, f,F ) of D

′′(Y ) to the
object (u∗(F ′), βu,F ◦ u∗(f ),u∗(F )) of D

′′(X), where βu,F is the structural isomorphism
u∗ΦY (F) −→ ΦXu∗(F ) of Φ (see 10.1).
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(ii) On morphisms: The functor u∗ : D′′(Y ) −→ D
′′(X) takes a morphism (a′, a) to the mor-

phism (u∗(a′), u∗(a)).

We leave it to the reader to check that, with this definition, u∗ : D′′(Y ) −→ D
′′(X) is a functor.

We also leave it to the reader to define what D
′′ does to 2-cells in Dia. And then the reader should

check that with these definitions D
′′ is a prederivator.

The functor

D
′′(X) −→ D(X), (F ′, f,F ) 
−→ F

defines a strict morphism of prederivators Φ ′ : D′′ −→ D, and the functor

D
′′(X) −→ D

′(X), (F ′, f,F ) 
−→ F ′

defines a strict morphism of prederivators Φ ′′ : D′′ −→ D
′. It is obvious that Φ ′ is an equivalence,

and that ΦΦ ′ is isomorphic to Φ ′′. �
Remark 10.15. If, in Proposition 10.14, we furthermore assume that D and D

′ are triangulated
derivators and Φ : D −→ D

′ is an exact morphism, then D
′′ is also a triangulated derivator and

Φ ′ and Φ ′′ are exact morphisms. The fact that D
′′ is a triangulated derivator and the morphism

Φ ′ is exact is just because the Φ ′ is an equivalence; see Remark 10.12. The fact that Φ ′′ is exact
is also immediate.

10.16. A prederivator D is small if, for any category X in Dia, the category D(X) is small.
Let TDstr be the category with objects the small triangulated derivators, and morphisms the
strict exact morphisms of derivators. One defines the category πTDstr (respectively πTD) as
the category whose objects are the small triangulated derivators, and whose morphisms are the
isomorphism classes of strict exact morphisms (respectively of exact morphisms) of derivators.
There are obvious canonical functors

γstr :TDstr −→ πTDstr and i :πTDstr −→ πTD

which are the identity on objects. One defines the functor

γ :TDstr −→ πTD

as the composition γ = iγstr .

Proposition 10.17. The class of equivalences of derivators admits a right calculus of fractions
in the category πTDstr; see [10, Chapter I, 2.3]. Moreover, the canonical functor

i :πTDstr −→ πTD

sends equivalences of derivators to isomorphisms, and furthermore it is universal with this prop-
erty; the functor i induces an isomorphism of categories between the localization of πTDstr, with
respect to the equivalences of derivators, and the category πTD.
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Proof. First we prove that the class of equivalences of derivators admits a right calculus of
fractions. It is clear that any identity is an equivalence of derivators and that equivalences of
derivators are stable by composition. Consider now a diagram in πTDstr

D
′

S

E
Φ

D

where S is an equivalence. Then S has a quasi-inverse S−1. Proposition 10.14 and Remark 10.15,
applied to the morphism S−1Φ , tell us that there exists a commutative diagram in πTDstr

E
′

T

Φ ′
D

′

S

E
Φ

D

where T is an equivalence. Next we have to show that, given two strict morphisms Φ and Φ ′
from D to D

′ and a strict equivalence S : D′ −→ E
′ such that SΦ � SΦ ′, there is a strict equiv-

alence T : E −→ D such that ΦT � Φ ′T . The point is that, if S−1 is a quasi-inverse of S, we
have

Φ � S−1SΦ � S−1SΦ ′ � Φ ′,

so T = 1D will do. So far, this establishes that there is a right calculus of fractions.
The fact that any equivalence of derivators induces an isomorphism in πTD is by the existence

of a quasi-inverse; see 10.13. The universality of the map i follows from Proposition 10.14,
Remark 10.15 and the calculus of fractions. �
Remark 10.18. Next we state a corollary that will tell us that K-theory is functorial in non-strict
morphisms of derivators. In reading Corollary 10.19, the reader should put L = K , and C should
be the homotopy category of spaces.

Corollary 10.19. Let Lstr :TDstr −→ C be a functor that sends strict equivalences of derivators
to isomorphisms. There is a unique functor L :πTD −→ C such that the triangle below commutes

TDstr
Lstr

γ

C

πTD.

L

In other words, the functor γ identifies the category πTD with the localization of TDstr by the
class of strict equivalences of triangulated derivators.
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Proof. By Proposition 10.17 it suffices to prove that, for any isomorphic strict morphisms of
triangulated derivators Φ and Φ ′, one has Lstr(Φ) = Lstr(Φ

′). We will do this by constructing
an auxiliary derivator.

Let D
′ be any prederivator. Define a new prederivator D

′′ as follows. For a category X in Dia,
D

′′(X) is the full subcategory of the category of arrows of D
′(X) whose objects are the isomor-

phisms. It is clear that this defines a prederivator D
′′. Moreover, we have three strict morphisms

of prederivators

i : D′ −→ D
′′ and s, t : D′′ −→ D

′,

where i sends an object to its identity, and s (respectively t) sends an isomorphism to its source
(respectively to its target). The morphisms i, s and t are equivalences of prederivators. If D

′
is a triangulated derivator, it follows that so is D

′′. We also have that si = t i = 1D
′ , so that

Lstr(s) = Lstr(t).
Now let Φ : D −→ D

′ and Φ ′ : D −→ D
′ be strict, exact morphisms of triangulated derivators,

and α :Φ �⇒ Φ ′ an isomorphism. Then α defines a strict, exact morphism Φ ′′ : D −→ D
′′, so

that sΦ ′′ = Φ and tΦ ′′ = Φ ′. Hence

Lstr(Φ) = Lstr(s)Lstr(Φ
′′) = Lstr(t)Lstr(Φ

′′) = Lstr(Φ
′). �

Remark 10.20. The category TDstr has finite products. Its terminal object is 0, the zero derivator,
defined by 0(X) = e for any X in Dia. The binary product of D and D

′ is given by

(D×D
′)(X) = D(X) × D

′(X) for any X in Dia.

It is easy to see that the category πTDstr has finite products and that the functor from TDstr

to πTDstr commutes with finite products. Using Proposition 10.17 and [10, Chapter I, Proposi-
tion 3.1] one deduces that the category πTD has finite products, and that the canonical functor
from TDstr to πTD commutes with finite products (the reader might also wish to prove this di-
rectly). Under the assumptions of Corollary 10.19, if the category C has finite products and if the
functor Lstr commutes with finite products, we conclude that the functor L also commutes with
finite products.

11. Equivalent versions of additivity

The additivity theorem is a statement about the derivator Exact(D), and about two maps out of
it. In this section we give the precise formulation of the theorem, and prove the equivalence with
the assertion in Remark 3.19; see also Caution 3.18. The reader should note that, even though the
statement of the key Proposition 11.12 can be made purely in terms of strict morphisms of deriva-
tors, the proof appeals to three non-strict morphisms. This explains why we need Section 10.

11.1. Before we go much further we want a few little lemmas about cheap ways to construct
global cartesian squares. First some notation: let I be the category defined by the graph

0 ←− 1.
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We wish to consider the following three functors

s = 0 : e −→ I, t = 1 : e −→ I and p : I −→ e.

Now is isomorphic to I × I , and we get a wealth of functors on = I × I . There are the
functors

s × 1I , t × 1I , 1I × s and 1I × t

all of which are functors I −→ I × I = . There are also the two functors

1I × p and p × 1I

which are functors = I × I −→ I . And finally we also wish to consider the four functors

s × s, s × t, t × s and t × t

which are all functors e −→ I × I = . We adopt the notation (s × s)(e) = (0,0), (s × t)(e) =
(0,1), (t × s)(e) = (1,0) and (t × t)(e) = (1,1).

Lemma 11.2. Let D be a derivator and let F be any object in D(I ). Then the global commutative
squares (p × 1I )

∗(F ) and (1I × p)∗(F ) are cartesian in D(I × I ) = D( ).

Proof. By symmetry it suffices to prove the assertion for 1I × p. Now observe that 1I × p : I ×
I −→ I has a left adjoint 1I × t : I −→ I × I . The map 1I × t factors as

I
ρ−−→ σ−−→ .

By Lemma 6.1 we know that the functor (1I × p)∗ has a left adjoint (σρ)∗ = ρ∗σ ∗. In
other words, (1I × p)∗ is naturally isomorphic to σ∗ρ∗. Any object in the essential image of
(1I × p)∗ � σ∗ρ∗ lies in the essential image of σ∗. By Proposition 7.3 the essential image of the
functor σ∗ consists precisely of the cartesian global commutative squares. �
Lemma 11.3. Let D be a derivator. Then the composites

D(e)
t!−−→ D(I )

s∗−−→ D(e), D(e)
t!−−→ D(I )

t∗−−→ D(e)

are naturally isomorphic, respectively, to 0 : D(e) −→ D(e) and 1 : D(e) −→ D(e). Dually the
composites

D(e)
s∗−−→ D(I )

s∗−−→ D(e), D(e)
s∗−−→ D(I )

t∗−−→ D(e)

are naturally isomorphic, respectively, to 1 : D(e) −→ D(e) and 0 : D(e) −→ D(e).

Proof. The assertions being dual it suffices to prove the statements for t!. The fact that t∗t! � 1
is because t! is fully faithful; see Proposition 7.1. For the assertion that s∗t! � 0 we proceed as
follows. We know that the functor t : e −→ I embeds e as the initial object. The functor t is
an open immersion. Proposition 8.11 establishes that any object t!(F ) will have the property that
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t!(F )y vanishes when y ∈ I − t (e). The only point y with this property is y = 0 ∈ I . We conclude
that 0 � t!(F )0 = s∗t!(F ). �
Definition 11.4. Let D be a triangulated derivator. We define two exact morphisms

θ : D −→ D , ρ : D −→ D .

In the notation of Examples 10.5 and 10.6 they are given as the composites

D
t!−−→ DI

(1I ×p)∗−−−−−→ D ,

D
s∗−−→ DI

(p×1I )∗−−−−−→ D .

Next we compute what these maps do.

Lemma 11.5. Let D be a triangulated derivator. For any object F in D(e) we have isomorphisms,
natural in F ,

θ(F )0,0 � 0, θ(F )0,1 � 0, θ(F )1,0 � F, θ(F )1,1 � F.

The computation for ρ yields

ρ(F )0,0 � F, ρ(F )0,1 � 0, ρ(F )1,0 � F, ρ(F )1,1 � 0.

Proof. The statements are dual, so we prove only the assertion about θ . The point is that the
computation is easy; for example

θ(F )0,1 = (s × t)∗θ(F ) = (s × t)∗(1I × p)∗t!(F ) = s∗t!(F ) � 0,

where the last isomorphism is by Lemma 11.3. The remaining computations are similar. �
Remark 11.6. Let D be a triangulated derivator. If X is an object of Dia, then Proposi-
tion 7.8 asserts that DX is also a triangulated derivator. For any object F ∈ DX(e) the objects
θ(F ),ρ(F ) ∈ DX( ) are

(1) Cartesian by Lemma 11.2.
(2) Satisfy θ(F )0,1 � ρ(F )0,1 � 0 by Lemma 11.5.

Next we consider the category of all G ∈ DX( ) satisfying this.

Definition 11.7. Let D be a triangulated derivator and let X be a category in Dia. One defines
the category Exact(D)(X) of short exact sequences in DX as a full subcategory of D(X × ) =
DX( ). The objects of Exact(D)(X) are defined to be the objects G ∈ DX( ) such that

(1) G is cartesian.
(2) G0,1 � 0.
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11.8. Suppose D is a triangulated derivator. Proposition 7.7 says that, if j :X −→ Y is any
morphism in Dia, then the functor (j × 1 )∗ : D(Y × ) −→ D(X × ) takes Exact(D)(Y ) ⊂
D(Y × ) to Exact(D)(X) ⊂ D(X × ). This means that Exact(D) can be given, uniquely, the
structure of a prederivator, so that the natural inclusion Exact(D) ↪→ D is a strict morphism of
prederivators.

In 11.1 we produced many functors, among them (1I × s) : I −→ I × I = and
(t × 1I ) : I −→ I × I = . In concrete terms these are, respectively, the inclusions of

(0,0)

(1,0)

and (1,0) −→ (1,1)

as subcategories of

(0,0) (0,1)

(1,0) (1,1).

In the notation of Example 10.5 we have strict morphisms of derivators

(1I × s)∗ : D −→ DI ,

(t × 1I )
∗ : D −→ DI .

The composites

Exact(D)
inclusion−−−−−→ D

(1I ×s)∗−−−−−→ DI ,

Exact(D)
inclusion−−−−−→ D

(t×1I )∗−−−−→ DI

are strict morphisms of prederivators, and Proposition 8.13 and its dual tell us that both compos-
ites are equivalences. We conclude that the prederivator Exact(D) is a triangulated derivator; we
have two equivalences with the triangulated derivator DI .

Finally we have to prove that the inclusion Exact(D) −→ D is exact. This means we must
prove, for every morphism j :X −→ Y in Dia, that the morphisms j!, j∗, take Exact(D)(X) ⊂
D (X) to Exact(D)(Y ) ⊂ D (Y ). But this is immediate from Example 10.6; we know that the
maps j! and j∗, viewed as morphisms of derivators DX −→ DY , are, respectively, left exact and
right exact.

Lemma 11.9. Definition 11.4 gives us two maps θ,ρ : D −→ D . We assert that the maps θ,ρ

factor as

D

θ ′

ρ′
Exact(D)

inclusion
D

with θ ′, ρ′ : D −→ Exact(D) both exact morphisms of triangulated derivators.
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Proof. The fact that the images of θ and ρ lie in Exact(D) ⊂ D was seen in Remark 11.6.
The factorization exists as maps of derivators. To check that the morphisms θ ′, ρ′ are exact we
observe that the two composites

D

θ ′

ρ′
Exact(D)

inclusion
D

(1I ×s)∗
DI

are exact; they equal, respectively, (1I × s)∗θ and (1I × s)∗ρ. Since the map

Exact(D)
inclusion

D
(1I ×s)∗

DI

is an equivalence, it follows that θ ′ and ρ′ are exact. �
11.10. Recall the category TDstr of 10.16; the objects are small triangulated derivators, and

the morphisms are the strict, exact morphisms. A functor Lstr, from the category TDstr to the
category of spaces, will be called an additive space functor providing

(a) For any equivalence of triangulated derivators D −→ D
′, the map

Lstr(D) −→ Lstr(D
′)

is a weak homotopy equivalence.
(b) The functor Lstr sends the zero derivator to a weakly contractible space and, for any trian-

gulated derivators D and D
′, the canonical map

Lstr(D×D
′) −→ Lstr(D) × Lstr(D

′)

is a weak homotopy equivalence.

Corollary 10.19 allow us to extend Lstr to a functor L :πTD −→ Hot, where Hot is the homotopy
category of spaces. Remark 10.20 guarantees that L commutes with finite products.

The example we care about is where Lstr is K-theory.

11.11. We wish to consider in Dia the two morphisms (s × s), (t × t), which (see 11.1) are both
functors e = e × e −→ I × I = . They induce strict exact morphisms of triangulated derivators
(s × s)∗, (t × t)∗ : D −→ D. They define two strict exact morphisms of triangulated derivators
by restriction to Exact(D)

(s × s)∗, (t × t)∗ : Exact(D) −→ D .

We also have strict exact morphisms of triangulated derivators

DI

s∗

t∗
D .

We prove:
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Proposition 11.12. Let Lstr be an additive space functor. Then the following conditions are
equivalent:

(i) The map

(
Lstr

(
(s × s)∗

)
,Lstr

(
(t × t)∗

))
:Lstr

(
Exact(D)

) −→ Lstr(D) × Lstr(D)

is a weak homotopy equivalence.
(ii) The map

(
Lstr(s

∗),Lstr(t
∗)

)
:Lstr(DI ) −→ Lstr(D) × Lstr(D)

is a weak homotopy equivalence.

Proof. In the notation of 11.10, we need to prove that

(
L

(
(s × s)∗

)
,L

(
(t × t)∗

))
:L

(
Exact(D)

) −→ L(D) × L(D)

is an isomorphism in Hot if and only if

(
L(s∗),L(t∗)

)
:L(DI ) −→ L(D) × L(D)

is. In Lemma 11.9 we produced two exact (non-strict) morphisms θ ′, ρ′ : D −→ Exact(D). They
induce two maps L(θ ′),L(ρ′) of the form L(D) −→ L(Exact(D)). From 11.10 we know that,
for any triangulated derivator D, the (non-strict) direct sum operation μ : D×D −→ D induces a
commutative H -space structure3 on the space L(D). We will prove that each of (i) and (ii) above
is equivalent to the following assertion

(iii) The composite

L(D) × L(D)
L(θ ′)×L(ρ′)−−−−−−−→ L

(
Exact(D)

) × L
(
Exact(D)

) L(μ)−−−→ L
(
Exact(D)

)
is an isomorphism in Hot.

The assertion (i) says that some map L(Exact(D)) −→ L(D) × L(D) is an isomorphism in
Hot, while the assertion (iii) claims that some map L(D)×L(D) −→ L(Exact(D)) is an isomor-
phism in Hot. To prove the equivalence (i) ⇐⇒ (iii) we will show that the composite

L(D) × L(D) −→ L
(
Exact(D)

) −→ L(D) × L(D)

is an isomorphism in Hot. In fact we will study the composite at the level before we apply the
functor L. On the level of derivators the map is induced by

D×D
θ ′×ρ′−−−→ Exact(D) × Exact(D)

μ−−→ Exact(D)
((s×s)∗,(t×t)∗)−−−−−−−−−→ D×D .

3 We even have an infinite loop space structure; see Corollary A.8.
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The composite above equals the composite below

D×D
θ×ρ−−→ D ×D

μ−−→ D
((s×s)∗,(t×t)∗)−−−−−−−−−→ D×D

which is nothing other than the map

(
(s × s)∗θ (s × s)∗ρ
(t × t)∗θ (t × t)∗ρ

)
: D×D −→ D×D;

in Lemma 11.5 we computed that this comes to

(
(s × s)∗θ (s × s)∗ρ
(t × t)∗θ (t × t)∗ρ

)
�

(
0 1
1 0

)

which is an equivalence of derivators.
Now we need to show (ii) ⇐⇒ (iii). The assertion (iii) is a statement that some map

L(D) × L(D) −→ L(Exact(D)) is an isomorphism in Hot, and the assertion of (ii) claims that
some map L(DI ) −→ L(D) × L(D) is an isomorphism in Hot. In (11.8) we found that the com-
posite

Exact(D)
inclusion−−−−−→ D

(t×1I )∗−−−−→ DI

is an equivalence of derivators; applying L to it we have an isomorphism Φ from L(Exact(D))

to L(DI ). Our proof that (ii) ⇐⇒ (iii) will consist of showing that the composite

L(D) × L(D) −→ L
(
Exact(D)

)
Φ−−→ L(DI ) −→ L(D) × L(D)

is an isomorphism in Hot.
Once again it is convenient to compute this map before applying L. In computing the compos-

ite we first replace Exact(D) by the larger derivator D ; all the maps were defined as restrictions
to Exact(D) of maps on D . Our composite comes to

D×D
θ×ρ−−→ D ×D

μ−−→ D
(t×1I )∗−−−−→ DI

(s∗,t∗)−−−−→ D×D .

This composite is nothing other than the map

(
(t × s)∗θ (t × s)∗ρ
(t × t)∗θ (t × t)∗ρ

)
: D×D −→ D×D .

The useful Lemma 11.5 computes for us that this is

(
(t × s)∗θ (t × s)∗ρ
(t × t)∗θ (t × t)∗ρ

)
�

(
1 1
1 0

)
.

This, of course, is not an equivalence of derivators. But on applying the functor L we deduce the
map
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(
1 1
1 0

)
:L(D) × L(D) −→ L(D) × L(D),

which is an isomorphism in Hot. �
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Appendix A. Gamma derivators

A.1. Let D be a triangulated derivator. Let S be a finite set considered as a discrete category. We
denote by P(S) the set of subsets of S ordered by inclusion. We have a canonical, fully faithful
functor

i :S −→ P(S), s 
−→ {s}.
For any category X in Dia we define Γ D(S)(X) to be the essential image of the functor
(1X × i)∗. That is, Γ D(S)(X) ⊂ D(X × P(S)) is the full subcategory whose objects are

Ob
[
Γ D(S)(X)

] =
⎧⎨
⎩ Objects

F ∈ D(X × P(S))

∣∣∣∣∣∣
there exists an object

G ∈ D(X × S), and an
isomorphism F � (1X × i)∗G

⎫⎬
⎭ .

This defines a map, so far only on objects, Γ D(S) :Diaop −→ Cat, sending X to Γ D(S)(X).
The functor (i∗)X : DS(X) −→ DP(S)(X) factors as

DS(X) = D(X × S)
αX−−→ Γ D(S)(X)

βX−−→ DP(S)(X) = D
(
X × P(S)

)
.

Next we extend Γ D(S) to be a 2-functor of 2-categories.

Lemma A.2. With the notation as above Γ D(S) extends, uniquely, to a triangulated derivator,
in such a way that the maps

DS
α−−→ Γ D(S)

β−−→ DP(S)

are both morphisms of derivators, with α an equivalence and β a strict, exact morphism.

Proof. Example 10.6, applied to the functor i∗ : DS −→ DP(S), tells us that it is a right exact
morphism of derivators. Proposition 10.9 allows us to conclude that it is exact.

The fact that i∗ is a morphism of derivators means that, for any morphism u :X −→ Y in Dia,
the map

u∗ : DP(S)(Y ) −→ DP(S)(X)

takes objects in the essential image of i∗ to objects in the essential image of i∗. We conclude
that u∗ takes Γ D(S)(Y ) ⊂ DP(S)(Y ) to Γ D(S)(X) ⊂ DP(S)(X). This means that Γ D(S) is a
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subprederivator of DP(S), that is the inclusion β is a strict morphism. Furthermore, α is a (non-
strict) morphism of prederivators.

Now Proposition 7.1 says that the functor i∗ : DS(X) −→ DP(S)(X) is fully faithful, which
means that the map αX : DS(X) −→ Γ D(S)(X) is an equivalence of categories. That is, α is
an equivalence of prederivators. Since DS is a triangulated derivator, so is Γ D(S). Also, since
βα = i∗ is exact and α is an equivalence, it follows that β is exact. �
Lemma A.3. For any finite set S, the canonical strict exact morphism

Γ D(S) −→
∏
s∈S

Γ D
({s})

is an equivalence of derivators.

Proof. Note that we have an equivalence DS � Γ D(S), and for DS the assertion is an immediate
consequence of the non-triviality axiom. �
Lemma A.4. Let D be any triangulated derivator. The essential image of the functor i∗ : D(S) −→
D(P (S)) consists of the objects F of D(P (S)) such that, for any subsets U and V of S satisfying
the condition U ∩ V = ∅, the canonical map

FU∪V −→ FU ⊕ FV

is an isomorphism.

Proof. Let F be an object of D(S), and U a subset of S. By the base change axiom one has the
following identification.

i∗(F )U = Γ∗(S/U,F/U).

Here S/U = U , where on the left U is an element of P(S), and on the right U is a set seen as a
discrete category. Furthermore, F/U is the restriction F |U of F at U . The non-triviality axiom
gives canonical isomorphisms

i∗(F )U � Γ∗(U,F |U) �
⊕
u∈U

Fu.

This description of i∗(F ) implies that, for any subsets U and V of S satisfying the condition
U ∩ V = ∅, the canonical map

i∗(F )U∪V −→ FU ⊕ FV

is an isomorphism.
Next we need to prove the converse. Let F be any object in D(P (S)). By Proposition 7.1 the

functor i∗ : D(S) −→ D(P (S)) is fully faithful. If η is the unit of adjunction η : 1 −→ i∗i∗, the
full faithfulness means that the map

i∗η : i∗F −→ i∗i∗i∗F
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is an isomorphism. If s ∈ S is any point, we deduce that the map s∗i∗F −→ s∗i∗i∗i∗F most
certainly must also be an isomorphism, that is

η{s} :F{s} −→ i∗i∗F{s}

is an isomorphism.
Now suppose the object F ∈ D(P (S)) satisfies the hypothesis of the lemma. Then, if G is

either F and i∗i∗F , the natural map

GU −→
⊕
u∈U

G{u}

is an isomorphism. For G = F this is by assumption, while for G = i∗i∗F it is by the first part
of the proof. In the commutative square

FU

ηU

β

i∗i∗FU

γ

⊕
u∈U F{u} ⊕η{u}

⊕
u∈U i∗i∗F{u}

we now know that the maps β , γ and η{u} are isomorphisms. Hence so is ηU . Der 2 allows us to
deduce that η :F −→ i∗i∗F is an isomorphism. �
A.5. We recall here the definition of Segal’s category Γ . The objects of Γ are finite sets, and
morphisms in Γ from S to T are maps a :S −→ P(T ) such that, given any elements s and s′
of S, if s �= s′ then a(s) ∩ a(s′) = ∅. The composition of

a :S −→ P(T ) and b :T −→ P(U)

is defined by

b ◦ a :S −→ P(U), s 
−→
⋃

t∈a(s)

b(t).

For any integer n � 0, one denotes by n the set of integers {1, . . . , n}. In particular, 0 is the empty
set.

There is a canonical functor π from Γ to Dia, defined by π(S) = P(S) on objects, and which
associates to a map a :S −→ P(T ) the functor

π(a) :P(S) −→ P(T ), U 
−→
⋃
u∈U

a(u).

Given a triangulated derivator D, we obtain a presheaf on Γ with values in the category of
triangulated derivators

S 
−→ Dπ(S) = DP(S) .
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One checks easily that one gets a subpresheaf Γ D of the latter defined by

S 
−→ Γ D(S).

Remark A.6. Let p : 2 −→ 1 � e be the canonical map. Under the canonical strict equivalence
D2 � D×D, the exact morphism

p∗ : D2 −→ D

corresponds to the exact morphism

μ : D×D −→ D, (F,G) −→ F ⊕ G.

Let m : 1 −→ P(2) be the map in Γ which sends the unique element of 1 to 2 = {1,2} ∈ P(2).
This defines a strict exact morphism

m∗ :Γ D(2) −→ Γ D(1),

and under the identifications Γ D(2) � D2 and Γ D(1) � D, m∗ corresponds to the morphism p∗
above. In other words, the operator m∗ can be seen as a strictification of the binary direct sum
operation. More generally, the category Γ acts on the Γ D(S)’s as a way to strictify the asso-
ciativity and commutativity of the symmetric monoidal structure defined on D by the direct sum
operation.

Proposition A.7. Let Lstr be an additive space functor, as in 11.10. Then Lstr(Γ D) is a Γ -space
as defined by Segal [31]. In other words, for any integer n � 0, the Segal map

Lstr(Γ D)(n) −→ Lstr(Γ D)(1)n = Lstr(Γ D)(1) × · · · × Lstr(Γ D)(1)︸ ︷︷ ︸
n times

is a weak homotopy equivalence.

Proof. This is a direct consequence of 11.10(a) and (b), coupled with Lemma A.3. �
Corollary A.8. The space Lstr(D) is canonically (in particular functorially) endowed with the
structure of an infinite loop space.

Proof. We have a canonical equivalence of derivators

Γ D(1) −→ D .

By property (a) of 11.10, the map Lstr(Γ D(1)) −→ Lstr(D) must be a weak homotopy equiv-
alence. The corollary now follows by applying Segal’s delooping machine [31] to the special
Γ -space Lstr(Γ D). �
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