
DON’T CRY TO BE THE FIRST!

SYMMETRIC FAIR DIVISION ALGORITHMS EXIST.

GUILLAUME CHÈZE

Abstract. In this article we study a cake cutting problem. More precisely,

we study symmetric fair division algorithms, that is to say we study algo-
rithms where the order of the players do not influence the value obtained by

each player. In the first part of the article, we give a symmetric and envy-free

fair division algorithm. More precisely, we show how to get a symmetric and
envy-free fair division algorithm from an envy-free division algorithm.

In the second part, we give a proportional and symmetric fair division algo-

rithm with a complexity in O(n3) in the Robertson-Webb model of complexity.
This algorithm is based on Kuhn’s algorithm. Furthermore, our study has led

us to introduce a new notion: aristotelian fair division. This notion is an

interpretation of Aristotle’s principle: give equal shares to equal people.
We conclude this article with a discussion and some questions about the

Robertson-Webb model of computation.

Introduction

In this article we study the problem of fair resource allocation. It consists to
share an heterogeneous good between different players or agents. This good can
be for example: a cake, land, time or computer memory. This problem is old. For
example, the Rhind mathematical papyrus contains problems about the division
of loaves of bread and about partition of plots of land. In the Bible we find the
famous “Cut and Choose” algorithm and in the greek mythology we find the trick
at Mecone.
The problem of fair division has been formulated in a scientific way by Steinhaus
in 1948, see [Ste48]. Nowadays, there exists several papers, see e.g. [DS61, EP84,
EP11, BT95, RW97, Pik00, Tho06, Pro13, BJK13, AM16], and books about this
topic, see e.g. [RW98, BT96, Pro16, Bar05]. These results appear in the math-
ematics, economics, political science, artificial intelligence and computer science
literature. Recently, the cake cutting problem has been studied intensively by com-
puter scientists for solving resource allocation problems in multi agents systems,
see e.g. [CDE+06, CLPP13, KPS13, BM15].

Throughout this article, the cake will be an heterogeneous good represented by
the interval [0, 1]. We consider n players and we associate to each player a non-
atomic probability measure µi on the interval X = [0; 1]. These measures represent
the utility functions of the player. The set X represents the cake and we have
µi(X) = 1 for all i. The problem in this situation is to get a fair division of

Guillaume Chèze: Institut de Mathématiques de Toulouse, UMR 5219, Université de
Toulouse ; CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France

E-mail address: guillaume.cheze@math.univ-toulouse.fr.
Date: April 10, 2018.

1

2 G. CHÈZE

X = X1 t . . . tXn, where the i-th player get Xi.

A practical problem is the computation of fair divisions. In order to describe
algorithms we thus need a model of computation. There exist two main classes
of cake cutting algorithms: discrete and continuous protocols (also called moving
knife methods). Here, we study discrete algorithms. These kinds of algorithms can
be described thanks to the classical model introduced by Robertson and Webb and
formalized by Woeginger and Sgall in [WS07]. In this model we suppose that a
mediator interacts with the agents. The mediator asks two type of queries: either
cutting a piece with a given value, or evaluating a given piece. More precisely, the
two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means compute
µi([x, y]).

(2) cuti(x, a): Asks agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, solve µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries from the previ-
ous answers given by the players. In this model, the complexity counts the finite
number of queries necessary to get a fair division. For a rigourous description of
this model we can consult: [WS07, BN17]

When we design a cake cutting algorithm, we have to precise what is the mean-
ing of a fair division. Indeed, there exists different notions of fair division.
We say that a division is proportional when µi(Xi) ≥ 1/n.
We say that a division is envy-free when for all i 6= j, µi(Xi) ≥ µi(Xj).
We say that a division is equitable when for all i 6= j, µi(Xi) = µj(Xj).

The first studied notion of fair division has been proportional fair division,
[Ste48]. Proportional fair division is a simple and well understood notion. In [Ste48]
Steinhaus explains the Banach-Knaster algorithm, also called last diminisher algo-
rithm, which gives a proportional fair division. There also exists an optimal algo-
rithm to compute a proportional fair division in the Robertson-Webb model, see
[EP84, EP11]. The complexity of this algorithm is in O

(
n log(n)

)
. Furthermore,

the portion Xi given to the i-th player in this algorithm is an interval.

It is more difficult to get an envy-free fair division. Indeed, whereas envy-free
fair divisions where each Xi is an interval exist, there do not exist an algorithm
in the Robertson-Webb model computing such divisions. These results have been
proved by Stromquist in [Str80, Str08]. The first envy-free algorithm has been given
by Brams and Taylor in [BT95]. This algorithm has been given approximatively 50
years after the first algorithm computing a proportional fair division. The Brams-
Taylor algorithm has an unbounded complexity in the Robertson-Webb model.
This means that we cannot bound the complexity of this algorithm in terms of the
number of players only. It is only recently that a finite and unbounded algorithm
has been given to solve this problem [AM16]. The complexity of this algorithm is

in O
(
nn

nnnn)
. A lower bound for envy-free division algorithm has been given by

Proccacia in [Pro09]. This lower bound is in O(n2).

SYMMETIC FAIR DIVISION ALGORITHMS 3

Equitable fair divisions have been less studied than proportional and envy-free
divisions. However, there exist some results showing the difficulty to get such fair
divisions. Indeed, there exist equitable fair divisions where each Xi is an interval,
see [CDP13, SHS, Chè17]. However, there do not exist algorithms computing an
equitable fair division where each Xi is an interval, see [CP12]. To author’s knowl-
edge the existence or the non-existence of an algorithm giving an equitable fair
division is still unknow.

In practice, a cake cutting algorithm F has in inputs a list of measures µ =
[µ1, . . . , µn], and returns a partition X = F(X,µ, 1) t . . . t F(X,µ, n), where each
F(X,µ, i) is a finite union of disjoint intervals. The set F(X,µ, i) is the part given
to the i-th player appearing in the the list µ when we apply the algorithm F to
this list of measures.

The definition of proportional or envy-free fair division is independent of the
order of the players in the list µ. However, this order is important in cake-cutting
algorithms. For example, the role of the two players in the “Cut and Choose”
algorithm are not symmetric. This leads the definition of symmetric fair division
algorithm.

Definition 1. We denote by µσ the list µσ = [µσ(1), . . . , µσ(n)], where σ belongs
to the permutation group Sn. A cake cutting algorithm F is symmetric when

∀i ∈ {1, . . . , n},∀σ ∈ Sn, µi
(
F(X,µ, i)

)
= µi

(
F(X,µσ, σ−1(i))

)
.

For example, if n = 3 and σ = (1 2 3) then a symmetric fair division algorithm
satisfies:

µ1

(
F(X, [µ1, µ2, µ3], 1)

)
= µ1

(
F(X, [µ2, µ3, µ1], 3)

)
.

A cake cutting algorithm is symmetric means whatever the order of the mea-
sure given in inputs, all players will received the same value of the cake. Indeed,
F(X, [µ2, µ3, µ1], 3) is the portion given to the third player in the list [µ2, µ3, µ1].
Thus this corresponds to the portion given to the player with measure µ1 when
the algorithm F as in input the list [µ2, µ3, µ1]. Thus, if the player with associated
measure µ1 is in the first or in the last position in the inputs he or she will get a
portion with the same measure relatively to his or her preference µ1. Therefore,
there is no advantage to be the first in the list µ. The measure of the received
portion is independent of the position of a player in the list.
This notion has been introduced by Manabe and Okamoto in [MO10]. They call
this kind of fair division meta envy-free. In this article we call this property sym-
metric in order to emphasize the role of the permutations of the players. In their
paper Manabe and Okamoto have shown that classical algorithms such as Selfridge-
Conway, and Brams-Taylor’s algorithms are not symmetric. Then they have given
a symmetric and envy-free algorithm for 4 players and ask if it is possible to get
such a division protocol for n ≥ 4 players. Here, we answer to this question and we
prove the following result:

Theorem 2. There exists deterministic symmetric and envy-free cake cutting al-
gorithms.

4 G. CHÈZE

In order to prove this result we show how to construct such an algorithm from
an envy-free algorithm. The idea is to use an already existing envy-free algorithm
f , see e.g. [BT95, RW97, Pik00, AM16] and to construct from it a symmetric and
envy-free algorithm F . In order to get a symmetric algorithm we compute all f(µσ)
and then we take the “best” one. Here “best” will mean : satisfy some topological
conditions, e.g. we select a partition with the minimal number of cuts.

Our approach computes n! envy-free divisions, thus this gives an algorithm with a
huge complexity in the Robertson-Webb model. Furthermore, our algorithm gives a
proportional division since it gives an envy-free division. A natural question is then:
Can we get a symmetric and proportional division algorithm with a polynomial
complexity?
We prove in Section 2 the following result:

Theorem 3. There exists a deterministic symmetric and proportional algorithm
which uses at most O(n3) queries in the Robertson-Webb model.

The deterministic assumption is important. We do not want to get a situation
where a player could think that he is unlucky.
We can already remark that the Evan-Paz algorithm, see [EP84], and the last di-
minisher procedure are not deterministic and not symmetric. Indeed, if during
these algorithms several players cut the cake at the same point then this tie is
usually breaked with a random process. Another way to break the tie is to use
the order on the players. For example, if all the players in the first step of the
Evan-Paz algorithm cut the cake at the same point, then we can give to the players
1, . . . , bn/2c the left part of the cake and to the other players the right part of the
cake. This tie breaking method depends on the order the players and thus it do
not give a symmetric procedure.
Our deterministic symmetric and proportional algorithm relies on the algorithm
given by Kuhn in [Kuh11].

At last, in this article we have introduced a new fair division notion. This
new notion comes from the study of symmetric fair divisions in a particular case:
Suppose that F is a symmetric fair division algorithm. Then we have

µ1

(
F(X, [µ1, µ2, µ3], 1)

)
= µ1

(
F(X, [µ2, µ1, µ3], 2)

)
.

Now, suppose that µ1 = µ2, this gives

µ1

(
F(X, [µ1, µ2, µ3], 1)

)
= µ2

(
F(X, [µ1, µ2, µ3], 2)

)
.

This means that if two players have the same measure then they consider as equal
the portions they get. We call a fair division satisfying this property an “aristotelian
fair division”.

Definition 4. We say that we have an aristotelian division when µi = µj implies
µi(Xi) = µj(Xj).

We have given the name “aristotelian fair division” to this kind of fair divisions
because in the Nicomachean Ethics by Aristotle (Book V) we find:

“. . . it is when equals possess or are allotted unequal shares, or persons not equal
equal shares, that quarrels and complaints arise.”

SYMMETIC FAIR DIVISION ALGORITHMS 5

We remark that symmetric fair division algorithms give aristotelian fair divi-
sions. However, the converse is not true.

As a first step towards the construction of a symmetric and proportional fair
division algorithm, we describe in Section 2 an aristotelian and proportional fair
division algorithm. This algorithm needs O(n3) queries.
This algorithm is interesting for the following reasons: We can remark easily that
an envy-free division is aristotelian. Furthermore, an envy-free division is also
proportional. Thus an envy-free division is always proportional and aristotelian, but
a fair division which is aristotelian and proportional is less demanding than an envy-
free division. However, to author’s knowledge all existing aristotelian proportional
fair division algorithms were envy-free algorithms.
Thus our algorithm shows that if we just want an aristotelian proportional fair
division it is not necessary to use an envy-free algorithm which uses an exponential
number of queries.

Structure of the paper. In Section 1 we give a symmetric and envy-free fair divi-
sion algorithm. Then we give some remarks about the complexity of this algorithm.
In this first section, we also discuss the problem of symmetric and envy-free fair
division in the approximate seeting. In Section 2 we explain why the Evan-Paz and
the last diminisher algorithm do not give aristotelian fair division. Then we give
an aristotelian proportional fair division algorithm and next a symmetric and pro-
portional fair division algorithm. In Section 3 we conclude this article with several
questions about symmetric and aristotelian fair divisions and the Robertson-Webb
model of computation.

1. An envy-free and symmetric cake cutting algorithm

1.1. Two orders on partitions and one algorithm. In this section we intro-
duce two different orders on the partitions. These orders will be used to choose a
“good” partition among the n! possible fair divisions given by all the f(µσ), where
f is a fair division procedure.

In this section, when we study a partition X = X1 t . . . t Xn, Xi will be the
part given to the i-th player.

For each partition X = X1 t . . . tXn we set

Xi =
⊔
j∈Ii

[xi,j , xi,j+1], where Ii is a finite set.

Thus

X =

n⊔
i=1

⊔
j∈Ii

[xi,j , xi,j+1]

and

X =

M⊔
l=0

[zl; zl+1]

where z0 = 0, zM+1 = 1, zl = xi,j and zl < zl+1. From this partition we construct
a vector (z1, . . . , zM) ∈ RM . We say that M + 1 is the size of the partition.

6 G. CHÈZE

Definition 5. The graded order on t∞k=1Rk is the following:
Let (x1, . . . , xM) ∈ RM and (y1, . . . , yN) ∈ RN we have:

(y1, . . . , yN) �gr (x1, . . . , xM) ⇐⇒ N > M

or N = M and y1 > x1,

or N = M, ∃j > 1 such that yi = xi for i < j

and yj > xj .

The graded order gives thus an order on the partitions.

Now, we give an algorithm which computes a word form a partition. The l-th
letter of the word ω is denoted by ω(l).

Word from partition

Input: A partition X = X1 t . . . tXn, where Xi = tj∈Ii [xi,j , xi,j+1], and
X = tMl=1[zl; zl+1] is the associated decomposition.
Output: A word ω constructed over the alphabet a1, . . . , an.

(1) If [z0, z1] ⊂ Xj then a1 is associated to Xj and α := 2.
(2) ω(1) := a1.
(3) For l from 1 to M do

(a) If [zl, zl+1] ⊂ Xi and Xi is associated to ak where k < α
Then ω(l + 1) := ak,
Else associate aα to Xi, ω(l + 1) := aα, and α := α+ 1.

End For.

This algorithm allows us to associated to each partition a word over the alphabet
a1, . . . , an.

Definition 6. Consider two partitions X = X1 t . . .tXn and X = X ′1 t . . .tX ′n.
With the previous algorithm we associate a word ω to the first partition and we
associate a word ω′ to the second partition.

If ω �lex ω′, that is to say, if ω is bigger than ω′ with the lexicographic order with
an �lex an−1 �lex . . . �lex a1, then we say that the partition X = X1 t . . . tXn is
bigger than the partition X = X ′1 t . . . tX ′n relatively to the lexicographic order.
If two partitions gives the same word then we say that the partitions are equal
relatively to the lexicographic order.

Lemma 7. Consider two partitions X = X1 t . . .tXn and X = X ′1 t . . .tX ′n. If
these partitions give the same vector (z1, . . . , zM) and if these partitions are equal
relatively to the lexicographic order, then there exists a permutation σ ∈ Sn such
that:

Xσ(i) = X ′i.

Proof. This follows from the construction of the lexicographic order on the parti-
tions. �

The two previous orders allows to get a symmetric and envy-free fair division.

Symmetric and Envy-free

Inputs: µ = [µ1, . . . , µn], a deterministic envy-free cake cutting algorithm f .
Outputs: X = F(X,µ, 1) t . . . t F(X,µ, n), where F(X,µ, i) is a finite union of
disjoint intervals and F(X,µ, i) is given to the i-th player.

SYMMETIC FAIR DIVISION ALGORITHMS 7

(1) For all σ ∈ Sn, computes the partition f(µσ) and
set S := {f(µσ) |σ ∈ Sn}.

(2) Let S1 be the subset of S of all partitions with a minimal graded order.
(3) If |S1| = 1, then Return the unique partition in S1, else go to the next step.
(4) Let S2 be the set of all the partitions in S1 with a minimal lexicographic

order.
(5) Return a partition f(µσ) ∈ S2.

Theorem 8. The algorithm Symmetric and Envy-free is deterministic symmet-
ric and envy-free.

Proof. This algorithm is envy free because we return a result coming from an envy-
free protocol.

We remark that if we apply the algorithm to the list µ or µρ where ρ ∈ Sn, then
the set S computed in the first step will always be the same. Therefore, we just
have to study the situation where S2 contains several partitions.
Consider two distinct partitions in S2, X = X1 t . . . tXn and X = X ′1 t . . . tX ′n.
Thanks to Lemma 7, there exists a permutation σ ∈ Sn such that Xσ(i) = X ′i.
Thus if the i-th player receives Xi then we have µi(Xi) ≥ µi(Xσ(i)) because f is an
envy-free protocol. Furthermore, Xσ(i) = X ′i, then µi(Xi) ≥ µi(Xσ(i)) = µi(X

′
i).

In the same way, we show that µi(X
′
i) ≥ µi(Xi). We conclude µi(X

′
i) = µi(Xi).

Then, for all partitions in S2 each player will evaluate in the same way his or her
portion. Thus the algorithm is symmetric.
In step 5 we have to choose a partition among all partitions in S2. We can choose
the first computed partition appearing in S2. This last step depends on the order
of the measures given in input. However, as explained before this choice do not
have en effect on how the i-th player evaluate his or her part. �

The idea of the algorithm is the following: if we have different possible partitions
coming from all the f(µσ) then we prefer the ones with the fewest number of
intervals and with the smallest leftmost part. It seems natural to prefer a partition
with few intervals. The second condition can be interpreted as follows: If the
different pieces of cake are given from left to right, thus in increasing order of the
xi,j , then our algorithm gives a first piece with small length to the first served
player. If we imagine that a mediator is used to cut the cake then our convention
means the following: if a player cooperates quickly with the mediator (the player
accepts the leftmost part of the cake) then he gets quickly a piece of cake.

1.2. Some remarks about the complexity of symmetric and envy-free al-
gorithm. Our algorithm relies on an envy-free division algorithm and needs to
compute all fair divisions for all permutation orders. Suppose that this envy-free
division algorithm has a complexity equals to T (n) in the Robertson-Webb model,
then our algorithm uses n!× T (n) queries. Indeed, our approach needs to compute
all the fair divisions for all permutation orders. A natural question is the following:
Is it necessary?

Recently Aziz and Mackenzie has proposed in [AM16] the first envy-free algo-
rithm with a complexity bounded in terms of the number of players. If we use
this algorithm then we get a symmetric and envy-free algorithm with a complexity

8 G. CHÈZE

bounded in terms of the number of players.

At last, we remark that if the envy-free algorithm f uses a continuous protocol (a
moving knife method) then our algorithm F gives a continuous protocol to compute
a symmetric and envy-free division.

1.3. Approximate symmetric and envy-free fair division algorithm. Envy-
free fair division has also been studied in an approximate setting. A division is said
to be ε-envy-free when we have for all i and j: µi(Xi) ≥ µi(Xj)− ε, where ε > 0.
There exists an algorithm which gives such fair division, see [BN17]. The complexity
of this algorithm is in O(n/ε) in the Robertson-Webb model.
In the approximate setting a new definition of symmetric fair division is required.
We say that an algorithm F gives an ε-symmetric fair division when we have for
all i and all permutations σ ∈ Sn:∣∣∣µi(F(X,µ, i)

)
− µi

(
F(X,µσ, σ−1(i))

)∣∣∣ ≤ ε.
This means that if we modify the order of the measures in the input of the algorithm
then the perturbation on the new value obtained by the i-th player is bounded by ε.

With these definitions it is natural to look for an ε-symmetric and ε-envy-free
fair division. In this situation we do not need to repeat n! times an ε-envy-free al-
gorithm. Indeed, contrary to the exact setting there exists an algorithm computing
an ε-perfect fair division, see [BM15]. This means that there exists an algorithm F
such that ∣∣∣µi(F(X,µ, i)

)
− 1

n

∣∣∣ ≤ ε.
The complexity of this algorithm is in O(n2/ε).
Thus the ε-perfect algorithm gives an ε-symmetric and ε-envy-free fair division
without increasing the complexity of an ε-envy-free protocol by a factor n!. Un-
fortunately, this algorithm has an exponential time complexity in n if we take into
account the number of elementary operations (arithmetic operations and inequality
tests). Indeed, in this algorithm we have to consider all subsets Y with cardinal

at most n(n − 1) in a set with cardinal nK where K = d 2n(n−1)
ε e. Therefore, the

asymptotic formula
(

2n
n

)
≈ 4n√

πn
shows that we have to consider an exponential

number of subsets.

2. Aristotelian, symmetric and proportional cake cutting
algorithms

In this section we first give an aristotelian and proportional fair division algo-
rithm and then we give a symmetric and proportional fair division algorithm. These
two algorithms are based on Kuhn’s algorithm, see [Kuh11].

2.1. An aristotelian proportional cake cutting algorithm.

2.1.1. The Evan-Paz algorithm and the last diminisher procedure are not aris-
totelian. Before giving our aristotelian and proportional algorithm we show that
the classical Evan-Paz algorithm and the last diminisher procedure do not give an
aristotelian fair division.

SYMMETIC FAIR DIVISION ALGORITHMS 9

In the Evan-Paz algorithm we can have the following situation: We consider
four players with associated measures µ1, µ2, µ3, µ4. Furthermore, we suppose
that µ1 = µ4 is the Lebesgue measure on [0; 1]. We also suppose that µ2([0; 0.5]) =
µ3([0; 0.5]) = 1/2 and µ3([0.5; 0.51]) = 1/4. In the first step of the Evan-Paz al-
gorithm we ask each player to cut the cake in two equal parts. More precisely, we
ask cuti(0; 1/2). In our situation, each player give the same point: y = 0.5. In
the second step, the algorithm consider two sets of two players. The first part of
the cake [0; 0.5] will be given to the first set of players and the second part [0.5; 1]
will be given to the second set of players. Usually, when all players give the same
answers the two sets are constructed randomly or in function of the order of the
players. Thus we can suppose that in the second step we give [0; 0.5] to µ1 and
µ2 and [0.5; 1] to µ3 and µ4. At last, the “Cut and Choose” algorithm is used
to share [0; 0.5] (respectively [0.5; 1]) between the two players µ1, µ2 (respectively
µ3, µ4). Thus µ1 cut the interval [0; 0.5] and get X1 such that µ1(X1) = 1/4,
and µ3 cuts the interval [0.5; 1] and get X3 = [0.5; 0.51]. Thus X4 = [0.51; 1] and
0.49 = µ4(X4) > µ1(X1) = 0.25. The division is not aristotelian.

In the last diminisher procedure we can have the following situation:
We suppose that µ1 = µ2 is the Lebesgue measure on [0, 1]. Furthermore, we con-
sider a measure µ3 such that µ3([0, 0.4]) = 1/3, and µ3([1/3, 0.5]) = 1/3. In the
first step of the last diminisher procedure we ask each player the query cuti(0, 1/3).
The first and second player give µ1([0, 1/3]) = µ2([0, 1/3]) = 1/3 and the third
player gives µ3([0, 0.4]) = 1/3. In the first step of this algorithm we give the
portion [0, 1/3] to the first or to the second player. Suppose that we give this
portion to the first player. In the second step of the last diminisher algorithm
we ask cut2(1/3, 1/3) and cut3(1/3, 1/3). We get thus the following information
µ2([1/3, 2/3]) = 1/3 and µ3([1/3, 0.5]) = 1/3. After the second step the algorithm
gives [1/3, 0.5] to the third player. It follows that the second player get [0.5, 1] and
µ2([0.5, 1]) = 0.5 > 1/3 = µ1([0, 1/3]). This is not an aristotelian division since
µ1 = µ2.

2.1.2. An aristotelian proportional fair division algorithm. In this subsection, we
recall Kuhn’s fair division algorithm, see [Kuh11], and then we show how to modify
it to get an aristotelian fair division algorithm. In order to state this algorithm we
introduce the following definition:

Definition 9. Let X = tjAj be a partition of X. An allocation relatively to this
partition is a set {(µi1 , Aj1), . . . , (µil , Ajl)} such that for k = 1, . . . , l:

µik(Ajk) ≥ µik(X)

n
and µi(Ajk) <

µi(X)

n
if i 6= i1, . . . , il.

A maximal allocation is an allocation whose cardinal is maximal.
In the following we say that a piece of cake Ak is acceptable for the i-th player if
µi(Ak) ≥ µi(X)/n.

In the previous definition the part Ai is not necessarily given to the i-th player.
The measurable sets Ai do not play the same role than Xi in the previous section.

10 G. CHÈZE

The partition X = tiAi is just a partition of X, it is not necessarily the final result
of a proportional fair division problem.

Lemma 10. For a given partition there always exists a maximal allocation.

Proof. With the Frobenius-König theorem, Kuhn has shown in [Kuh11] that there
always exists an allocation relatively to a given partition. This gives the existence
of maximal allocations. �

Kuhn’s algorithm proceeds as follows: The first player cut the cake in n parts
with value 1/n = µ1(X)/n for his or her own measure. This gives a partition
X = tiAi. Then we compute a maximal allocation relatively to this partition.
Each player in the maximal allocation receive his or her associated portion. The
remaining part of the cake is then divided between the rest of the players with the
same method.

Now, we can describe our aristotelian algorithm. The idea is the following:
As before the first player cut the cake in n parts with value 1/n for his or her own
measure. This gives a partition X = tjAj and we compute a maximal allocation
relatively to this partition. Then each player ik in the maximal allocation receives
his or her associated part if µik(Ajk) = 1/n. In particular, players with the same
measure than the first player receive the same value. Then it remains two subcakes
X1 and X ′.

First, the subcake X1 is the union tjkAjk where Ajk is in the maximal allocation
and Ajk is such that µik(Ajk) > 1/n.
The set of indices jk in the maximal allocation satisfying this property will be de-
noted by L1. We associate to this subcake X1 the players appearing in the maximal
allocation such that µik(Ajk) > 1/n. We denote by E1 this set of players.

Then we put together the player which seem to have the same measure. More
precisely, we consider a partition of E1 = tdm=1E1,m and L1 = tdm=1L1,m such that:

(?)

{
∀i, i′ ∈ E1,m, ∀j, µi(Aj) = µi′(Aj),

L1,m = {jk | ik ∈ E1,m}.

This means that for all i ∈ E1,m, there exists a constant cj,m (independent of i)
such that for all j we have µi(Aj) = cj,m.
In particular, for all i ∈ E1,m and j ∈ L1,m we have µi(Aj) > µi(X)/n.

Then we consider X1,m = tj∈L1,mAj and we associate to these subcakes the
players with indices in E1,m. Therefore, it will be possible to share X1,m between
the players with indices in E1,m because by construction they evaluate all Aj in the
same way with a value bigger than 1/n.

At last, we denote by X ′ the part of the cake not appearing in the maximal
allocation. Then we can share X ′ between the players not appearing in the max-
imal allocation since by definition they do not find acceptable the portions in the
maximal allocation.
The algorithm will call recursively the algorithm on X1,m and X ′.

SYMMETIC FAIR DIVISION ALGORITHMS 11

In the following we will use queries for a “subcake” X ([0; 1]. Indeed, as in
Kuhn’s algorithm we are going to consider situations where the cake will be of the
form [0, 1] \ Y , where Y will correspond to the part of the cake already given by
the algorithm. We need thus the following notations:

(1) evalXi (x, y): Ask agent i to evaluate [x, y] ∩ X .
This means compute µi([x, y] ∩ X).

(2) cutXi (x, a): Ask agent i to give y such that µi([x, y] ∩ X) = a.

In the following, we will see that these queries do not introduce new operations.
More precisely, during the algorithm these queries evalXi (x, y) and cutXi (x, a) can
be compute thanks to evali(x, y) and cuti(x, a).

Aristotelian and Proportional

Inputs: µ = [µ1, . . . , µη], X ⊂ [0; 1].
Outputs: X = F(X , µ, 1) t . . . t F(X , µ, η), where F(X , µ, i) is a finite union of
disjoint intervals and F(X , µ, i) is given to the i-th player.

(1) %Ask the first player to cut the cake in η parts with values µ1(X)/η. %
%This gives: X = tiAi.%
x0 := minx∈X (x)
For j from 1 to η do
xj := cutX1 (xj−1, µ1(X)/η),
Set Aj := [xj−1;xj] ∩ X ,
End For.

(2) % Ask each player to evaluate each Aj%
For i from 2 to η do
For j from 1 to η do
evalXi (xj−1, xj),
End For.
End For.

(3) Compute a maximal allocation A := {(µi1 , Aj1), . . . , (µil , Ajl)} relatively
to the partition X = tiAi.

(4) % Give the portion Ajk to the player with associated measure µik from the
maximal allocation if µik(Ajk) = µ1(X)/η and construct subcakes.%
Set E := ∅, E1 := ∅, L := ∅, L1 := ∅.
For k from 1 to l do
If µik(Ajk) = µ1(X)/η then E := E ∪ {ik},

L := L ∪ jk,
F(X,µ, ik) := Ajk ,

else E1 := E1 ∪ {ik},
L1 := L1 ∪ {jk},

End For.

Construct a partition E1 = tdm=1E1,m and a partition L1 := tdm=1L1,m

sastisfying (?).

12 G. CHÈZE

For m from 1 to d do
Set µ

1,m
as the list of measures associated to the players with index in E1,m.

Set X1,m := tj∈L1,m
Aj .

end For.

Set X ′ := X \
(
tj∈LtL1

Aj
)
.

Set µ′ as the list of measures associated to players with index not in E tE1.

(5) Return
(
ti∈EF(X , µ, i) tdm=1 Aristotelian and Proportional(µ

1,m
,X1,m)

t Aristotelian and Proportional (µ′,X ′)
)
.

Proposition 11. The algorithm Aristotelian and Proportional applied to µ =
[µ1, . . . , µn] and X = [0; 1] terminates, is aristotelian and gives a proportional fair
division of [0; 1].

Proof of Proposition 11. The algorithm terminates since after one call of the algo-
rithm the number of player decreases strictly since the first player always get a part
of the cake.

Now, we prove that the algorithm is aristotelian.
Suppose that µi = µj . Then if i belongs to a maximal allocation whith µi(Aj0)
bigger than µi(X)/η then j also belongs to the same maximal allocation. In-
deed, if j do not belong to the maximal allocation then µj(Aj0) < µj(X)/η but
µj(Aj0) = µi(Aj0) ≥ µi(X)/η and this gives the desired contradiction. Further-
more, as µi = µj then i and j belongs to the same subset E1,m and then the i-th
and j-th player will share the subcake X1,m.
Now, if µi = µj and i do not belong to a maximal allocation then as before j do
not belong to this allocation. This means if i 6∈ E t E1 then j 6∈ E t E1 and i and j
will share the same subcake X ′.
Therefore, players i and j will receive a part that they evaluated together to the
same value. Thus the algorithm gives an aristotelian fair division.

Now, we prove that the algorithm is proportional.
As we apply the algorithm recursively, we just have to prove that the algorithm is
always applied to a number η of players and to a cake X such that for all µi in µ
we have

(?)
µi(X)

η
≥ 1

n
.

Indeed, it is sufficient to prove the previous inequality since in Step 4 each player
gets a portion of the cake with a value equals to µi(X)/η.

In the first call of the algorithm the property (?) is trivially satisfied. Therefore,
we suppose that this property is satisfied and we consider the next calls of the
algorithm.
During these calls of the algorithm we have two situations.
First, the cake is of the form X1,m. Then by construction for all i ∈ E1,m we have

µi(X1,m) = µi(tj∈L1,m
Aj) >

|E1,m|.µi(X)

η
,

SYMMETIC FAIR DIVISION ALGORITHMS 13

since i ∈ E1,m we have for all j ∈ L1,m, µi(Aj) > µi(X)/η. Thus

µi(X1,m)

|E1,m|
>
µi(X)

η
.

As we have supposed that µi(X)/n ≥ 1/n, we get

µi(X1,m)

|E1,m|
≥ 1

n
.

This proves the property in the first case.

In the second case, the cake is of the form X ′ = X \ Y .
More precisely, Y = tj∈LtL1

Aj and the algorithm is applied to the list of measures
µ′ corresponding to the measures with indices not in E t E1. We remark that
η − |E t E1| measures appear in the list µ′. Furthermore, for all measures µi in µ′

we have

µi(Y) <
|E t E1|µi(X)

η
,

since µi(Aj) < µi(X)/η when i 6∈ E t E1 and j ∈ L t L1. Therefore,

µi(X \ Y) ≥ µi(X)− |E t E1|µi(X)

η
=

(η − |E t E1|)µi(X)

η
.

Then
µi(X \ Y)

η − |E t E1|
≥ µi(X)

η
.

As we have supposed that µi(X)/η ≥ 1/n, we get

µi(X \ Y)

η − |E t E1|
≥ 1

n
.

This proves the property in the second case. �

Proposition 12. The algorithm Aristotelian and Proportional applied to µ =

[µ1, . . . , µn], and X = [0; 1] uses at most O(n3) queries in the Robertson-Webb
model.

Proof. In Step 1 we use η queries cutXi queries. In Step 2 we use η(η − 1), evalXi
queries.
Now, we have to remark that during the algorithm we use cutXi and evalXi queries
about the subcake X and not cuti and evali. In the following, we prove that these
queries do not increase the number of queries in the Robertson-Webb model where
we count the cuti and evali queries.
During the first call of the algorithm we use the cuti and evali queries. In the
next calls the algorithm uses the cutXi and evalXi queries where X = tjAj and the
measures of Aj are known by the players thanks to Step 2 of the algorithm. We
remark that the situation X ′ = X \ Y of Step 4 corresponds to X ′ = tj 6∈LtL1

Aj .
Thus the subcake has the following form: X = tj∈IAj and X \ X = tj∈JAj .
It follows that we can write X in the following form: X = tkj=1[sj ; tj], where
s1 < t1 < s2 < t2 < · · · < sk < tk and the measures of [sj ; tj] and [tj ; sj+1] are
known thanks to the previous call of the algorithm.
If sj0 < x < tj0 then we set f(x) = j0.
If sj0 < y < tj0 then we set f(y) = j0.
If f(x) = f(y) then [x; y] ⊂ [sj0 ; tj0] and evalXi (x, y) = evali(x, y), else we have

14 G. CHÈZE

evalXi (x, y) = evali(x, y)−
∑f(y)−1
j=f(x) evali(tj , sj+1).

As µi([sj ; tj]) = evali(sj , tj) is known thanks to the previous calls of the algorithm,
the query evalXi (x, y) needs just one new query: evali(x, y).

For the cutXi query we proceed in the following way:
Suppose that we want to compute cutXi (x, a).
First compute evali(x, tf(x)). As we know µi([sj ; tj]) for j = 1, . . . , k then with
all these values we can deduce in which interval [s1, t1],. . . , [sk, tk] is the cutpoint
y. We denote by [α, β] this interval. Thanks to the knowledge of µi([sj ; tj]) and
µi([x, tf(x)]) we can also get a′ = evalXi (x, α). Then we have:

cutXi (x, a) = cuti(α, a− a′).
Therefore, cutXi needs two new queries (evali(x, tf(x)) and cuti(α, a − a′)) in the
Robertson-Webb model.

In conclusion, in Step 1 the algorithm uses η cutXi queries, thus these queries
can be computed with 2η queries in the Robertson-Webb model. In Step 2 it uses
η(η−1) evalXi queries. These queries can be computed with η(η−1) queries in the
Robertson-Webb model. Therefore, each call of the algorithm uses η(η+ 1) queries
in the Robertson-Webb model of computation. Furthermore, in the worst case, at
each call of the algorithm only one player get a part of the cake. Thus we use at
most

n2 +

n−1∑
η=1

η(η+1) = n2 +

n−1∑
η=1

η2 +

n−1∑
η=1

η = n2 +
n(n− 1)(2n− 1)

6
+
n(n− 1)

2
∈ O(n3)

queries in the Robertson-Webb model. �

From the previous propositions we get:

Theorem 13. There exists an aristotelian proportional fair division algorithm
which uses at most O(n3) queries in the Robertson-Webb model of computation.

As already mentioned in the introduction, this theorem says that if we just want
an aristotelian proportional fair division it is not necessary to use an envy-free
algorithm which uses an exponential number of queries.

2.2. A symmetric and proportional cake cutting algorithm. In Section 1,
we have proposed a symmetric and envy-free protocol, this gives then a proportional
and symmetric protocol. With this approach we need to compute n! envy-free fair
divisions. This raises the following questions: Do we need to compute a proportional
fair division for all the possible permutations to get a proportional and symmetric
division algorithm?
In this subsection we are going to show that there exists a symmetric and propor-
tional algorithm which uses O(n3) queries in the Robertson-Webb model.

The idea of the algorithm is a kind of improvement of the aristotelian algorithm.
Indeed, in the aristotelian algorithm if two players get a portion at the same stage
of the algorithm then they will evaluate their portion in the same way. Here, we
construct an algorithm in order to have also the following property: a player will
always receive a portion at the same stage of the algorithm whatever his or her
position in the input list µ is.

SYMMETIC FAIR DIVISION ALGORITHMS 15

Therefore, our algorithm is constructed in a way such that we always associate the
same players to the same subcake. That is the reason why it gives a symmetric
algorithm. We repeat then the algorithm on subcakes.

Symmetric and Proportional

Inputs: µ = [µ1, . . . , µη], X ⊂ [0; 1].
Outputs: X = F(X , µ, 1) t . . . t F(X , µ, η), where F(X , µ, i) is a finite union of
disjoint intervals and F(X , µ, i) is given to the i-th player.

(1) %Ask all players to cut the cake in η parts with values µi(X)/η. %
For i from 1 to η do xi,0 := minx∈X (x)
For j from 1 to η do
xi,j := cutXi (xi,j−1, µi(X)/η),
End For.
End For.

(2) % Find the smallest partition for the graded order. %
Compute (x0,0, . . . , x0,η) := min�gr

{(xi,0, . . . , xi,η) | i = 1, . . . , η}.
For j from 1 to η do
Set Aj := [x0,j−1;x0,j] ∩ X
End For.

(3) % Ask each player to evaluate each Aj%
For i from 1 to η do
For j from 1 to η do
evalXi (x0,j−1, x0,j),
End For.
End For.

(4) Compute the set S1 of all maximal allocationsA := {(µi1 , Aj1), . . . , (µil , Ajl)}
relatively to the partition X = tjAj .

(5) If |S1| = 1 and S1 =
{
{(µi1 , Aj1), . . . , (µil , Ajl)}

}
then

%Give Ajr to the ir-th player where r = 1, . . . , l%
Set X ′ := X,
For r from 1 to l do

Set F(X , µ; ir) := Ajr ,
and X ′ := X ′ \Ajr ,

End For;
Set µ′ as the list of measures associated to the players with index i
different from i1, . . . , il;
Return

(
tlr=1 F(X , µ; ir) t Symmetric and Proportional(µ′,X ′)

)
.

End If.

(6) For all allocations A = {(µi1 , Aj1), . . . , (µil , Ajl)} in S1 do
NA := 0;
For k from 1 to l do

NA := NA + 2jk ;
End For;

16 G. CHÈZE

End For.

(7) Find the set S2 of allocations A ∈ S1 such that NA is minimal.

(8) If |S2| = 1 and S2 = {(µi1 , Aj1), . . . , (µil , Ajl)} then
% Give Ajr to the ir-th player where r = 1, . . . , l;%
Set X ′ := X ,
For r from 1 to l do

Set F(X , µ; ir) := Ajr ,
and X ′ := X ′ \Ajr ,

End For;
Set µ′ as the list of measure associated to the players with index i
different from i1, . . . , il;
Return

(
tlr=1 F(X , µ; ir) t Symmetric and Proportional(µ′,X ′)

)
.

End If.

(9) For all allocations A = {(µi1 , Aj1), . . . , (µil , Ajl)} in S2 do
MA := 0;
For k from 1 to l do

If the vector (xik,0, . . . , xik,η) associated to µik satisfied
(xik,0, . . . , xik,η) = (x0,0, . . . , x0,η)
then MA := MA + 2jk ; End If.

End For;
End For.

(10) Find the set S3 of all allocations A ∈ S2 such that MA is minimal and

choose and allocation Â ∈ S3.

(11) Set Â = {(µi1 , Aj1), . . . , (µil , Ajl)}.
Set X1 := ∅, L1 := ∅.
For k from 1 to l do

If the vector (xik,0, . . . , xik,η) associated to µik satisfied
(xik,0, . . . , xik,η) = (x0,0, . . . , x0,η) then

% Give Ajk to the ik-th player,%
Set F(X , µ; ik) := Ajk ,
Else
% Construct the subcake X1%
X1 := X1 tAjk , L1 := L1 t {ik}.
End If;

End For;

(12) Set µL1
as the list of measures with indices in L1.

(13) Set µ′ as the list of measure associated to players not in Â
and X ′ := X \

(
tlj=1 Ajr

)
.

(14) Return
(
tl′r=1F(X , µ; ir)t Symmetric and Proportional(µ′,X ′)tSymmetric and Proportional(µL1

,X1)
)
.

SYMMETIC FAIR DIVISION ALGORITHMS 17

Proposition 14. The algorithm Symmetric and Proportional applied to µ =
[µ1, . . . , µn] and X = [0; 1] terminates, is symmetric and gives a proportional fair
division of [0; 1].

Proof. The algorithm terminates since after one call of the algorithm the number
of player decreases strictly since at least one player get a part of the cake.

Now, we have to prove that this algorithm is symmetric.
When the algorithm gives pieces of cake to players in Step 5 and Step 8, there
is no ambiguity about the order of the players. Indeed, in the previous steps the
algorithm use criterion independent of the order of the players.
The point is the choice of the allocation Â at the end of Step 10. Indeed, we can
have several allocations in S3.

First we remark that all allocations in S2 and then all allocations in S3 contain
exactly the same parts Aj thanks to Step 7. Furthermore, all given portions in
Step 11 are the same by construcion of S3 in Step 10.

The players receiving a portion in Step 11 are the same whatever the choice of
Â is. Indeed, these players are the ones with associated vectors (x0,0, . . . , x0,η) and
they are always in a maximal allocations.

Furthermore, the players with indices in L1 are the same whatever the choice of
Â is. Indeed, if the i-th player belong to an allocation A ∈ S2 and its associated
vector is not (x0,0, . . . , x0,η) then there exists an index j0 such that

(?) (µi, Aj0) ∈ A and µi(Aj0) ≥ µi(X)/η.

Now, consider another allocation A′ ∈ S2. By (?), the i-th player necessarily ap-
pears in the allocation A′. Indeed, if i do not belong to A′ then, by definition of
an allocation relatively to a partition, we have: µi(Aj) < µi(X)/η for all Aj in the
allocations A′. This contradicts (?) because by construction the portion Aj in A
and A′ are the same thanks to Step 7. Thus this proves that the i-th player appears
also in A′.

Thus in all situations we give the same subcakes to the same players. This guar-
antees the symmetry of the algorithm.

In step 10 , as we have done for Symmetric and Envy-free, we can choose the
first computed partition appearing in S3. This step depends on the order of the
measures given in input. However, as explained before this choice do not have en
effect on how the i-th player evaluate his or her part and how X ′ and X1 are con-
structed.

The algorithm is proportional.
Indeed, the sets X1 and X ′ are constructed as in Aristotelian and Proportional.
The strategy used by this algorithm is the same than the one used in the algorithm
Aristotelian and Proportional. Thus with the same approach as the one used
in Proposition 11 we can deduce that the algorithm Symmetric and Proportional

is proportional. �

18 G. CHÈZE

Proposition 15. The algorithm Symmetric and Proportional uses at most O(n3)
queries in the Robertson-Webb model.

Proof. In Step 1 we use η2 cutXi queries, in Step 3 we use η(η − 1) evalXi queries.
This as shown in Proposition 12 we uses at most O(n3) queries in the Robertson-
Webb model. �

Remark 16. In this algorithm we choose allocations such that NA and MA are
minimal. This choice corresponds to the fact that we want to give first the left part
of the cake.

Remark 17. Suppose that all the measures µi are equal to the Lebesgue measure
on [0; 1]. Then in Step 2 of the algorithm we have

(x0,0, . . . , x0,n) =
(
0, 1/n, 2/n, . . . , (n− 1)/n, 1

)
,

and then S1 contains n! allocations.
Thus in Step 6 we compute n! times the number NA = 2 + 22 + · · ·+ 2n.
Therefore, there exists a situation where the algorithm computes at least n! sums.

This is not the only situation where we need to perform an exponential number
of arithmetic operations. Another example is the following: Consider 2n+1 players,
suppose that the measure associated to the first n players is the Lebesgue measure
on [0; 1] and the measure associated to the other players is concentrated on [2n

2n+1 , 1].
Then in Step 2 of Symmetric and Proportional we have

(x0,0, . . . , x0,n) =
(

0,
1

2n+ 1
, . . . ,

2n

2n+ 1
, 1
)
,

and S1 contains
(

2n
n

)
allocations. Indeed, in order to get a maximal allocation we

have to associated n intervals among the 2n first intervals to the n players with the

Lebesgue measure on [0, 1]. As
(

2n
n

)
≈ 4n√

πn
in this situation we also perform an

exponential number of operations or inequality tests.

These examples show that the algorithm Symmetric and Proportional needs
a polynomial number of queries in the Robertson-Webb model but needs an expo-
nential number of elementary operations. The combinatorial nature of the problem
is processed with classical arithmetic operations and inequality tests.

3. Conclusion

In this article we have given an algorithm for computing symmetric and envy-
free fair division.
The complexity in the Robertson-Webb model of this algorithm increases the com-
plexity of an envy-free fair division by a factor n!. This raises the following question:
Can we avoid or reduce this factor?
Furthermore, we know a lower bound for the number of queries for an envy-free
division. This lower bound is Ω(n2), see [Pro09]. What is the lower bound for the
symmetric and envy-free problem? Do we have necessarily a factorial number of
queries? In other words, does the lower bound for the symmetric and envy-free fair
division belongs to Ω(n!)? Can we get a lower bound for a symmetric and envy-free

SYMMETIC FAIR DIVISION ALGORITHMS 19

fair division?

In the approximate setting we get an ε-symmetric and ε-envy free fair division
algorithm thanks to the ε-perfect division proposed in [BM15]. In this case the
number of queries is in O(n2/ε). However, this algorithm uses an exponential num-
ber in n of arithmetic operations and inequality tests.
This problem appears also in our last algorithm which computes a symmetric and
proportional fair division with O(n3) queries in the Robertson-Webb model. In this
algorithm we solve a sub-problem (the computation of the set S1 and the compu-
tation of the set S2) with an exponential number (in n) arithmetic operations and
inequality tests.

Thus in these kinds of situations (Symmetric and Proportionnal or ε-perfect fair
division) an algorithm with a polynomial number of queries cannot be considered
as a fast algorithm if it uses an exponential number in n of elementary operations.

Moreover, the algorithm Symmetric and Proportional is probably a nonop-
timal method to get a proportional and symmetric fair division. However, the
existence of this algorithm raises several questions: How can we improve this algo-
rithm? Can we avoid an exponential number of elementary operations? What is
the tradeoff between the number of queries in the Robertson-Webb model and the
number of elementary operations?

Furthermore, we have introduced in this article aristotelian fair divisions and we
have constructed an algorithm giving an aristotelian and proportional algorithm.
This algorithm uses the same number of queries than our symmetric and propor-
tional fair division algorithm. Is it necessary ?

At last, the aristotelian notion comes from the Nichomachean Ethics by Aristotle
and one of the contributions of this article is to prove that we can compute an
aristotelian and proportional fair division efficiently (with a polynomial number of
queries). This result is interesting since until now all aristotelian proportional fair
division algorithms were envy-free algorithms and thus have a huge complexity in
the Roberston-Webb model. However, another philosopher, Seneca, would have
given a sever conclusion about this work:

“The mathematician teaches me how to lay out the dimensions of my estates;
but I should rather be taught how to lay out what is enough for a man to own.[. . .]
What good is there for me in knowing how to parcel out a piece of land, if I know
not how to share it with my brother? [. . .] The mathematician teaches me how I
may lose none of my boundaries; I, however, seek to learn how to lose them all with
a light heart.”
Letters Lucilius/Letter 88; Seneca.

Acknowledgement: The author thanks Émèlie, Élöıse and Timothé for having
implicitly suggested to study this problem.

20 G. CHÈZE

References

[AM16] H. Aziz and S. Mackenzie. A discrete and bounded envy-free cake cutting
protocol for any number of agents. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
pages 416–427, 2016.

[Bar05] J. Barbanel. The geometry of efficient fair division. Cambridge Univer-
sity Press, 2005.

[BJK13] S. Brams, M. Jones, and C. Klamler. N -person cake-cutting: There may
be no perfect division. The American Mathematical Monthly, 120(1):35–
47, 2013.

[BM15] S. Brânzei and P. Miltersen. A dictatorship theorem for cake cutting.
In Qiang Yang and Michael Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 482–488.
AAAI Press, 2015.

[BN17] S. Brânzei and N. Nisan. The query complexity of cake cutting. ArXiv
e-prints, abs/1705.02946, 2017.

[BT95] S. Brams and A. Taylor. An envy-free cake division protocol. The
American Mathematical Monthly, 102(1):9–18, 1995.

[BT96] S. Brams and A. Taylor. Fair division - from cake-cutting to dispute
resolution. Cambridge University Press, 1996.

[CDE+06] Y. Chevaleyre, P. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,
J. Padget, S. Phelps, J. Rodŕıguez-Aguilar, and P. Sousa. Issues in
multiagent resource allocation. INFORMATICA, 30:3–31, 2006.

[CDP13] Kataŕına Cechlárová, Jozef Doboš, and Eva Pillárová. On the exis-
tence of equitable cake divisions. Information Sciences, 228(Supplement
C):239 – 245, 2013.

[Chè17] Guillaume Chèze. Existence of a simple and equitable fair division: A
short proof. Mathematical Social Sciences, 87:92 – 93, 2017.

[CLPP13] Y. Chen, J. Lai, D. Parkes, and A. Procaccia. Truth, justice, and cake
cutting. Games and Economic Behavior, 77(1):284 – 297, 2013.

[CP12] K. Cechlárová and E. Pillárová. On the computability of equitable
divisions. Discrete Optimization, 9(4):249 – 257, 2012.

[DS61] L.E. Dubins and E. H. Spanier. How to cut a cake fairly. The American
Mathematical Monthly, 68(1):1–17, 1961.

[EP84] S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathe-
matics, 7(3):285 – 296, 1984.

[EP11] J. Edmonds and K. Pruhs. Cake cutting really is not a piece of cake.
ACM Trans. Algorithms, 7(4):51, 2011.

[KPS13] I. Kash, A. Procaccia, and N. Shah. No agent left behind: dynamic
fair division of multiple resources. In International conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul,
MN, USA, May 6-10, 2013, pages 351–358, 2013.

[Kuh11] H. Kuhn. Economia Matematica, chapter Some Remarks On Games Of
Fair Division, pages 87–102. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011.

SYMMETIC FAIR DIVISION ALGORITHMS 21

[MO10] Y. Manabe and T. Okamoto. Meta-envy-free cake-cutting protocols.
In Mathematical Foundations of Computer Science 2010: 35th Interna-
tional Symposium, MFCS 2010, Brno, Czech Republic, August 23-27,
2010. Proceedings, pages 501–512. Springer Berlin Heidelberg, 2010.

[Pik00] O. Pikhurko. On envy-free cake division. The American Mathematical
Monthly, 107(8):736–738, 2000.

[Pro09] A. Procaccia. Thou shalt covet thy neighbor’s cake. In Proceedings of the
21st International Jont Conference on Artifical Intelligence, IJCAI’09,
pages 239–244, San Francisco, CA, USA, 2009. Morgan Kaufmann Pub-
lishers Inc.

[Pro13] A. Procaccia. Cake cutting: Not just child’s play. Commun. ACM,
56(7):78–87, July 2013.

[Pro16] A. Procaccia. Cake cutting algorithms. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Compu-
tational Social Choice, chapter 13. Cambridge University Press, 2016.

[RW97] J. Robertson and W. Webb. Near exact and envy-free cake division. Ars
Combinatoria, 45:97–108, 1997.

[RW98] J. Robertson and W. Webb. Cake-cutting algorithms - be fair if you
can. A K Peters, 1998.

[SHS] E. Segal-Halevi and B. Sziklai. Resource-monotonicity and population-
monotonicity in cake-cutting. GAMES 2016.

[Ste48] H. Steinhaus. The problem of fair division. Econometrica, 16(1):101–
104, January 1948.

[Str80] Walter Stromquist. How to cut a cake fairly. Amer. Math. Monthly,
87(8):640–644, 1980.

[Str08] Walter Stromquist. Envy-free cake divisions cannot be found by finite
protocols. Electr. J. Comb., 15(1), 2008.

[Tho06] W. Thomson. Children crying at birthday parties. Why? Economic
Theory, 31(3):501–521, 2006.

[WS07] Gerhard J. Woeginger and Jǐŕı Sgall. On the complexity of cake cutting.
Discrete Optimization, 4(2):213 – 220, 2007.

