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Université de Nice Sophia Antipolis,
Parc Valrose, Nice 06108 Cedex 2 France

cheze@math.unice.fr

Keywords
Absolute Factorization, LLL algorithm, knapsack problem

ABSTRACT
A recent algorithmic procedure for computing the absolute
factorization of a polynomial P (X, Y ), after a linear change
of coordinates, is via a factorization modulo X3. This was
proposed by A. Galligo and D. Rupprecht in [16], [8]. Then
absolute factorization is reduced to finding the minimal zero
sum relations between a set of approximated numbers bi,
i = 1 to n such that

Pn
i=1 bi = 0, (see also [17]). Here

this problem with an a priori exponential complexity, is effi-
ciently solved for large degrees (n > 100). We rely on L.L.L.
algorithm, used with a strategy of computation inspired by
van Hoeij’s treatment in [23]. For that purpose we prove a
theorem on bounded integer relations between the numbers
bi, also called linear traces in [19]

1. INTRODUCTION
Thanks to Bertini’s theorem and Hensel liftings, multivari-
ate factorization can be reduced to bivariate factorization
(see e.g. [9], [13], [24]). For a polynomial P (X, Y ) ∈ Q[X, Y ]
irreducible in Q[X, Y ] and monic in Y , an important algo-
rithmic question is to compute the absolute factorization of
P (i.e. in C[X, Y ]). A key fact is the following:

Lemma 1.1. Let P ∈ Q[X, Y ] be a monic and irreducible
polynomial in Q[X, Y ]. P (X, Y ) = Y n + an−1(X)Y n−1 +
... + a0(X) with deg(ai(X)) ≤ n− i.
Let P = P1...Ps be a factorization of P by irreducible poly-
nomials Pi in C[X, Y ]. Denote by K = Q[α] the extension
of Q generated by all the coefficients of P1. Then each Pi

can be written:
Pi(X, Y ) = Y m + bm−1(αi, X)Y m−1 + ... + b0(αi, X), with
bk ∈ Q[Z, X], degX(bk) ≤ m − k, and where α1, ..., αs are
the different conjugates over Q of α = α1.

Remark 1.2. It suffices to get P1 to describe the absolute
factorization of P and obviously all factors Pi have the same
degree.

Absolute factors of a polynomial with rational coefficients
have coefficients which are algebraic numbers. These can
be represented either by elements in a precisely described
extension Q(α) of Q or in C by imprecise floating point
numbers which approximate them. This distinction gives
rise to two families of algorithms: one kind of algorithm
which ultimately rely on linear algebra and can be devel-
oped on Q, e.g. algorithms of Trager-Traverso (see [21],
[22]), Kaltofen (see [11], [12]), Duval [5], Gao [9], Cormier-
Singer-Trager-Ulmer [4]. Another kind of algorithms use
topological properties of C2, Newton approximation or so
called homotopy methods and for which floating point ap-
proximations are better suited, e.g. algorithms of Sasaki and
coworkers (see [15], [17], [18]), Galligo and coworkers (see
[3], [7], [8]), Sommese-Verschelde-Wampler (see [19], [20]).
Here we follow a symbolic-numeric method to get an abso-
lute factorization. In a first step we work with floating point
number and we get an ”approximate factorization modulo
X3”, then we recognize the exact factors modulo X3 (see
[1]). In a second step we perform an Hensel lifting in an
extension field. The aim of this paper is to present an effi-
cient method for the first step: get an absolute factorization
modulo X3.

Let us recall the idea of Galligo-Rupprecht’s algorithm (see
[16]), and introduce the needed notations.
For x0 ∈ C, we denote by y1(x0), . . . , yn(x0) the roots of
P (x0, Y ). Then for all values of x0 except at most n(n− 1),
these roots are distinct and the curve defined by P is smooth
nearby the points (x0, yi(x0)), for i = 1, . . . , n. If we choose
such a value for x0, then there exists analytical functions
ϕi(X) in the neighborhood of x0 (for i = 1, . . . , n) such that

ϕi(x0) = yi(x0)
P (X, ϕi(X)) = 0.

There exists complex number ai and bi (for i = 1, . . . , n)
such that ϕi(X) = yi(x0) + ai(X − x0) + bi(X − x0)

2 + . . . .

Set α(x, y) = ∂P
∂x

(x, y), β(x, y) = ∂P
∂y

(x, y), γ(x, y) = ∂2P
∂x2 (x, y),

δ(x, y) = ∂2P
∂y2 (x, y), ε(x, y) = ∂2P

∂x∂y
(x, y), then we have

ai(x0) = −α(x0, yi(x0))

β(x0, yi(x0))
, and



bi(x0) = − 1

2β(x0, yi(x0))
(γ(x0, yi(x0)) + 2ε(x0, yi(x0))ai(x0)

+δ(x0, yi(x0))a
2
i (x0)

´
.

We set: a(X, Y ) = −α(X, Y )

β(X, Y )
,

b(X, Y ) = − 1

2β(X, Y )
(γ(X, Y ) + 2ε(X, Y )a(X, Y )

+δ(X, Y )a(X, Y )) ∈ C(X, Y ).

Let U be a open neighborhood of x0 in C where all the ϕi(X)
are defined for i = 1, . . . , n. As P (X, ϕi(X)) = 0 on U for
all i, and P is monic in Y , we can write:
P (X, Y ) =

Qn
i=1(Y − ϕi(X)).

Then each factor Pk for each k = 1, . . . , s, of the factoriza-
tion P (X, Y ) =

Qs
k=1 Pk, writes:

Pk(X, Y ) =
Qim

j=i1
(Y − ϕj(X)). (1)

The total degree of Pk is m so we can write:
Pk(X, Y ) = Y m+(q1(X))Y m−1+q2(X)Y m−2+· · ·+qm(X), (2)
where qj(X) ∈ Q[X] and deg(qj(X)) ≤ j.
In particular, deg(q1(X)) ≤ 1 so the coefficient of its degree

two term is zero. From (1) and (2), we get
Pim

j=i1
ϕj(X) =

q1(X), thus
Pim

j=i1
bj(X) = 0. So we found a necessary con-

dition attached to each factor Pk of P . In fact this condition
is, with a genericity hypothesis, sufficient as stated in the:

Theorem 1.3 (Galligo-Rupprecht’s theorem). Let
P be an irreducible polynomial in Q[X, Y ], monic in Y of
total degree n. Consider Q(x, y, λ) = P (x + λy, y). Then
for almost all specializations (x0, λ0) of (x, λ), the sumsP

i∈J bi(x0), for J in {1, · · · , n}, vanish if and only ifQ
j∈J(Y − ϕj(X)) is a polynomial factor of P .

This theorem gives rise to an algorithm modulo the follow-
ing combinatorial problem. Given a set of complex numbers
b1, . . ., bn such that

Pn
i= bi = 0, find all zero sums between

these numbers. The minimal sums (i.e. with the minimal
number of bi) will correspond to the irreducible factors of P .
This combinatorial problem could be solved by an extensive
search among all the 2n sums. For n = 60, we would have
to compute more than 1018 sums. D. Rupprecht [16] pro-
posed several improvements for detecting vanishing sums,
and drop the complexity for this step to O(2n/4). With
nowadays computers, this is easily tractable for n = 80 but
hardly tractable for n ≥ 100.
From each minimal sum

P
i∈Ik

bi(x0) = 0, one get the ir-

reducible factor Pk modulo (X − x0)
3, Pk =

Q
i∈Ik

(Y −
ϕi(X)) =

Q
i∈Ik

(Y − (yi + ai(X − x0) + bi(X − x0)
2))

mod (X − x0)
3. Then one obtains the absolute factoriza-

tion after an Hensel lifting of P = P1 . . . Ps mod (X−x0)
3.

This provides a very efficient algorithm for medium degrees
(see [16]).

Our aim is to get rid of this limitation (i.e. n ≤ 80). We
propose a new algorithm based on the L.L.L. algorithm to
compute efficiently (with a polynomial complexity) the min-
imal sums between the bi. In section 2 we give a more pre-
cise statement of theorem 1.3 and we recall some classical

results about the L.L.L. algorithm. We prove with generic
hypotheses that the only integer relation between the bi have
the following form:

P
i∈I cbi = 0 where

Q
i∈I(Y −ϕi(X)) ∈

C[X, Y ] and divides P (X, Y ). In section 3 we will use the
L.L.L. algorithm in order to find an integer relation between
the <(bi) (the real part of bi). Section 4 describes our al-
gorithm and the proof that it terminates. Finally section
5 lists possible improvements of our algorithm, and some
heuristics.

2. INTEGER RELATIONS BETWEEN THE
NUMBERS BI, AND L.L.L. ALGORITHM

Here we improve theorem 1.3, and recall some classical re-
sults about the L.L.L. algorithm.

2.1 A key theorem
Theorem 2.1. Let M be a positive constant. Let P be

an irreducible polynomial in Q[X, Y ] of total degree n, and
monic in Y . Consider Q(X, Y, λ) = P (X+λY, Y ). Then for
almost all specializations (x0, λ0) of (X, λ) the only “M−bounded”
integer relations between the bi(x0), (i.e.

P
i∈I λibi(x0) = 0,

λi ∈ Z and |λi| ≤ M) are of the following form:
P

i∈I cbi(x0) =
0, where c ∈ Z, and c 6= 0, and

Q
i∈I(Y − ϕi(X)) is a poly-

nomial factor of P .

The following theorem (see [3], [16], [19]) is the main ingre-
dient for the proof of theorems 1.3, and 2.1:

Theorem 2.2. Let P be an irreducible polynomial in Q[X, Y ],
monic in Y which admits an absolute factorization P =
P1 . . . Ps, with deg(Pi) = m. We consider the plane curve
C in C2 defined by P and its s irreducible components Ci,
that we project on the x−axis after a generic change of co-
ordinates. Then the first homotopy group of the comple-
ment of the discriminant locus, π1(C−∆), acts on a smooth
fiber as the product (with s factors) of the symmetry groups
Sm × . . .×Sm.

We call a nontrivial relation, a relation which is not of the
following form:

P
i∈I cbi(x0) = 0 where c ∈ Z, c 6= 0 andQ

i∈I(Y − ϕi(X)) is a polynomial factor of P .

Proof Theorem 2.1. First we choose a good λ0 (i.e.
such that we can apply theorem 2.2). In fact we just have to
avoid a finite number of points. We can sort the ϕ(X) such
that the factor Pk =

Q
i∈{m(k−1)+1,...,mk}(Y − ϕi(X)). For

each M−bounded relation λ1b1 + . . . + λnbn (there are a fi-
nite number of M−bounded relations) which is a nontrivial
relation, we mimic the proof given in [16]. We consider the
product:

B(x0) =
Y

(σ1,...,σs)∈Ss
m

"
mX

i=1

λib(x0, σ1(yi(x0)) + . . .

+ . . . +

nX
i=n−m+1

λib(x0, σs(yi(x0))

#
B(x0) is a symmetric function in each m-tuple arguments
(y1(x0), . . . , ym(x0)), (ym+1(x0), . . . , y2m(x0)), . . . , and in
(yn−m+1(x0), . . . , yn(x0)), thus B(x0) ∈ C(x0). As in [2]
with theorem 2.2, we can show, using a path following ar-
gument and applying analytic continuation theorem, that



B(x0) 6= 0. Then for almost all x0, λ1b1(x0)+. . .+λnbin(x0) 6=
0 and a nontrivial relation is not satisfied for a generic
x0.

2.2 L.L.L. reduced basis
We recall some definitions and classical properties of the
L.L.L. algorithm [14]. We denote by < ., . > the usual scalar
product of Rn, and ‖.‖ is the associated norm.

Definition 2.3. Let v1, . . . , vk, k linearly independent vec-
tors of Rn (n ≥ k). We denote by v∗i (1 ≤ i ≤ k) the or-
thogonal vectors obtained by the Gram-Schmidt orthogonal-
ization process. Let v∗i = vi−

Pi−1
j=1 µi,jv

∗
j . A basis v1, . . . , vk

of a lattice L is L.L.L. reduced if and only if: |µi,j | ≤ 1
2
, for

1 ≤ j < i ≤ n, and, ‖v∗i + µi,i−1v
∗
i−1‖2 > 3

4
‖v∗i−1‖2 for

1 < i ≤ n.

From a basis of a lattice L, the L.L.L. algorithm constructs
a L.L.L. reduced basis of L.

Definition 2.4. The determinant of the lattice L ⊂ Rn

with basis v1, . . . , vk is: det(L) =
p

det(< vi, vj >) =
Qk

i=1 ‖v
∗
i ‖.

Proposition 2.5. Let v1, . . . , vk be a L.L.L. reduced ba-
sis of a lattice L.
If for all k ≥ k0, ‖v∗k‖ > M then {x ∈ L/‖x‖ ≤ M} ⊂
Span(v1, . . . , vk0−1) = {

Pk0−1
i=1 λivi/λi ∈ Z}.

Proposition 2.6. Let v1, . . . , vk be a L.L.L. reduced ba-
sis of a lattice L. Then: ‖v∗h‖2 ≤ 2i‖vh+i‖2, h ≤ i ≤ k − h.

3. ZERO SUMS WITH L.L.L.
3.1 First remarks
� In all this paper we choose x0 real. Indeed when x0 is
real then we know that if b is one of the bi then b (b is the
conjugate of b) is also one of the bi.

� Our strategy is to find first all zero sums between the
<(bi), and in a second time to deduce all zero sums between
the bi. We introduce the following notations. {1, . . . , n} =
ts

i=1Ii is the partition corresponding to the minimal sums.

IR
i = {j ∈ Ii/bj ∈ R}, I

C+
i = {j ∈ Ii/=(bj) > 0}, I

C−
i =

{j ∈ Ii/=(bj) < 0}, where =(bj) is the imaginary part of
bj . Now we remark that

P
Ik

bj = 0, implies
P

Ik
bj = 0.

Thus
P

Ik
bj =

P
Ik′

bj where Ik′ = {i ∈ {1, . . . , n}/bi =

bj where j ∈ Ik}. As we have a partition either Ik = Ik′ or
Ik ∩ Ik′ = ∅.
If Ik = Ik′ then

P
Ik

bj =
P

IR
k

bj +
P

IC+
k

2<(bj).

If Ik ∩ Ik′ = ∅ then bj (for all j in Ik) are not real andP
Ik

bj +
P

Ik′
bj =

P
IktIk′

bj =
P

IC+
k

tIC+
k′

2<(bj) = 0.

Hence if we have a zero sum among the bi we have a zero
sum among the <(bi). This “trick” allows us to search, in a
first step, zero sums between n+l

2
real numbers, where l is

the number of bi which belongs to R. This number l is, in
general (see section 5), small compared to n (l << n).

� We recall that, in practice, we only have an approximation
ỹi of yi, thus we can only compute b̃i = bi + ηi. We denote

by η the maximum of |ηi|, i.e. η = maxi=1...n |ηi|. Then

|b̃i − bi| < η.
We denote by bxe the nearest integer to the real number x.

Then for C ∈ Z: |bC<(b̃i)e − C<(bi)| ≤ 1
2

+ Cη.

3.2 Real zero sums
In this section we explain how to get the minimal zero sums
between the <(bi).

3.2.1 Some notations
We sort the numbers bi in the following way: the first ones
b1, . . . , bl belongs to R, then bl+1, . . . , b l+n

2
are such that

=(bi) > 0, and b l+n
2 +1

, . . . , bn are such that =(bi) < 0 with

the property b n+l
2 +i

= bl+i (1 ≤ i ≤ n+l
2
− l). Now we con-

sider <(b1), . . . ,<(bl), 2<(bl+1), . . . , 2<(b l+n
2

), and we de-

note by εi<(bi) (1 ≤ i ≤ n+l
2

) the real numbers satisfy-
ing εi<(bi) = <(bi) if 1 ≤ i ≤ l, and εi<(bi) = 2<(bi) if
l + 1 ≤ i ≤ n+l

2
.

A minimal sum between the εi<(bi) is a sum
P

i∈I εi<(bi)
where

P
i∈J(I εi<(bi) 6= 0.

Such a minimal zero sum between the εi<(bi) is of this form:P n+l
2

i=1 xiεi<(bi) where xi is equal to 0 or 1. We denote by
−−−→
ε<(b) the vector of R

n+l
2 whose ith coordinate equals εi<(bi).

Then a zero sum corresponds to a 0-1 vector vi ∈ Z
n+l
2 such

that < vi,
−−−→
ε<(b) >= 0. We denote by V the lattice of Z

n+l
2

generated by the linearly independent 0-1 vectors v1, . . . , vt

corresponding to the minimal sums between the εi<(bi).

3.2.2 The strategy
We want to compute the basis v1, . . . , vt of V . We follow
the strategy developed in [23]: we construct a sequence of
lattices Li which eventually converges to V , and such that:

V ⊂ Li+1 ⊂ Li ⊂ Z
n+l
2 . We start with L = Z

n+l
2 . Li+1

is deduced from Li by application of the induction step ex-
plained hereafter.

Let L be a lattice generated by w1, . . . , wk where wi ∈ Z
n+l
2 ,

such that V ⊂ L. Let pL be the following isomorphism of Z
module.

pL : L −→ L′
wi = (wi,1, . . . , wi, n+l

2
) 7→ (wi,1, . . . , wi, n+l

2
,

< wi,
−−−−−−→
bCε<(b̃)e >)

where
−−−−−−→
bCε<(b̃)e is the vector whose ith coordinate is equal

to bCεi<(b̃i)e.

Lemma 3.1. Let L be a lattice containing V . Set L′ =
pL(L). Let ν1, . . . , νk be a L.L.L. reduced basis of L′ and
k0 an integer such that: for all i > k0, ‖ν∗i ‖ > M where

M =
q

n+l
2

+ [( 1
2

+ Cη).n+l
2

]2. Then the lattice generated

by p−1
L (ν1), . . . , p

−1
L (νk0) contains V .

Proof. We know that the 0-1 generators vi of V admit
less than n+l

2
coordinates equal to 1, and that

| < vi,
−−−−−−→
bCε<(b̃)e > | ≤ ( 1

2
+ Cη).n+l

2
. Thus ‖pL(vi)‖ ≤ M .

Consequently:



{pL(v1), . . . , pL(vt)} ⊂ {x ∈ L/‖x‖ ≤ M}. Then proposi-
tion 2.5 implies: {pL(v1), . . . , pL(vt)} ⊂ Span(ν1, . . . , νk0).
Taking the inverse images by pL, we obtain the desired re-
sult.

The following lemma gives a necessary condition on L to
stop the computation of our sequence. It is very close to
lemma 2.8 in [23]. We need some notations: if L is a lattice
then BL is a basis of L. The matrix whose rows are the
elements of BL is denoted by (BL), and the reduced row
echelon form of this matrix is denoted by RREF (BL).

Lemma 3.2. Let L be a lattice which contains V . If L =
V , then each column of RREF (BL) contains precisely one
1, and all other entries are 0.

Proof. We consider the 0-1 vectors v1, . . . , vt defining
V , they form the basis BV = {v1, . . . , vt}. This basis is
already in a reduced row echelon form and each column of
(BV ) contains precisely one 1 and all other entries are 0
(because we consider minimal sums and they come from the
partition {1, . . . , n} = ts

i=1Ii). The unicity of the reduced
row echelon form proves the lemma.

3.3 From real zero sums to complex zero sums
We suppose that we have found the lattice V . We aim to
find the lattice W generated by the 0-1 vectors r1, . . . , rs

corresponding to the minimal sums between the complex
numbers bi, i = 1, . . . , s.
We consider the map:

f : Z
n+l
2 −→ Zn

(x1, . . . , x n+l
2

) 7→ (x1, . . . , x n+l
2

, xl, . . . , x n+l
2

)

For each 0-1 generator vi of V we have < vi,
−−−→
ε<(b) >= 0.

Thus < f(vi),
−→
b >= 0, where

−→
b is the 0-1 vector of Cn

whose ith coordinate is equal to bi.

Lemma 3.3. Let v be a 0-1 generator of V , i.e. it corre-
sponds to a minimal sum between the εi<(bi). If there exists
an index 1 ≤ j0 ≤ l such that vj0 6= 0, then f(v) corresponds
to a minimal sum between the bi.

Proof. Obviously f(v) is a 0-1 vector corresponding to
a zero sum between the bi. We just have to show that this
sum is minimal. If f(v) is not minimal then f(v) = u1 + u2

where ui are 0-1 vectors. u1 corresponds to a minimal zero

sum between the bi and u1j0
6= 0. We have < u1,

−→
b >=P

i∈I1
bi = 0 thus

P
i∈I1

bi =
P

i∈I2
bi = 0.

We recall that the indices of all the minimal sums form a
partition of {1, . . . , n}, so either I1 = I2 or I1 ∩ I2 = ∅. But
bj0 ∈ I1 and bj0 belongs to R, then I1 = I2. Thus u1l+j =

u1 n+l
2 +j

(1 ≤ j ≤ n+l
2
−l), and there exists some a in V such

that f(a) = u1. Now we consider u2 = f(v)−u1 and we get
u2l+j = u2 n+l

2 +j
(1 ≤ j ≤ n+l

2
− l), so there exists some b in

V such that f(b) = u2. Hence f(v) = f(a)+f(b) = f(a+b),
and v = a + b. This contradicts the minimality of v.

Lemma 3.4. Let v be a 0-1 generator of V , i.e. it corre-
sponds to a minimal sum between the εi<(bi). If vj = 0 (for
all 1 ≤ j ≤ l), then either f(v) corresponds to a minimal
sum or f(v) = u1 + u2 where u1j = u2j = 0 for 1 ≤ j ≤ l,

u1l+j = u2 n+l
2 +j

for 1 ≤ j ≤ n+l
2

− l, u1 n+l
2 +j

= u2l+j

for 1 ≤ j ≤ n+l
2
− l, and ui corresponds to a minimal sum

between the bi.

Proof. First we set a notation: if E is a set then |E| is
the cardinal of this set.
It is obvious that f(v) corresponds to a zero sum between

the bi. We have < f(v),
−→
b >=

P
j∈I bj +

P
j∈J bj =P

j∈I bj + bj =
P

j∈I 2<(bj) =< v,
−−−→
ε<(b) >= 0 where I ⊂

{l + 1, . . . , n+l
2
}, J = {j/bj = bi where i ∈ I}, and |I| =

|J | = ‖v‖. Now we suppose that there exists a minimal zero
sum between the bj where j belongs to I t J . Then there
exists a subset H1 ⊂ I t J such that

P
j∈H1

bj = 0. AsP
j∈H1

bj =
P

j∈H2
bj = 0 and that the indices of the min-

imal sums give a partition of {1, . . . , n}, we have H1 = H2

or H1 ∩H2 = ∅.
Now we consider H1 ∪ H2 = H, and we have {<(bi)/i ∈
H ∩ I} = {<(bi)/i ∈ H ∩ J}. Then

P
j∈H bj = 0 implies:P

j∈H <(bj) =
P

j∈H∩I <(bj) +
P

j∈H∩J <(bj)

=
P

j∈H∩I 2<(bj) = 0.

Thus |H∩I| ≥ ‖v‖ because v corresponds to a minimal zero
sum between the 2<(bj) where j ∈ I. As H ∩ I ⊂ I we get
|H ∩ I| ≤ |I| = ‖v‖, hence |H ∩ I| = ‖v‖. With the same
kinds of arguments we get |H∩J | = ‖v‖. Hence |H| = 2‖v‖.
If H1 = H (i.e. H1 = H2) then |H1| = 2‖v‖, and H1 = ItJ .
In this case, we conclude that f(v) corresponds to a minimal
zero sum, and this proves the first part of the lemma.
If H = H1 tH2 (i.e. H1 ∩H2 = ∅) then |H1| = |H2| = ‖v‖.
In this case we have I t J = H1 tH2 and

P
j∈Hi

bj = 0 are
two minimal zero sums. These results with the definition of
H2 prove the second part of the lemma.

With the previous lemmas we are now able to detect minimal
zero sums between the bi.

3.4 Complex zero sums
3.4.1 Onebi belongs toR
We suppose that bi0 belongs to R. Let v1 be the 0-1 vector
corresponding to the minimal zero sums between the εj<(bj)
where bi0 appears. By lemma 3.3 the factor f(v1) corre-
sponds to the minimal sum between the bj . Thus ‖f(v1)‖2 =
m is the degree of one absolute factor. Now we consider a
vector v2 which corresponds to a minimal zero sum between
the εj<(bj), but here v2k = 0 (1 ≤ k ≤ l). This means
that in this zero sum there are no real bj . By lemma 3.4 we
know that f(v2) corresponds to a zero sum between the bj .
If ‖f(v2)‖2 = m then f(v2) corresponds to a minimal zero
sum, else ‖f(v2)‖2 = ‖u1 +u2‖2 = ‖u1‖2 + ‖u2‖2 = 2m and
in this case we have to compute u1 and u2 (see lemmas 3.5
and 3.6 below).

3.4.2 Everybi belongs toC− R
Here there are two possibilities either all f(vi) have the same
norm, or there are two vectors v1 and v2 in V such that
‖f(v1)‖ < ‖f(v2)‖. By lemma 3.4 we know that ‖f(v)‖2 =
m or 2m for every 0-1 generator of V . Thus in the first



case, ‖f(v1)‖2 = . . . = ‖f(vt)‖2 = l, and l = m or l =
2m. We recall that t is the dimension of V . Furthermore if
l = m then t.l = n, else t.l 6= n. Hence we compute t.l, if
t.l = n then f(vi) corresponds to a minimal zero sum, else
every f(vi) = ui1 + ui2 where ui1 and ui2 correspond to
two minimal zero sums between the bi. In the second case
‖f(v1)‖2 = m, and f(v1) corresponds to a minimal zero
sum. Hence if f(v) is such that ‖f(v)‖ = ‖f(v1)‖, where v
is a 0-1 generator of V , then f(v) corresponds to a minimal
zero sum, else f(v) = u1 + u2 where ui corresponds to a
minimal zero sum.

3.4.3 How to decomposef(v)
In some cases, we have to decompose f(v) = u1 + u2; we
explain how to get u1 and u2.
Let v be a 0-1 generator of V such that ‖f(v)‖ = 2m. Let
e1, . . . , en be the canonical basis of Rn, we have f(v) =Pn

i=1 xiei =
P2m

j=1 xij eij where xi = 0 or 1.
We have to find two zero sums between bi1 , . . . , bi2m . We
are going to proceed in the same way as in 3.2.2.
u′1 and u′2 are 0-1 vectors in Z2m and correspond to two
different zero sums between bi1 , . . . , bi2m . Let Uv be the
lattice generated by u′1 and u′2. We remark that we can
easily obtain u1 and u2 from u′1 and u′2.
As before we are going to construct a sequence of lattices
Lv,i such that Uv ⊂ Lv,i+1 ⊂ Lv,i ⊂ Z2m. We start with
Lv,0 = Z2m, and now we explain how to get Lv,i+1 from
Lv,i.
Let Lv be a lattice generated by w1, . . . , wk where wi =
(wi,1, . . . , wi,2m) ∈ Z2m, such that Uv ⊂ Lv. Let qLv be the
following isomorphism of Z module.

qLv : Lv −→ L′v
wi 7→ (wi,1, . . . , wi,2m,

P2m
j=1 wi,jbC<(b̃ij )e,P2m

j=1 wi,jbC=(b̃ij )e)

Lemma 3.5. Let Lv be a lattice such that Uv ⊂ Lv, and
L′v = qLv (Lv). Let ν1, . . . , νk be a L.L.L. reduced basis of
L′v and k0 be an integer such that: for all i > k0, ‖ν∗i ‖ > M

where M =
q

m + [( 1
2

+ Cη)m]2, then the lattice generated

by q−1
Lv

(ν1), . . . , q
−1
Lv

(νk0) contains Uv.

Proof. Use the same arguments as in 3.1

Now the following lemma explains when we have to stop the
computation of the sequence of lattices.

Lemma 3.6. Let Lv be a lattice which contains Uv. If
Lv = Uv then RREF (BLv ) has two rows and each column
of R contains precisely one 1 and all other entries are 0.

Proof. Use the same arguments as in lemma 3.2.

4. THE ALGORITHM
We describe our algorithm, then we prove that it terminates
and that it computes an absolute factorization.

Absolute factorization algorithm

Input: P (X, Y ) ∈ Q[X, Y ] irreducible in Q[X, Y ] monic in
Y and degtotP (X, Y ) = degY P (X, Y ) = n.
Output: An exact absolute factor.

1. Generic change of coordinates: Choose λ ∈ Z,
P (X, Y ) := P (X + λY, Y ).

2. Choice of the fiber: Choose x0 ∈ R.

3. Compute yi, ai, bi with the precision η, C = b 1
η
c and l

the number of bi ∈ R.

4. Sort the bi as explained in subsection 3.2.1.

5. Set L := Z
n+l
2 with the canonical basis.

6. Compute the L.L.L. reduced basis of L′, delete vec-
tors with a large norm (as in lemma 3.1) and keep k0

vectors wi such that L := Span(w1, . . . , wk0) ⊃ V .

7. Compute RREF (BL).

8. If RREF (BL) does not satisfy lemma 3.2, then:
Either there exists a vector v = (v1, . . . , v n+l

2
) such

that v is not a 0-1 vector, and

| < v,
−−−−−→
Cb<(b̃)e > | ≤ ( 1

2
+ Cη)

P n+l
2

i=1 vi. Then go back
to 1.
Or no such vector exists, then set C := 2C, η := 1

C
and go back to 6.

9. If RREF (BL) satisfies lemma 3.2, then:

(a) Recognize the minimal zero sum vectors as in lem-
mas 3.3 and 3.4.

(b) Compute the decomposition f(v) = u1+u2 in the
same way as in step 6, 7 and 8 with lemmas 3.5
and 3.6.

10. Now we have r1, . . . , rs which are 0-1 vectors. Check
that ‖r1‖2 = ‖ri‖2 (2 ≤ i ≤ s) and s‖r1‖2 = n. If it is
not the case then go back to 1.

11. Construct P̃i mod (X − x0)
3 (i = 1, . . . , s).

12. Recognize the exact factors Pi mod (X − x0)
3 from

the approximate P̃i (i = 1, . . . , s).

13. Check that P1 divides P modulo (X−x0)
3: if P1 does

not divide P then go back to 1.

14. Lift this exact factorization.

15. Check that P1 divides P : if P1 does not divide P then
go back to 1 else return P1.

Remark 4.1. • The step 11 is explained in [1].

• We explain how to choose η in section 5.

As we mentioned before we have:

Lemma 4.2. If the algorithm terminates then the output
is correct.

Proof. We just have to show that the factorization we
obtained is the absolute factorization. In the algorithm if
we obtain V then it is clear that we get the absolute fac-
torization. So here we suppose that we get a lattice L such
that V ( L and RREF (BL) satisfies lemma 3.2. We have
to prove that in this case the computed P1 cannot satisfy



step 15 because there would be too many factors. Indeed,
these hypotheses mean that there exists a 0-1 vector v such
that v is a generator of V , and v = a + b where a, b ∈ L are
0-1 vectors.
If f(v) corresponds to a minimal zero sum then the algo-
rithm gives at least two factors corresponding to a and b
instead of just one factor. Thus we cannot get an exact fac-
torization because we have too many factors.
If f(v) = u1 +u2 and ui corresponds to a minimal zero sum,
then if a or b gives two factors, as before we will get too many
factors. Else a gives one factor of degree ‖a‖2 < ‖v‖2 = m.
Thus we cannot get an exact factorization because we have
a factor of bad degree.

Lemma 4.3. The algorithm terminates.

Proof. In order to prove that the algorithm terminates
we just have to prove that there are only a finite number of
situation where we go back to step 1, step 6 and step 9.
I There is a finite number of returns to step 1:
This situation corresponds to the first case of step 8, and
the bad case of step 10, step 13 and step 15. The algorithm
return to step 1 because we are not in a generic situation.

Indeed if | < v,
−−−−−→
Cb<(b̃)e > | ≤ ( 1

2
+ Cη)

P n+l
2

i=1 vi then it is
possible that v gives a zero sum between the εi<(bi), and
then between the bi. But in this situation v is not a 0-1
vector, so we are not in a generic situation. It is obvious
that we are not in a generic situation in the bad case of step
10, step 13 and step 15.
Furthermore, lemmas 3.1 and 3.5 show that we consider only
bounded integer relations. Thus theorem 2.1 shows that we
just have to avoid a finite number of (x0, λ0) to be in a
generic situation.
Furthermore after each return to step 6, C increases. Thus
after a finite number of step if we are in a generic situation
and C is large enough we have:

| < v,
−−−−−→
bC<(b̃)e > | > ( 1

2
+ Cη)

P n+l
2

i=1 vi. This proves that
there are only a finite number of return to step 1.
I There is a finite number of return to step 6 and 9:
By the previous claim, here we can suppose that we are in
a generic situation. Thus we just have to show that: if C
is large enough then in step 6, dim(L) decreases. Hence af-
ter a finite number of steps we have V = L (or in step 9,
Uv = Lv). Suppose that L′ = Span(pL(w1), . . . , pL(wk)),

then det(L′) =
p

det(< pL(wi), pL(wj) >). Furthermore

pL(wi) = (wi,1, . . . , wi, n+l
2

, < wi,
−−−−−−→
bCε<(b̃)e >), thus det(L′)

is a polynomial in C. Let ν1, . . . , νk be a L.L.L. reduced
basis of L′, we have det(L′) =

Qk
i=1 ‖ν

∗
i ‖. Thus if C is large

enough, as det(L′) is a polynomial there exist an index k0

such that

‖ν∗k0‖ >
q

n+l
2

+ [( 1
2

+ Cη) + n+l
2

]2.2
n+l
2 = M. (It is im-

portant to remember that Cη ≤ 1.) Hence M ≤ ‖ν∗k0‖ ≤
2

i
2 ‖ν∗k0+i‖ (1 ≤ i ≤ n+l

2
− k0), see proposition 2.6, and thenq

n+l
2

+ [( 1
2

+ Cη) + n+l
2

]2 ≤ M.2
−i
2 ≤ ‖ν∗k0+i‖, (1 ≤ i ≤

n+l
2
−k0). Thus, the dimension of L′ decreases and then the

dimension of L decreases. This proves the second claim.

5. COMMENTS AND OPTIMIZATIONS

First we present an heuristic which gives the precision η in
the step 3 of the algorithm. Second, we recall some results
about the number of real roots of a polynomial, in order to
estimate the size of the number l. Third, we propose two
improvements of the step 6 of the algorithm. Finally, we
briefly estimate the complexity of the algorithm.

5.1 How to chooseη
First, we explain why we set C = b 1

η
c. We have |b̃i−bi| < η,

then |C<(b̃i)−C<(bi)| < Cη. As we study the integral part
of these numbers, we want Cη < 1. But if Cη << 1, that
means that when we take the integral part we do not use
all the ”exact information” of the decimal part. Thus the
optimal choice is Cη = 1, and as we want that C belongs to
Z, we choose C = b 1

η
c.

Now we want to choose η (thus C), in such a way that
RREF (BL) satisfies lemma 3.2. That is to say we do not
want to return to step 6, after the step 8. Thus let ν1, . . . , ν n+l

2

be a L.L.L. reduced basis of L′, where L = Z
n+l
2 with the

canonical basis. An heuristic says that the vectors νi are
near orthogonal. By this heuristic:Q n+l

2
i=1 ‖ν

∗
i ‖ ≈

Q n+l
2

i=1 ‖νi‖. Furthermore
Q n+l

2
i=1 ‖ν

∗
i ‖ = det(L′)

=
p

det(A). A is the n+l
2
× n+l

2
symmetric matrix such that

Ai,i = 1 + [Cbεi<(b̃i)e]2, and Ai,j = C2εiεjb<(b̃i)eb<(b̃j)e if

i 6= j. For computing an estimate of C we replace bεi<(b̃i)e
by one. That means that we do not study the determinant
of the matrix A, but the determinant of the matrix B where
B is the n+l

2
× n+l

2
matrix such that Bi,i = 1 + C2, and

Bi,j = C2 if i 6= j. Finally we have
√

det B ≈
Q n+l

2
i=1 ‖νi‖. Furthermore det B = 1 + (n+l

2
)C2,

and we want that here is a gap i.e. either

‖νi‖ ≈
q

n+l
2

+ [( 1
2

+ Cη)n+l
2

]2 for the ones we will keep,

or ‖νi‖ >
q

n+l
2

+ [( 1
2

+ Cη)n+l
2

]2 for the ones we delete.

Thus we get: 1 + n+l
2

C2 ≥ (n+l
2

+ [( 1
2

+ Cη)n+l
2

]2)
n+l
2 , it

follows:

C ≥
√

2√
n + l

vuut„
n + l

2
+ [

3

4
(n + l)]2

« n+l
2

− 1.

5.2 How manybi are real?
Here we just recall a result about the number of real roots
of a polynomial with real coefficients. We have the following
result (see [10] or [6]).

Theorem 5.1. For a random polynomial a0 +a1x+ . . .+
anxn, where the ai are independent standard normals; the
expected number of real zeros En satisfies when n →∞:

En =
2

π
log(n) + 0.62573... +

2

nπ
+ O(

1

n2
).

If the random variables ai are independent normal with mean
zero, but the variance of ai is equal to

`
n
i

´
, then these random

polynomials have En =
√

n real zero on average.

As bi are conjugate algebraic numbers, with this theorem
we can suppose that in general l is very small compare to
n. We deduce then: n+l

2
< n, so it is much better to apply



the L.L.L. algorithm to a dimension n+l
2

lattice than to a
dimension n lattice. This explains why we study the real
part of bi instead of bi.

5.3 First optimization
Here we explain how to improve step 6 of the algorithm.
Indeed it is possible that k0 = k and that the first vectors
w1, . . . , wk1 are 0-1 vectors (see section 6 where k0 = n+l

2
=

62 and k1 = 4). In this case if we are in a generic situa-

tion with a large constant C and | < w1,
−−−−−−→
bCε<(b̃)e > | ≤

( 1
2

+ Cη)‖w1‖ then < w1,
−−−→
ε<(b) >=

P
i∈I εi<(bi) = 0. That

means that we have a zero sum between the εi<(bi) (where
i ∈ I), and we want to decompose it. So we apply our L.L.L.
strategy to the set {εi<(bi)/i ∈ I}.
In conclusion, if we get k1 0-1 vectors we can split our prob-
lem into k1 smaller zero sum problems.

5.4 Second optimization
Here we explain how to improve step 6 of the algorithm. In
section 3.2 and 3.4 we showed how to use the L.L.L. algo-
rithm in order to obtain minimal zero sum relations. But the
matrix (BL′) is not square, and it would be better to have a

square matrix. First, we remark that when L = Z
n+l
2 with

its canonical basis, then RREF (BL′) is the identity matrix.
Secondly, we remark that in the other cases we have L, and
RREF (BL) too. Now, we explain how to use the informa-
tions given by RREF (BL) in order to get a lattice L′′ such
that (BL′′) is square.

We set L = Span(w1, . . . , wk) ⊂ Z
n+l
2 . ci is the ith col-

umn of RREF (BL). C = {i1, . . . , ik} is the set of indices
such that cij is the column with jth coordinate equal to
1 and all the others coordinates equal to 0. Then for all
i ∈ {1, . . . , n} − C, ci, ci1 , . . . , cik are linearly dependents,
and if

ci =

0B@ θi,1

...
θi,k

1CA then ci =
X
j∈C

θi,jcj (∗).

That means that if we know the i1, . . . , ik coordinates of w1

then with the formula (∗) we can recover all the coordinates
of w1.
Let us use these relations between the ci. We consider the
map:

rL : L −→ L′′

wi = (wi,1, . . . , wi, n+l
2

) 7→ (wi,i1 , . . . , wi,ik−1 ,

< wi,
−−−−−−→
bCε<(b̃)e >)

This is an isomorphism of Z module.

In this situation, the following lemma is the equivalent of
lemma 3.1, but here L′′ = rL(L) provides a square matrix
(BL′′).

Lemma 5.2. Let L a lattice of dimension k such that V ⊂
L, and L′′ = rL(L). Let ν1, . . . , νk be a L.L.L. reduced basis
of L′′ and k0 an integer such that:

for all i > k0, ‖ν∗i ‖ > M where M =
q

k − 1 + [( 1
2

+ Cη).k]2.

Then the lattice generated by r−1
L (ν1), . . . , r

−1
L (νk0) contains

V .

We can also adapt this idea to step 9b. of the algorithm.

5.5 Complexity analysis and future challenge
5.5.1 Theoretical complexity
The number of bit operations needed by step 6 is the bot-
tleneck of our algorithm. With the second optimization we
can suppose that we have k vectors vi ∈ Zk, and that ‖vi‖ ≈
C. We know (see [14]) that the number of bits operations
needed by the L.L.L. algorithm is O(k5+ε(log C)2+ε) for ev-
ery ε > 0, if we employ fast multiplication algorithm. Fur-
thermore at the beginning of the algorithm we have k = n+l

2

and C ≥ n+l
2

n+l
2 see 5.1. Then the number of bits opera-

tions needed by the L.L.L. algorithm to perform step 6 is
O(n7+ε log2+ε n).

5.5.2 Practical complexity
In practice our algorithm already allows us to factorize poly-
nomials of total degree 200, we present hereafter an illustra-
tive example of degree 120. The challenge problem seems
to be: Can we compute a certified absolute polynomial fac-
torization of an irreducible polynomial in Q[X, Y ] of total
degree bigger than 500?

6. SKETCH OF AN EXAMPLE
Here we follow our algorithm with PARI/GP Version 2.1.4,
on a polynomial P (X, Y ). P (X, Y ) has the following prop-
erties: P (X, Y ) ∈ Z[X, Y ] is monic in Y and is irreducible in
Q[X, Y ]. Furthermore P has 1268 monomials, the average
size of the coefficients is 5.107, and the biggest coefficient is
approximatively 3.109 (see http://math.unice.fr/ cheze/).

Step 1: We choose λ = 0.
Step 2: We choose x0 = 1.

Step 3: Four bi belongs to R, then C ≥ 10121. We set 150

significant digits for our computation, and C = 10130.
Step 4: We sort the bi.

Step 5: L = Z62 with its canonical basis.

Step 6: We compute the L.L.L. reduced basis of L′. We com-
pute M (see lemma 3.1), we get M ≈ 93. It follows k0 = 62,
because ‖w∗

62‖ ≈ 53. But, for i = 1, . . . , 4, ‖w∗
i ‖ ≤ 93, and

wi are 0-1 vectors. So we apply the first optimization:
First optimization:

w1 has 10 coordinates equal to 1, and all the other are 0.
We set Lopt = Z10, and we compute {wopt 1, . . . , wopt 10}
the L.L.L. reduced basis of L′opt. We compute Mopt =q

10 + ( 3
2
.10)2, we get Mopt ≈ 15. It follows k0 = 1, be-

cause for all i ≥ 2, we have ‖w∗
opt i‖ ≥ 1014 > 15.

All the coordinates of wopt 1 are equal to 1. Then we de-
duce that w1 is a minimal zero sum between the εi<(bi).
As ‖f(w1)‖2 = 20 = ‖f(w2)‖2, ‖f(w3)‖2 = ‖f(w4)‖2 = 40,
and w2,1 = w2,2 = w2,3 = w2,4 = 1, we deduce: f(w1),
f(w2) give minimal zero sums between the bi, f(w3) gives
two minimal zero sums between the bi, and f(w4) gives two
minimal zero sums between the bi.
Step 7,8: Using the first optimization, we have
L = Span(w1, . . . , w4) and then RREF (BL) satisfies lemma
3.2.
Step 9: We have to decompose f(w3) and f(w4). We set

Lw3 = Z40, and we compute {ww3 1, . . . , ww3 40} the L.L.L.
reduced basis of L′w3 . We compute Mw3 , we get Mw3 ≈ 30.
It follows k0 = 2, because for all i ≥ 3, ‖w∗

w3 i‖ ≥ 106 > 30,
and the first two vectors w∗

w3 1, w∗
w3 2 are 0-1 vectors.



We obtain the same results for f(w4).
Step 10: We get 6 vectors ri (for example r1 = f(w1), r2 =

f(w2)), such that ‖ri‖2 = 20, then s = 6 and s.‖ri‖2 = 120.

Step 11: P̃i =
Q

j∈Ji
(Y − ỹj − ãj(X − 1) − b̃j(X − 1)2)

mod (X − 1)3, where Ji is the set of indices such that: j
belongs to Ji if the jth coordinates of ri is 1.
Step 12,13: We recognize the exact factors of P , and we get

P1 divides P modulo (X − 1)3.

Remark 6.1. If we do not follow the first optimization,
we have to compute a L.L.L. reduced basis of a dimension 62
lattice. With the first optimization we avoid this computa-
tion, we only compute a L.L.L. reduced basis of a dimension
10 lattice.
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[1] G. Chèze and A. Galligo, From an approximate to

an exact factorization. Submitted to JSC, 2003.

[2] , Four lessons on polynomial absolute
factorization, 2004. To appear in a CIMPA School
book.

[3] R. Corless, A. Galligo, I. Kotsireas, and
S. Watt, A geometric-numeric algorithm for
factoring multivariate polynomials, in Proceedings of
the 2002 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2002), T. Mora, ed.,
ACM, 2002, pp. 37–45.

[4] O. Cormier, M. F. Singer, B. M. Trager, and
F. Ulmer, Linear differential operators for polynomial
equations, J. Symbolic Comput., 34 (2002),
pp. 355–398.

[5] D. Duval, Absolute factorization of polynomials: a
geometric approach, SIAM J. Comput., 20 (1991),
pp. 1–21.

[6] A. Edelman and E. Kostlan, How many zeros of a
random polynomial are real?, Bull. Amer. Math. Soc.
(N.S.), 32 (1995), pp. 1–37.

[7] A. Galligo, Real factorization of multivariate
polynomials with integer coefficients, Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
258 (1999), pp. 60–70, 355.

[8] A. Galligo and D. Rupprecht, Irreducible
decomposition of curves, J. Symbolic Comput., 33
(2002), pp. 661–677. Computer algebra (London, ON,
2001).

[9] S. Gao, Factoring multivariate polynomials via partial
differential equations, Math. Comp., 72 (2003),
pp. 801–822 (electronic).

[10] M. Kac, On the average number of real roots of a
random algebraic equation, Bull. Amer. Math. Soc., 49
(1943), pp. 314–320.

[11] E. Kaltofen, Polynomial-time reductions from
multivariate to bi- and univariate integral polynomial
factorization, SIAM J. Comput., 14 (1985),
pp. 469–489.

[12] , Polynomial factorization 1987–1991, in LATIN
’92 (São Paulo, 1992), vol. 583 of Lecture Notes in
Comput. Sci., Springer, Berlin, 1992, pp. 294–313.

[13] , Effective Noether irreducibility forms and
applications, J. Comput. System Sci., 50 (1995),
pp. 274–295. 23rd Symposium on the Theory of
Computing (New Orleans, LA, 1991).

[14] A. K. Lenstra, H. W. Lenstra, Jr., and
L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann., 261 (1982), pp. 515–534.

[15] K. Nagasaka and T. Sasaki, Approximate
factorization of multivariable polynomials and its
computational complexity, Sūrikaisekikenkyūsho
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