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Abstract. Indecomposable polynomials are a special class of absolutely ir-

reducible polynomials. Some improvements of important effective results on

absolute irreducibility have recently appeared using Ruppert’s matrix. In a

similar way, we show in this paper that the use of a Jacobian matrix gives

sharp bounds for the indecomposability problem.

1. Introduction

Let n ≥ 2 be an integer and X = (X1, . . . ,Xn) be a n−tuple of variables. In
this article, we use the following definition of decomposable polynomials: a non-
constant polynomial f(X) ∈ K[X] with coefficients in a field K is decomposable
over K if there exist polynomials h(X) ∈ K[X] and u(T ) ∈ K[T ] with deg(u) ≥ 2
such that f(X) = u

(

h(X)
)

. Otherwise, f is said to be indecomposable.

It is known that a decomposable polynomial is absolutely reducible (i.e., re-
ducible in K[X] where K is an algebraic closure of K). Indeed, if f = u ◦ h then
f =

∏

i(h−ui) where ui ∈ K are the roots of u. Some authors (see, e.g., [21, 8, 16])
study the behavior of the absolute factorization after some perturbations: reduction
modulo p, reduction from n to 2 variables. The key point is that these problems
can be reduced to linear algebra. The matrix used for the absolute factorization
is derived from the computation of the first algebraic de Rham cohomology group
of the complement of a plane curve (see the description of Ruppert’s and Gao’s
algorithms in [4, Related Works], [17, page 4] or [22]). This matrix is the so-called
Ruppert’s matrix (see [21], [23, chapter 3]). In this paper, we show that the inde-
composability of a polynomial f can also be reduced to a linear algebra problem.
We introduce a special matrix derived from an algebraic dependence relation, which
we call the Jacobian matrix and denote by Jacf . Using this matrix, we construct
bounds for the indecomposability problem.

In Section 2, we recall some classical results about indecomposability and the
Jacobian matrix. These results are well-known in characteristic zero. In this sec-
tion, we extend them to positive characteristic. Then, in order that this paper be
self-contained, we show that the ”usual proof” also works in a more general context.
These results state that the indecomposability problem can be solved using only
linear algebra.
Section 3 is devoted to some analogs of well-known absolute irreducibility theorems
in our indecomposability context. More precisely, we show how the study of a mul-
tivariate polynomial can be restricted to the study of a bivariate polynomial. Then,
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we show that the set of decomposable polynomials is included in an algebraic va-
riety, and we give a bound for the degree of our Noether’s indecomposability forms

(see Theorem 9). These results on absolute irreducibility are called Bertini’s and
Noether’s theorems (see, e.g., [7, 15, 16, 17, 21], and [23, chapter 3]). Moreover, at
the end of Section 3, we investigate the specialization of indecomposable polyno-
mials.
In Section 4, we study the reduction modulo p of an indecomposable polynomial
with integer coefficients. We show that if p is a large enough prime, then f is
indecomposable implies that f mod p is indecomposable.
Finally, in Section 5, we use a property of Newton’s polygons to produce an inde-
composability test. Some computation times are given in order to show the practical
behavior of this test.

2. Jacobian derivation and decomposable polynomials

Notations: The following notations will be retained throughout the article:
We denote by K an arbitrary field of characteristic p ≥ 0.
For an integer n ≥ 2, we denote by X = (X1, . . . ,Xn) an n−tuple of algebraically
independent variables (over K).
We sometimes write f = u ◦ h instead of f(X) = u(h(X)).
We denote by deg(f) the total degree of f .
We denote by ∂Xf the partial derivative of f with respect to X.
Given a field F, we denote by F an algebraic closure of F.

2.1. Algebraic dependence and the Jacobian. In this section, we present our
basic toolbox.

Definition 1. Let f(X) ∈ K[X] be a non-constant polynomial. The polynomial
f is said to be decomposable over K if there exist polynomials h(X) ∈ K[X] and
u(T ) ∈ K[T ] with deg(u) ≥ 2 such that f(X) = u

(

h(X)
)

.Otherwise, the polynomial
is said to be indecomposable.

In the remainder of this section, we consider only bivariate polynomials. In
Section 3.1, we show how to reduce the study of multivariate polynomials to the
study of bivariate polynomials.

We are looking for polynomials h such that f = u◦h. Then deg f = deg u × deg h;
thus deg h divides deg f . Furthermore, if f = u ◦ h then we can suppose that
h(0, 0) = 0. Indeed, if h(0, 0) 6= 0, we set v = u

(

T + h(0, 0)
)

and H = h − h(0, 0),
then we get f = v ◦H with H(0, 0) = 0. This gives rise to the following definitions:

Definition 2. We denote by Edmin
(f) the following set:

Edmin
(f) =

{

H(X,Y ) ∈ K[X,Y ] | deg H ≤ deg f

dmin
and H(0, 0) = 0

}

,

where dmin is the smallest prime dividing deg(f).

Definition 3. Let f(X,Y ) ∈ K[X,Y ] be a polynomial such that degX(f) > 0 and
degY (f) > 0. The K-linear map

Jacf : Edmin
(f) −→ K[X,Y ]

H(X,Y ) 7−→ ∂Xf.∂Y H − ∂Y f.∂XH

is the restriction to Edmin
(f) of the Jacobian derivation associated to f .
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That is to say, Jacf (H) = ∂Xf.∂Y H − ∂Y f.∂XH is the Jacobian of the polyno-
mial map (X,Y ) 7−→

(

f(X,Y ),H(X,Y )
)

.

Most of our results rely on the following property of Jacf .

Proposition 4. Assume that p = 0 or p >
d2

dmin
. Then

KerJacf 6= {0} ⇐⇒ f = u ◦ h,

where h ∈ K[X,Y ] is an indecomposable polynomial, u ∈ K(T ) and deg(u) ≥ 2.

This proposition is classical. We can find a general statement for n ≥ 2 vari-
ables in [13, Theorem 6]. However, this result is usually stated with a separability
hypothesis. In this paper, we want to obtain results with a hypothesis on the char-
acteristic p of K, such as is found in theorems about absolute factorization. For
this reason, we give the proof of Proposition 4 to motivate the hypothesis on p.
A part of the proof of this proposition is based on the following lemma. This lemma
is usually stated under the hypothesis p = 0 (see, for example, [24, Lemma 1.1].
We prove it in a more general case using a result of Jouanolou’s work (see [14,
Corollaire 7.2.2, p. 232]).

Lemma 5. Let f, g ∈ K[X,Y ] with f a non-constant polynomial, and assume

that p = 0 or p > deg(f) deg(g). If Jacf (g) = 0, then f and g are algebraically

dependent over K.

Proof. This proof follows very closely the proof of [24].
Assume that f and g are algebraically independent over K. Then by Corollaire
7.2.2 in [14, p. 232], for every non-constant P ∈ K[X,Y ] there exists a nonzero
polynomial Φ(T1, T2, T3) ∈ K[T1, T2, T3] such that Φ(f, g, P ) = 0 in K[X,Y ] and
0 < degT3

Φ ≤ deg(f) deg(g).
We rewrite this equality in the following way:

s
∑

i=0

Φi(f, g)P i = 0

where Φs 6= 0 in K[X,Y ] and s ≤ deg(f) deg(g). Without loss of generality, we
can assume that s is minimal. Then by using the Leibniz rule and the assumption
“Jacf (g) = 0”, we obtain the following:

0 = Jacf (Φ(f, g, P )) =
(

s
∑

i=1

iΦi(f, g)P i−1
)

Jacf (P ).

If s > 1 then
∑s

i=1 iΦi(T1, T2)T
i−1
3 6= 0 in K[T1, T2, T3] because s < p. Thus

Jacf (P ) = 0 because of the minimality of s.
If s = 1 then Φ1(f, g)Jacf (P ) = 0 and Φ1(f, g) 6= 0. So in all cases, we have
Jacf (P ) = 0 for each P ∈ K[X,Y ] not equal to zero.
By using this result with P = X and with P = Y , we get ∂Xf = ∂Y f = 0.
This implies that f(X,Y ) ∈ K[Xp, Y p] (since f is non-constant), and in particular,
deg(f) > p; this contradicts the assumption “p > deg(f) deg(g)”. �

Now we prove Proposition 4.
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Proof. =⇒) Let H ∈ KerJacf with H 6= 0. By Lemma 5 (with g = H), f and H
are algebraically dependent over K. Then by Gordan’s Theorem [23, §1.2, Theorems
3 and 4], there exists a polynomial h ∈ K[X,Y ] such that f,H ∈ K(h). Thus we
have f = u ◦ h with u(T ) ∈ K(T ). As f(X,Y ) is a polynomial, u(T ) is necessarily
in K[T ]. Moreover, deg(u) ≥ 2 since d/dmin ≥ deg(H) ≥ deg(h) and d = deg(f) =
deg(u).deg(h). Furthermore, one may assume that h is indecomposable (by taking
deg(u) maximal).
⇐=) We just have to apply Jacf to the condition f = u ◦ h, to show that h ∈
KerJacf . �

Remark 1.

(1) The following example shows that the same result is not true without the
hypothesis p > d2/dmin. Let f(X,Y ) = Xp+1Y ∈ K[X,Y ] where p is the char-
acteristic of K. The polynomial f is indecomposable, since degY (f) = 1, but
KerJacf 6= {0} since H(X,Y ) = XY ∈ KerJacf .
(2) Throughout this article, the characteristic p of K is assumed to be either 0
or sufficiently large (p > d2/dmin). It is well known (see [1, Theorem 7]) that in
characteristic zero, we have an equivalence between “decomposable over K” and
“decomposable over any extension of K”. This equivalence cannot hold for positive
characteristic in general [1, section 8].
However, it is true under the hypothesis gcd(p,deg(f)) = 1 for univariate polynomi-
als (see [6]). Thus, using Kronecker’s substitution (see [1]) we obtain the equivalence
for multivariate polynomials under the hypothesis gcd(p,deg(f)) = 1. Refer to [2,
Section 4, Theorem 4.2] for a general statement and more details.
Thus under the hypothesis that p = 0 or sufficiently large (p > d2/dmin), f is
decomposable over K if and only if f is decomposable over an algebraic closure K

of K. Thus by abuse of notation we will sometimes write that f is decomposable
instead of f is decomposable over its coefficient field.

3. Analogues to Bertini’s and Noether’s Theorems

3.1. Reduction from n to 2 variables. In this subsection, we show that we can
reduce the study of multivariate polynomials to the study of bivariate polynomials.

Proposition 6. Let d ≥ 2 be an integer and let

f =
∑

|e|≤d

ce1,...,en
Xe1

1 . . . Xen
n ∈ K[X],

with |e| = e1 + · · · + en.
Let

L := K(U, V ,W ) = K(U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn),

where U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn are algebraically independent variables.

The bivariate polynomial

f̃(X,Y ) = f(U1X + V1Y + W1, . . . , UnX + VnY + Wn) ∈ L[X,Y ]

is indecomposable over L if and only if f is indecomposable over K.

The proof of this proposition is closely related to the following classical result.

Lemma 7. Let f ∈ K[X] be a non-constant polynomial. We have:

f is indecomposable over K ⇐⇒ f(X) − T is irreducible in K(T )[X],
where T is a variable.
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This lemma is an application of the well-known result of Bertini-Krull (see [23,
Theorem 37, p. 217 and Corollary 1 p. 220]).

Now we prove Proposition 6.

Proof. By Lemma 7, f̃(X,Y ) is indecomposable over L if and only if f̃(X,Y ) − T

is irreducible in L(T )[X,Y ]. By Lemma 7 in [15], this condition holds if and

only if f(X) − T is irreducible in K(T )[X], or equivalently, if and only if f(X)
is indecomposable over K (again by Lemma 7). �

Now we prove, with the help of an effective form of Bertini’s Theorem for absolute
factorization, the following effective result on reduction from n to 2 variables.

Theorem 8. Let S be a finite subset of K and let f ∈ K[X] be an indecomposable

polynomial of total degree d. Suppose that p = 0 or p > d(d − 1). Then for a

uniform random choice of ui’s, vi’s and wi’s in S, with probability at least 1 −
(3d(d − 1) + 1)/|S|, the polynomial

f(X,Y ) = f(u1X + v1Y + w1, . . . , unX + vnY + wn) ∈ K[X,Y ]

is indecomposable.

Proof. We want to show that the probability

P
(

{f is indecomposable | f is indecomposable and u, v, w ∈ S}
)

is at least equal to 1 − (3d(d − 1) + 1)/|S|.
By Lemma 7, f −T is irreducible over K(T )[X]. Then, by Corollary 8 in [17], f −T

is irreducible over K(T )[X,Y ] with probability at least 1 − (3d(d − 1) + 1)/|S|.
Remark that we can use Corollary 8 in [17] because p = 0 or p > d(d − 1).
By Lemma 7 applied to f − T , we obtain the desired bound. �

3.2. The set of decomposable polynomials. In this section, we show that the
set of decomposable polynomials is included in an algebraic variety. The inclusion
is not trivial, that is, the algebraic variety is not of the form KN . The strategy is
as follows: we use Proposition 6 to restrict our problem to the bivariate case, and
then we use Proposition 4.

Theorem 9. Let d ≥ 2 and n ≥ 2 be integers, and let f =
∑

|e|≤d ceX
e1

1 . . . Xen
n be a

non-constant polynomial with coefficients in K. Assume that p = 0 or p > d2/dmin.

Then there exists a finite set of polynomials

Φ1, . . . ,ΦN ∈ Z[Ce ] := E,

where the Ce are variables, |e| ≤ d, and N be an integer ≥ 2, with the following

property:

Φt(ce) = 0 for all t = 1, . . . , N ⇐⇒ f is decomposable or deg(f) < d.
Furthermore,

deg(Φt) ≤
1

2
(

d

dmin
+ 1)(

d

dmin
+ 2) + 1 =: B

for all t = 1, . . . , N.
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Remark 2.

(1) We can prove a version Theorem 9 without any hypothesis on the characteristic,
but in this case the bound B is larger. Indeed, let Ψt be the Noether irreducibility
forms associated to the polynomials F =

∑

FeX
e1

1 . . . Xen
n ∈ L[X] of degree d,

where L is a field. By definition, the family {Ψt} satisfies the following condition:

∀t,Ψt(Fe) = 0 ⇐⇒ F (X) is reducible over L or deg(F ) < d.

Now, we consider f =
∑

|e|≤d ceX
e1

1 . . . Xen
n , and we apply Noether’s forms to

F = f −T ∈ K[T ][X] and L = K(T ). Then Ψt(Fe) =
∑

i≤D at,i(ce)T
i ∈ K[T ], with

D = deg(Ψt), at,i ∈ Z[Ce ] where Ce are variables and deg(at,i) ≤ D. In this case,
we have

∀t,∀i, at,i(ce) = 0 ⇐⇒ ∀t,Ψt(Fe) = 0

⇐⇒ f − T is reducible over K(T ) or deg(f) < d

⇐⇒ f is decomposable or deg(f) < d.

Thus, the polynomials at,i satisfy the same property as Φt in Theorem 9. Fur-
thermore, deg(at,i) ≤ deg(Ψt). Unfortunately, as far as we know, the best bound for
the degree of Noether’s irreducibility forms in all characteristics is deg(Ψt) ≤ 12d6

(see [15, Theorem 7]). This is the reason why we use another strategy for our proof
to obtain a good bound for deg(Φt).
(2) Theorem 9 is similar to the classical Noether’s theorem on absolute factoriza-
tion. Our bound is sharper than the one used for the absolute factorization. For
example, if we have a polynomial of degree d = 10 then the degree of our forms is
22. But when we study the absolute factorization, the degree of Noether’s absolute
irreducibility forms are equal to d2 − 1 = 99, see [21], [23, chapter 3]. As far as
we know, there do not exist optimal results on the degree of Noether’s absolute ir-
reducibility forms. We also do not know if the bound given in Theorem 9 is optimal.

Now we prove Theorem 9.

Proof. We set the following notations:

• F (X) =
∑

|e|≤d CeX
e1

1 . . . Xen
n , where Ce are variables, F (X) ∈ E[X],

• L
′

:= E(U, V ,W ),

• F̃ (X,Y ) = F (U1X + V1Y + W1, . . . , UnX + VnY + Wn) ∈ L
′

[X,Y ],
• {∆s} is the set of all maximal minors of the matrix JacF̃ ,
• S := {τ ∈ E | τ is a coefficient of a term in U, V ,W of some ∆s}.

If we rewrite the proof of Theorem 3 in [16] with the matrix JacF̃ instead of Rup-
pert’s matrix, then by Proposition 6 and Proposition 4, the set of indecomposability
forms is

{Φt = Ceτ ∈ E | |e| = d, τ ∈ S}.
Thus, in order to bound deg Φt, we just have to bound deg τ . As deg τ is bounded

by the number of columns of JacF̃ the desired result follows. �

Now we are going to give a probabilistic corollary to Theorem 9.

Corollary 10. Let K be a field of characteristic zero or p > d2/dmin. Let f(X1, . . . ,Xn) =
∑

|e|≤d ceX
e1

1 . . . Xen
n ∈ K[X], and S be a finite subset of K.
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For a uniform random choice of ce in S, the probability

P
(

{f is indecomposable and deg f = d | ce ∈ S}
)

is at least equal to 1 − B/|S|.
Proof. By Theorem 9, if f is decomposable or deg(f) < d, then for all t ∈ {1, . . . , N}
we have Φt(ce) = 0. Moreover, ∩N

t=1{Φt(ce) = 0} is a subset of {Φ1(ce) = 0}. Thus
the corollary follows from Theorem 9 and Zippel-Schwartz’s lemma (see for example
[25, Proposition 5], or [10, Lemma 6.44 p.174]). �

3.3. Indecomposable polynomials and specialization. We study the special-
ization of an indecomposable polynomial with coefficients in K[T1, . . . , Tm] where
T1, . . . , Tm are new independent variables.

Theorem 11. Assume that p = 0 or p > d2/dmin. Let S be a finite subset of K

and let

f(T1, . . . , Tm,X) =
∑

|e|≤d

ae(T1, . . . , Tm)Xe ∈ K[T1, . . . , Tm][X]

be an indecomposable polynomial over K(T1, . . . , Tm) of total degree d. Suppose that

0 < max(deg(ae)) ≤ D and denote by fτ (X) the polynomial f(τ1, . . . , τm,X), where

τ1, . . . , τm ∈ K. For a uniform random choice of τi’s in S, with probability at least

1−D.B/|S|, the polynomial fτ (X) is indecomposable over K and deg(f) = deg(fτ ).

Proof. Since f is indecomposable over K(T1, . . . , Tm), by Theorem 9, there exists t ∈
{1, . . . , N} such that Φt

(

ae(T )
)

6= 0 in K[T1, . . . , Tm], where deg Φt

(

ae(T )
)

≤ D.B.

Bad cases appear when we have Φt

(

ae(τ)
)

= 0 for all t ∈ {1, . . . , N}. Thus we get
the desired estimate using Zippel-Schwartz’s lemma as in Corollary 10. �

Remark 3. We cannot obtain the same result if we use a substitution of the
form Xi = xi, for i = 3, . . . , n. For example, the polynomial f(X1,X2,X3) =
X6

1X10
2 X15

3 is indecomposable. Indeed, if we write f = u(h) then deg(u) divides
gcd(6, 10, 15) = 1. But for all x ∈ K, f(x,X2,X3), f(X1, x,X3), f(X1,X2, x) are
decomposable.

4. Analogues to Newton polygons and Ostrowski’s theorem

4.1. Decomposable polynomials and their Newton polygons.

Definition 12. The support of f(X) is the set Sf of integer points (i1, . . . , in)

such that the monomial Xi1
1 · · ·Xin

n appears in f with a non-zero coefficient.
We denote by N(f) the convex hull (in the real space Rn) of Sf ∪{(0, . . . , 0)}. This
set N(f) is called the Newton polygon of f .

Remark 4:

As f is decomposable if and only if f + λ is decomposable, we have to add the
origin to Sf when we compute the convex hull. Note that because {(0, . . . , 0)} is
added to Sf in our definition, we have N(f) = N(f + λ) for all λ ∈ K.

The next result is a necessary condition on the vertices of N(f) for decomposable
polynomials.
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Proposition 13. Let f, h ∈ K[X], and u ∈ K[T ] such that f = u ◦ h.

If (i1, . . . , in) is a vertex of N(f) then we can write (i1, . . . , in) = (r.j1, . . . , r.jn),
where r = deg(u) and (j1, . . . , jn) is a vertex of N(h).

Proof. Note that we can restrict our study to the case f(0, . . . , 0) 6= 0. Indeed, as
previously seen, f is decomposable if and only if f + λ is decomposable for any
λ ∈ K. Moreover, f = u ◦ h implies f =

∏r
k=1(h − uk), where uk 6= 0 are the roots

of u in K and h is such that h(0, . . . , 0) = 0.
Recall that f = f1.f2 implies N(f) = N(f1) + N(f2); see, for example, [8, Lemma
5], where the sum is the Minkowski sum of convex sets. Thus, we have N(f) =
∑r

k=1 N(h − uk). As the constant term of h − uk is not zero, all h − uk have the
same support. This gives N(f) = rN(h − u1). �

4.2. Indecomposability and reduction modulo p. In the absolute factorization
case, Ostrowski’s Theorem states that “an absolutely irreducible integral polyno-
mial remains absolutely irreducible modulo all sufficiently large prime numbers”.
For example, in [8, Theorem 1] the authors give (for n = 2) a sharp and effective

bound for Ostrowski’s theorem, namely p >
(√

m2 + n2.‖f‖2

)2T−3

, where T is the

number of integral points in the Newton polygon of f, m = degX f, n = degY f
and ‖f‖2 is the Euclidean norm of f. In this section, we use the same strategy
with the Jacobian matrix. We show that if p is a large enough prime and f is
indecomposable then f mod p is indecomposable. In the indecomposability case,
the exponent 2T − 3 of the previous bound becomes T .

Definition 14. Let f ∈ K[X], D = gcd(i
(1)
1 , . . . , i

(1)
n , . . . , i

(k)
1 , . . . , i

(k)
n ) where

(i
(α)
1 , . . . , i

(α)
n ) are the coordinates of the vertices of N(f). Let Dmin be the smallest

prime dividing D.

Let N(f)Dmin
be the polygon with vertices

( i
(α)
1

Dmin
, . . . ,

i
(α)
n

Dmin

)

.

We denote by E the following set:
E = {P (X) ∈ K[X] | SP ⊂ N(f)Dmin

and P (0, . . . , 0) = 0}.

Theorem 15. Let f =
∑

i,j ci,jX
iY j ∈ Z[X,Y ] be an indecomposable polynomial

of degree d.
Let H(f) be the height of f , that is, H(f) = maxi,j |ci,j |.
If D = 1, then for every prime such that p > H(f), f mod p is indecomposable.

If D 6= 1, then f mod p is indecomposable for every prime p such that

p > max
[ d2

dmin
,
( d2

Dmin
‖f‖2

)T ′
]

, where T ′ is the number of integral points in

N(f)Dmin
.

Proof. If D = 1, then the result is a consequence of Proposition 13:
indeed, if p > H(f) then N(f) = N(f mod p). Thus, the coordinates of the
vertices of N(f mod p) are relatively prime, and by Proposition 13 it follows that
f mod p is indecomposable.

If D 6= 1, we follow the strategy given in [8].
By Proposition 13, we can restrict Jacf to E and as p > d2/dmin Proposition 4
implies:

(⋆) dimK KerJacf/E = 0 ⇐⇒ f is indecomposable.
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Now, we just have to show that the dimension of the kernel remains equal to zero
after the reduction of f mod p.
Since f is indecomposable, Jacf/E has rank T ′. Then there exists a submatrix M
of Jacf/E such that rank M = T ′. Now we are going to estimate det M using
Hadamard’s inequality.
Each column of Jacf/E corresponds to a polynomial of the following form: Jacf/E(XaY b) =

(∂Xf)bXaY b−1 − (∂Y f)aXa−1Y b, where (a, b) ∈ N(f)Dmin
. Thus a and b are less

than d/Dmin.
Moreover, Jacf/E(XaY b) =

∑

i,j(ib − aj)ci,jX
a+i−1Y b+j−1, where i and j are

smaller than d. Thus each column has norm less than
d2

Dmin
‖f‖2. Hence, Hadamard’s

inequality,

|det M | ≤
( d2

Dmin
‖f‖2

)T ′

.

Thus if p >
( d2

Dmin
‖f‖2

)T ′

, then Jacf/E mod p has full rank. Here Jacf/E mod p

means that all coefficients of Jacf/E are reduced modulo p. This matrix is Jacf mod p/E .

Thus, if p > max
[ d2

dmin
,
( d2

Dmin
‖f‖2

)T ′
]

, then Jacf mod p/E has full rank, and we

can apply the property (⋆). Thus f mod p is indecomposable. �

5. An indecomposability test

Several efficient algorithms for decomposing a polynomial are given in the liter-
ature (see, e.g., [5, 9, 12]). The algorithm given in [9] is nearly optimal. However,
it is sometimes useful to have an easy test for hand computations. For example, if
we want to check that

f(X,Y ) = Xd+Xd/2Y d/2−1+

d/2−1
∑

i=1

d/2−2
∑

j=1

(

22d+i+j−1
)

XiY j+3, with d = 2k, k ≥ 2,

is indecomposable, then the computation requires at least O(2d) bit operations.
Indeed, the length of the coefficients is O(2d). With the following test, we can
conclude that this polynomial is indecomposable, and avoid a computation with an
exponential (relatively to d) bit complexity.

Our test is a direct corollary of Proposition 13, and this idea has already been
used for Theorem 15. A similar test for the absolute factorization has already been
studied in [3, Chapitre 5].

Corollary 16. Let (i
(1)
1 , . . . , i

(1)
n , . . . , i

(k)
1 , . . . , i

(k)
n ) be the vertices of N(f).

If gcd(i
(1)
1 , . . . , i

(1)
n , . . . , i

(k)
1 , . . . , i

(k)
n ) = 1 then f is indecomposable.

Remark 5:

(1) If (d/2, d/2 − 1) is a vertex of N(f) in the previous example and d/2, d/2 − 1
are coprime, then f is indecomposable.
(2) The “speed” of our test does not depend of K, but only on N(f). That is, our
test performs the same computations with f as with

g(X,Y ) = Xd + Xd/2Y d/2−1 +

d/2−1
∑

i=1

d/2−2
∑

j=1

Pi,j(T )XiY j + 3 ∈ Q(T )[X,Y ],
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where Pi,j(T ) ∈ Q(T ). (Thus g is indecomposable.)
(3) If we do not add the origin to the support, then Corollary 16 is false:
consider h(X,Y ) = X4Y 2 +X5Y 5 +X2Y and f(X,Y ) = h2−h. Then f is decom-
posable but (2, 1), (8, 4), (10, 10), (5, 5) are the vertices of Sf and gcd(2, 1, 8, 4, 10, 5) = 1.

Thus, we have produced a simple test for the indecomposability of a polynomial.
If the coordinates of the vertices of N(f) are (0, . . . , 0), (d, 0, . . . , 0), (0, . . . , d)

then our test returns “I don’t know”. This situation appears when all the coeffi-
cients of f in the dense representation are non-zero. However, if a lot of coefficients
of f in the dense representation are equal to zero, then using Corollary 16 we can
often quickly detect if f is indecomposable. The following table gathers some sta-
tistical evidence about this claim. This test has been implemented in Magma [18],
and is freely available at http ://www.math.univ-toulouse.fr/∼cheze/.

d Sparse Success Tavg Tmax Tmin

10 0% 0 0.00015 0.011 0
10 50% 711 0.00007 0.011 0
10 66% 837 0.00009 0.011 0
10 90% 914 0.0009 0.011 0
100 66% 836 0.013 0.021 0
200 66% 848 0.1821 0.23 0.13

Figure 1. Some results of our test.

We randomly constructed 1000 polynomials of total degree d with two variables.
Sparse denotes the ratio of null coefficients in the dense representation for the total
degree d. For example “Sparse = 66% “ means that 66% of the coefficients are
equal to zero in the dense representation for the total degree d. The coefficients of
f belong to [−1012; 1012]. Success is the number of indecomposable polynomials
detected with our test. Tavg (resp. Tmax, Tmin) is the average (resp. maximum,
minimum) timing in seconds to perform one test.
This table shows that our test is well suited for sparse polynomials.
As the number n of variables, increases the probability of success increases with
n. Indeed, when a polynomial has n variables, each vertex of its Newton polygon
has n coordinates. Thus the number of coordinates increases, and thus the chance
of obtaining a gcd equal to 1. Our implementation relies on the Magma function:
NewtonPolygon. Unfortunately, this function only works for bivariate polynomials.
For this reason, our table only shows numerical evidence for bivariate polynomials.
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[2] A. Bodin, P. Dèbes, S. Najib, Indecomposable polynomials and their spectrum,

Acta Arith.(to appear).
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