
A RECOMBINATION ALGORITHM FOR THE

DECOMPOSITION OF MULTIVARIATE RATIONAL FUNCTIONS

GUILLAUME CHÈZE

Abstract. In this paper we show how we can compute in a deterministic way

the decomposition of a multivariate rational function with a recombination
strategy. The key point of our recombination strategy is the used of Darboux
polynomials. We study the complexity of this strategy and we show that this

method improves the previous ones. In appendix, we explain how the strategy
proposed recently by J. Berthomieu and G. Lecerf for the sparse factorization
can be used in the decomposition setting. Then we deduce a decomposition
algorithm in the sparse bivariate case and we give its complexity.

Introduction

The decomposition of univariate polynomials has been widely studied since 1922,
see [Rit22], and efficient algorithms are known, see [AT85, BZ85, KL89, Gat90a,
Gat90b, Gie88, Klü99]. There also exist results and algorithms in the multivariate
case [Dic87, Gat90a, Gie88, GGR03].
The decomposition of rational functions has also been studied, [Gie88, Zip91,
AGR95, GW95]. In the multivariate case the situation is the following:
Let f(X1, . . . ,Xn) = f1(X1, . . . ,Xn)/f2(X1, . . . ,Xn) ∈ K(X1, . . . ,Xn) be a ratio-
nal function, where K is a field and n ≥ 2. It is commonly said to be composite if it
can be written f = u(h) where h(X1, . . . ,Xn) ∈ K(X1, . . . ,Xn) and u ∈ K(T ) such
that deg(u) ≥ 2 (recall that the degree of a rational function is the maximum of
the degrees of its numerator and denominator after reduction), otherwise f is said
to be non-composite. In this paper, we give an algorithm which computes a non-
composite rational function h ∈ K(X1, . . . ,Xn) and a rational function u ∈ K(T )
such that f = u(h).

In [Chè10], the author shows that we can reduce the decomposition problem to a
factorization problem and gives a probabilistic and a deterministic algorithm. The
probabilistic algorithm is nearly optimal: it performs Õ(dn) arithmetic operations.
The deterministic one computes O(d2) absolute factorizations and then performs

Õ(dn+ω+2) arithmetic operations, where d is the degree of f and ω is the feasible
matrix multiplication exponent as defined in [GG03, Chapter 12]. We recall that
2 ≤ ω ≤ 2.376. As in [Chè10], we suppose in this work that d tends to infinity and

n is fixed. We use the classical O and Õ (“soft O”) notation in the neighborhood
of infinity as defined in [GG03, Chapter 25.7]. Informally speaking, “soft O”s are
used for readability in order to hide logarithmic factors in complexity estimates.
In this paper we improve the complexity of the deterministic algorithm. With
this algorithm we just compute two factorizations in K[X1, . . . ,Xn] and then we
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use a recombination strategy. Under some hypotheses this new method performs
Õ(dn+ω−1) arithmetic operations.

The decomposition of multivariate rational functions appears when we study the
kernel of a derivation, see [MO04]. In [MO04] the author uses Darboux polynomials

and gives an algorithm which works with Õ(dωn) arithmetic operations.
In this paper, we are also going to use Darboux polynomials (see Section 1 for a
definition) and we add a recombination strategy. Roughly speaking, we are going
to factorize the numerator and the denominator and then thanks to a property of
Darboux polynomials we are going to show that we can recombine the factors and
deduce the decomposition.

The decomposition of multivariate rational functions also appears when we study
intermediate fields of an unirational field and the extended Lüroth’s Theorem, see
[GRS01, Chè10], and when we study the spectrum of a rational function, see [Chè10]
and the references therein.

The study of decomposition is an active area of research: for a study on mul-
tivariate polynomial systems see e.g. [FP09, FGP10], for a study on symbolic
polynomials see e.g. [Wat09], for a study on Laurent polynomials see e.g. [Wat08],
for effective results on the reduction modulo a prime number of a non-composite
polynomial or a rational function see e.g. [CN10, BDN09, BCN], for combinatorial
results see e.g. [Gat08].

In this paper, we improve the strategy proposed in [MO04]. As in [MO04], we
consider fields with characteristic zero. Furthermore, as we want to give precise
complexity estimate we are going to suppose that:

Hypothesis (C):
K is a number field: K = Q[α], α is an algebraic number of degree r.

As in [Chè10], we are going to suppose that the following hypothesis is satisfied:

Hypothesis (H):
{

(i) deg(f1 + Λf2) = degXn
(f1 + Λf2), where Λ is a new variable,

(ii)R(Λ) = ResXn

(

f1(0,Xn) + Λf2(0,Xn), ∂Xn
f1(0,Xn) + Λ∂Xn

f2(0,Xn)
)

6= 0 in K[Λ].

where degXn
f represents the partial degree of f in the variable Xn, deg f is the

total degree of f and ResXn
denotes the resultant relatively to the variable Xn.

This hypothesis is necessary, because we will use the factorization algorithms
proposed in [Lec07], where this kind of hypothesis is needed. Actually, in [Lec07]
the author studies the factorization of a polynomial F and uses hypothesis (L),
where (L) is the following:

Hypothesis (L):
{

(i) degXn
F = deg F, and F is monic in Xn,

(ii)ResXn

(

F (0,Xn), ∂F
∂Xn

(0,Xn)
)

6= 0.

If F is squarefree, then hypothesis (L) is not restrictive since it can be assured by
means of a generic linear change of variables, but we will not discuss this question
here (for a complete treatment in the bivariate case, see [CL07, Proposition 1]).
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Roughly speaking, our hypothesis (H) is the hypothesis (L) applied to the poly-
nomial f1 + Λf2. In (H,i) we do not assume that f1 + Λf2 is monic in Xn. Indeed,
the leading coefficient relatively to Xn can be written: a + Λb, with a, b ∈ K. In
our algorithm, we evaluate Λ to λ such that a + λb 6= 0. Then we can consider
the monic part of f1 + λf2 and we get a polynomial satisfying (L,i). Then (H,i)
is sufficient in our situation. Furthermore, in this paper, we assume f1/f2 to be
reduced, i.e. f1 and f2 are coprime. We recall in Lemma 9 that in this situation
f1 + Λf2 is squarefree. Thus hypothesis (H) is not restrictive.

Furthermore, hypothesis (H) will also be useful in a preprocessing step, see Sec-
tion 2. In this preprocessing step we reduce the decomposition to two factorizations
of squarefree polynomials.

Complexity model. In this paper the complexity estimates charge a constant
cost for each arithmetic operation (+, −, ×, ÷) and the equality test. All the
constants in the base fields are thought to be freely at our disposal.

In this paper we suppose that the number of variables n is fixed and that the
degree d tends to infinity.

Polynomials are represented by dense vectors of their coefficients in the usual
monomial basis. For each integer d, we assume that we are given a computation
tree that computes the product of two univariate polynomials of degree at most
d with at most Õ(d) operations, independently of the base ring, see [GG03, The-
orem 8.23]. Then with a Kronecker substitution we can compute the product of

two multivariate polynomials with degree d with n variables with Õ(dn) arithmetic
operations. We also recall, see [GG03, Corollary 11.8], that if K is an algebraic

extension of Q of degree r then each field operation in K takes Õ(r) arithmetic
operations in Q.
We use the constant ω to denote a feasible matrix multiplication exponent as defined
in [GG03, Chapter 12]: two n × n matrices over K can be multiplied with O(nω)
field operations. As in [BP94] we require that 2 ≤ ω ≤ 2.376. We recall that the
computation of a solution basis of a linear system with m equations and d ≤ m un-
knowns over K takes O(mdω−1) operations in K [BP94, Chapter 2] (see also [Sto00,
Theorem 2.10]).
In [Lec06, Lec07] the author gives a deterministic algorithm for the multivariate ra-
tional factorization. The rational factorization of a polynomial f is the factorization
in K[X], where K is the coefficient field of f . This algorithm uses one factorization

of a univariate polynomial of degree d and Õ(dn+ω−1) arithmetic operations, where
d is the total degree of the polynomial and n ≥ 2 is the number of variables.

Main Theorem. The following theorem gives the complexity result of our algo-
rithm.

Theorem 1. Let f be a multivariate rational function in Q[α](X1, . . . ,Xn) of
degree d, where α is an algebraic number of degree r. Under hypotheses (C) and (H),

we can compute in a deterministic way the decomposition of f with Õ(rdn+ω−1)
arithmetic operations over Q plus two factorizations of univariate polynomials of
degree d with coefficients in Q[α].

Comparison with other algorithms. There already exist several algorithms for
the decomposition of rational functions. They all use the same global strategy: first
compute h, and then deduce u. The first step is the difficult part of the problem.
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In [Chè10], we explain how we can perform the second step, i.e. compute u from h

and f , with Õ(dn) arithmetics operations.
In [GRS01], the authors provide two algorithms to decompose a multivariate ratio-
nal function. These algorithms run in exponential time in the worst case. In the first
one we have to factorize polynomials with 2n variables f1(X)f2(Y ) − f1(Y )f2(X)
and to look for factors of the following kind h1(X)h2(Y ) − h1(Y )h2(X). The au-
thors say that in the worst case the number of candidates to be tested is exponential
in d = deg(f1/f2). Indeed, the authors test all the possible factors.
In the second algorithm, for each pair of factors (h1, h2) of f1 and f2 (i.e. h1 di-
vides f1 and h2 divides f2), we have to test if there exists u ∈ K(T ) such that
f1/f2 = u(h1/h2). Thus in the worst case we also have an exponential number of
candidates to be tested.
To the author’s knowledge, the first polynomial time algorithm is due to J. Moulin-
Ollagnier, see [MO04] . This algorithm relies on the study of the kernel of the
following derivation: δω(F ) = ω ∧ dF , where F ∈ K[X] and ω = f2df1 − f1df2. In
[MO04] the author shows that we can reduce the decomposition of a rational func-
tion to linear algebra. The bottleneck of this algorithm is the computation of the
kernel of a matrix. The size of this matrix is O(dn) ×O(dn), then the complexity
of this deterministic algorithm belongs to O(dnω).

The reduction of the decomposition problem to a factorization problem is clas-
sical, see e.g. [Klü99, Gie88, GW95, GRS01]. In [Chè10] the author shows that
if we choose a probabilistic approach then two factorizations in K[X1, . . . ,Xn] are
sufficient to get h and furthermore we do not have a recombination problem. This
gives a nearly optimal algorithm. For the deterministic approach the author uses a
property on the pencil f1 − λf2 and shows that with O(d2) absolute factorization
(i.e. factorization in the algebraic closure of K) we can get h. This deterministic

strategy works with Õ(dn+ω+2) arithmetic operations.
In this paper, we are going to show that we can obtain a deterministic algorithm
with just two factorizations in K[X1, . . . ,Xn] and a recombination strategy. Our

algorithm uses at most Õ(dn+ω−1) arithmetic operations. This cost corresponds to
the cost of the factorization and the recombination step.

Our recombination problem comes from this factorization:
If f1/f2 = u1/u2(h1/h2) then

f1 − λf2 = e(h1 − t1h2) · · · (h1 − tkh2)

where λ, e ∈ K, k = deg(u1/u2) and ti are the roots of the univariate polynomial
u1(T ) − λu2(T ), see Lemma 10.
Thus with the factors h1−t1h2 and h1−t2h2 we can deduce h. Unfortunately these
factors are not necessarily in K[X1, . . . ,Xn] and are not necessarily irreducible. In
this paper we show how we can reduce the problem to a factorization problem in
K[X1, . . . ,Xn] and how we can recombine the irreducible factors of f1−λf2 to get h.

We can see our recombination scheme as a logarithmic derivative method. Roughly
speaking, the logarithmic derivative method works as follow:
If F (X,Y ) =

∏t
j=1 Fj(X,Y ), where Fj(X,Y ) ∈ A and A ⊃ K[X,Y ] (for example

A = K[[X]][Y ]), then we can write the irreducible factors Fi(X,Y ) ∈ K[X,Y ] of F
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in the following way: Fi =
∏t

j=1 F
ei,j

j , where ei,j ∈ {0, 1}. Thus we just have to
compute the exponents ei,j to deduce Fi. We compute these exponents thanks to
this relation:

∂XFi

Fi
=

t
∑

j=1

ei,j
∂XFj

Fj
.

With this relation the exponents ei,j are now coefficients, and we can compute them
with linear algebra.
This strategy has already been used by several authors in order to factorize poly-
nomials see e.g. [BHKS09, BLS+04, Lec06, CL07, Wei10]. Here, we use this kind
of technique for the decomposition problem. With this strategy the recombination
part of our algorithm corresponds to the computation of the kernel of a O(dn)×O(d)
matrix.
In our context, we do not use exactly a logarithmic derivative. We use a more
general derivation, but we use the same idea: if a mathematical object transforms
a product into a sum then the recombination problem becomes a linear algebra
problem. In this paper this mathematical object is the cofactor, see Proposition 8.

Structure of this paper. In Section 1, we recall some results about the Jacobian
derivative and Darboux polynomials. In Section 2, we describe a reduction step
which eases the recombination strategy. In other words we explain how we can
reduce the decomposition problem to a factorization problem. In Section 3, we
explain how we can get h with a recombination strategy. In Section 4, we describe
our algorithm with two examples. In Section 5 we conclude this paper with a
remark on Darboux method and the logarithmic derivative method. In appendix,
we explain how the strategy proposed recently by J. Berthomieu and G. Lecerf in
[BL10] for the sparse factorization can be used in the decomposition setting. Then
we deduce a decomposition algorithm in the sparse bivariate case and we give its
complexity.

Notations. All the rational functions are supposed to be reduced.
Given a polynomial f , deg(f) denotes its total degree.
Given a rational function f = f1/f2, deg(f) denotes max

(

deg(f1),deg(f2)
)

.
For the sake of simplicity, sometimes we write K[X] instead of K[X1, . . . ,Xn], for
n ≥ 2.
u ◦ h means u(h).
Res(A,B) denotes the resultant of two univariate polynomials A and B.
|S| is the cardinal of the set S.

1. Derivation and Darboux polynomials

We introduce the main tool of our algorithm.

Definition 2. A K-derivation D of the polynomial ring K[X1, . . . ,Xn] is a K-linear
map from K[X1, . . . ,Xn] to itself that satisfies the Leibniz rule for the product

D(f.g) = D(f).g + f.D(g).

A K-derivation has a unique extension to K(X1, . . . ,Xn) and then we will also
denote by D the extended derivation.
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Definition 3. Given a rational function f1/f2, the Jacobian derivative associated
to f1/f2 is the following vector derivation, i.e. an (n − 1)-tuple of derivations:

Df1/f2
: K[X1, . . . ,Xn] −→

(

K[X1, . . . ,Xn]
)n−1

F 7−→ f2
2 .







∂X1

(

f1/f2)∂X2
F − ∂X2

(f1/f2)∂X1
F

...
∂X1

(

f1/f2)∂Xn
F − ∂Xn

(f1/f2)∂X1
F






.

The Jacobian derivative has the following property:

Proposition 4. Given f = f1/f2 and g ∈ K(X1, . . . ,Xn) \ K the following propo-
sitions are equivalent:

(1) The rank of the Jacobian matrix

Jac(f, g) =







∂f

∂X1
· · ·

∂f

∂Xn
∂g

∂X1
· · ·

∂g

∂Xn







is equal to one;
(2) Df1/f2

(g) = 0;
(3) there exists h in K(X1, . . . ,Xn) such that f = u(h) and g = v(h) for

u, v ∈ K(T ).

Proof. See [PI07] for a proof. In [PI07], K is supposed to be algebraically closed.
However, we can remove this hypothesis because we have the equivalence: f is
composite over K if and only if f is composite over K, see e.g. [BCN, Theorem
13]. �

Definition 5. Given D a vector derivation i.e. an m-tuple of derivations, a polyno-
mial F ∈ K[X] is said to be a Darboux polynomial of D if there exists G ∈

(

K[X]
)m

such that D(F ) = F.G. G is called the cofactor of F for the derivation D.

We deduce easily the following classical propositions.

Proposition 6. f1 and f2 are Darboux polynomials of Df1/f2
.

Proposition 7. Df1/f2
(h1/h2) = 0 if and only if h1 and h2 are Darboux polyno-

mials with the same cofactor.

The following proposition is the main tool of our algorithm. Indeed, this propo-
sition shows that cofactors transform a product into a sum. Then thanks to the
cofactors it will be possible to apply a kind of logarithmic derivative recombination
scheme.

Proposition 8. Let F ∈ K[X1, . . . ,Xn] be a polynomial and let F = F e1
1 · · ·F er

r

be its irreducible factorization in K[X1, . . . ,Xn]. Then:
F is a Darboux polynomial with cofactor GF if and only if all the Fi are Darboux
polynomials with cofactor GFi

. Furthermore, GF = e1GF1
+ · · · + erGFr

.

Proof. See for example Lemma 8.3 page 216 in [DLA06]. �
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2. Reduction to a rational factorization problem

In this section, we recall how the decomposition problem can be reduced to a
factorization problem. Furthermore, we show that we can reduce our problem to a
situation where f1 and f2 are squarefree. First, we recall some useful lemmas.

Lemma 9. If f1/f2 is reduced in K(X1, . . . ,Xn), where n ≥ 1 and Λ is a variable,
then f1 + Λf2 is squarefree.

Lemma 10. Let h = h1/h2 be a rational function in K(X), u = u1/u2 a rational
function in K(T ) and set f = u ◦ h with f = f1/f2 ∈ K(X). For all λ ∈ K such
that deg(u1 − λu2) = deg u, we have

f1 − λf2 = e(h1 − t1h2) · · · (h1 − tkh2)

where e ∈ K, k = deg u and ti are the roots of the univariate polynomial u1(T ) −
λu2(T ).

Proof. See [Chè10, Lemma 8, Lemma 39]. �

Remark 11. If λ = f1(a)/f2(a), where a = (a1, . . . , an) ∈ Kn, then we can suppose
that t1 ∈ K. Indeed, t1 = h1(a)/h2(a) ∈ K.

The following lemma says that we can always suppose that deg u1 = deg u2 =
deg u.

Lemma 12. Let h = h1/h2 be a rational function in K(X), u = u1/u2 a rational
function in K(T ) and set f = u ◦ h with f = f1/f2 ∈ K(X). There exists an
homography H(T ) = (aT + b)/(αT + β) ∈ K(T ) such that:

u ◦ H = ũ1/ũ2, deg ũ1 = deg ũ2, and f =
ũ1

ũ2
◦ h̃, where h̃ = H−1 ◦ h and H−1 is

the inverse of H for the composition.

Proof. If deg u1 = deg u2 then we set H(T ) = T .
If deg u2 > deg u1 then we have:

u1

u2

(

H(T )
)

=

∏deg u1

i=1

(

aT + b − λi(αT + β)
)

∏deg u2

i=1

(

aT + b − µi(αT + β)
)
.(αT + β)deg u2−deg u1 ,

where u1(λi) = 0 and u2(µi) = 0.
We set:

ũ1(T ) = (αT + β)deg u2−deg u1 .

deg u1
∏

i=1

(

aT + b − λi(αT + β)
)

= u1

(

H(T )
)

.(αT + β)deg u2 ∈ K[T ]

ũ2(T ) =

deg u2
∏

i=1

(

aT + b − µi(αT + β)
)

= u2

(

H(T )
)

.(αT + β)deg u2 ∈ K[T ].

If a − λiα 6= 0, α 6= 0, and a − µiα 6= 0 then we get deg ũ1 = deg u2 = deg ũ2.
To conclude the proof we just have to remark that deg H = 1, thus H is invertible
for the composition. �
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In order to ease the recombination scheme we reduce our problem to a situation
where the rational function is squarefree, i.e. the numerator and the denominator
are squarefree. The following algorithm shows that if f1 or f2 are not squarefree
then we can compute an homography U(T ) ∈ K(T ) such that U(f1/f2) is square-
free. Furthermore, if we know a decomposition U(f1/f2) = u(h) then we can easily
deduce a decomposition f1/f2 = U−1

(

u(h)
)

. We recall that U is invertible for the
composition because deg U = 1. Now, we describe an algorithm which computes a
good homography.

Good homography

Input: f = f1/f2 ∈ K(X1, . . . ,Xn) of degree d, such that (C) and (H) are satisfied
and a finite subset S of Kn such that |S| = 2d2 + 2d.
Output: U(T ) = (T−λa)/(T−λb) such that U(f) is squarefree, λa = f1/f2(a), λb =
f1/f2(b) where a, b ∈ Kn, λa 6= λb, and degXn

(f1 − λaf2) = degXn
(f1 − λbf2) = d.

(1) Compute f1(Xn) := f1(0,Xn), and f2(Xn) := f2(0,Xn).
(2) Construct an empty list L.
(3) For i from 1 to 2d2 + 2d do:

(a) Compute f := f1(i)/f2(i),.
(b) If f 6∈ L then L := concatenate(L, [f ]).

(4) Construct an empty list L.
(5) For k from 1 to 2d + 2 do:

(a) Compute R := ResXn

(

f1(Xn)−L[k]f2(Xn), ∂Xn
f1(Xn)−L[k]∂Xn

f2(Xn)
)

.

(b) If R 6= 0 and degXn
(f1−L[k]f2) = d, then L := concatenate(L, [L[k]]).

(6) λa := L[1], λb := L[2].
(7) Return U(T ) = (T − λa)/(T − λb).

Proposition 13. The algorithm Good homography is correct.

Proof. In Step 3 we construct a list with at least 2d + 2 distinct elements because
deg(f) = d.
By hypothesis (H), R(Λ) 6= 0 and by [GG03, Theorem 6.22], deg(R) ≤ 2d−1. Thus
L contains at least two distincts elements.
As R(λa) and R(λb) are not equal to zero, and thanks to Step 5b the condition on
the degree is satisfied, we deduce that f1 − λaf2 and f1 − λbf2 are squarefree. �

Proposition 14. The algorithm Good homography can be performed with at most
Õ(dn) arithmetic operations over K.

Proof. Step 1 can be done with Õ(dn) arithmetic operations with Horner’s method.
In Step 3 we use a fast multipoint evaluation strategy, then we can perform this
step with at most Õ(d2) arithmetic operations, see [GG03, Corollary 10.8].

In Step 5, the computation of the resultant can be done with Õ(d) arithmetic

operations, see [GG03, Corollary 11.16]. Thus Step 5 can be done with Õ(d2)
arithmetic operations.
In conclusion the algorithm can be performed with the desired complexity. �

Remark 15. Suppose f1/f2 = v1/v2(h). With the algorithm Good homography we
can write U(f1/f2) = u1/u2(h) with u1/u2 ∈ K(T ), h ∈ K(X1, . . . ,Xn), and u1

(resp. u2) has a root α1 (resp. α2) in K. Indeed, we have u1 = v1 − λav2 (resp.
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u2 = v1 − λbv2) and λa = f1/f2(a) (resp. λb = f1/f2(b)) then we deduce that
α1 = h1/h2(a) (resp. α2 = h1/h2(b)).

3. The recombination method

In this section we describe our recombination method. First, we introduce some
notations. By Proposition 6, F1 and F2 are Darboux polynomials of DF1/F2

.We
denote by

GFk
= (G

(2)
Fk

, . . . ,G
(n)
Fk

)

the cofactor of Fk, where k = 1, 2, and G
(l)
Fk

∈ K[X1, . . . ,Xn]. We set:

Fk =

sk
∏

j=1

Fk,j

for k = 1, 2, and

GFk,j
= (G

(2)
Fk,j

, . . . ,G
(n)
Fk,j

).

In Q[α][X1, . . . ,Xn] polynomials are denoted in the following way:

P =
∑

|τ |≤d

r−1
∑

ǫ=0

aǫ,ταǫXτ1
1 · · ·Xτn

n ∈ Q[α][X1, . . . ,Xn],

where α is an algebraic number of degree r, τ = (τ1, . . . , τn), |τ | = τ1 + · · · + τn,
and aǫ,τ ∈ Q. We set

coef
(

P, αǫXτ
)

= aǫ,τ .

Now we define the linear system S:

S :=

s1
∑

j=1

x1,jcoef
(

G
(l)
F1,j

, αǫXτ
)

−
s2
∑

j=1

x2,jcoef
(

G
(l)
F2,j

, αǫXτ
)

= 0,

where |τ | ≤ d, 0 ≤ ǫ ≤ r − 1, and 2 ≤ l ≤ n.
We denote by kerS the kernel of this linear system, and we remark that

x = (x1,1, . . . , x2,s2
) ∈ kerS ⇐⇒

s1
∑

j=1

x1,jGF1,j
−

s2
∑

j=1

x2,jGF2,j
= 0.

We define the following maps:

π1 : Ks1+s2 −→ Ks1

(x1,1, . . . , x2,s2
) 7−→ (x1,1, . . . , x1,s1

)

π2 : Ks1+s2 −→ Ks2

(x1,1, . . . , x2,s2
) 7−→ (x2,1, . . . , x2,s2

)

The following proposition will be the key of our algorithm:

Proposition 16. Suppose that F1/F2 ∈ K(X1, . . . ,Xn) comes from the algorithm
Good Homography and F1/F2 = u(h) where h = h1/h2 ∈ K(X1, . . . ,Xn) is a non-
composite reduced rational function and u = u1/u2 ∈ K(T ) is a reduced rational
function, with deg u1 = deg u2.
We denote by uk =

∏tk

i=1 uk,i the factorization of uk in K[T ], where k = 1, 2.
We denote by Fk =

∏sk

j=1 Fk,j the factorization of Fk in K[X1, . . . ,Xn], where
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k = 1, 2.
Then:

(1) uk,i

(h1

h2

)

.h
deg uk,i

2 =

sk
∏

j=1

F
ek,i,j

k,j ∈ K[X1, . . . ,Xn] and ek,i,j ∈ {0, 1}.

Furthermore, if we set ek,i := (ek,i,1, . . . , ek,i,sk
), then

the vectors ek,i, i = 1, . . . , tk, are orthogonal for the usal scalar product.
(2) We have ek,i ∈ πk(kerS).
(3) {ek,1, . . . , ek,tk

} is a basis of πk(kerS).

Proof. (1) By Lemma 10 applied to F1/F2 (resp. F2/F1) with λ = 0, we get

Fk = uk(h1/h2).h
deg uk

2 =

tk
∏

i=1

uk,i(h1/h2).h
deg uk,i

2 .

Then we deduce

uk,i(h1/h2).h
deg uk,i

2 =

sk
∏

j=1

F
ek,i,j

k,j in K[X1, . . . ,Xn]

with ek,i,j ∈ {0, 1} because Fk are squarefree. Furthermore, the vectors ek,i

are orthogonal for the usual scalar product because Fk are squarefree.
(2) We show this item for k = 1, the case k = 2 can be proved in a similar way.

As F1/F2 comes from the algorithm Good Homography and as explained in
Remark 15 we can suppose that:

uk,1(T ) = (T − αk), with αk ∈ K.

The previous item allows us to write:

u1,i

u
deg u1,i

2,1

(

h1

h2

)

=

(

∏s1

j=1 F
e1,i,j

1,j

)

.
(

h2

)deg u1,i

(

∏s2

j=1 F
e2,1,j

2,j

)deg u1,i

.
(

h2

)deg u1,i
=

∏s1

j=1 F
e1,i,j

1,j
(

∏s2

j=1 F
e2,1,j

2,j

)deg u1,i
.

By Proposition 4 applied to
u1,i

u
deg u1,i

2,1

(h1

h2

)

, we get then:

DF1/F2

(

∏s1

j=1 F
e1,i,j

1,j
∏s2

j=1 F
e2,1,j . deg u1,i

2,j

)

= 0.

Now, we recall that Fk,j are Darboux polynomials, see Proposition 6 and
Proposition 8. Then by Proposition 8, we deduce

s1
∑

j=1

e1,i,jGF1,j
− deg(u1,i)

s2
∑

j=1

e2,1,jGF2,j
= 0.

It follows (e1,i,1, . . . , e1,i,s1
,deg(u1,i).e2,1,1, . . . ,deg(u1,i).e2,1,s2

) ∈ kerS. Thus,
e1,i ∈ π1(kerS).

(3) The vectors ek,1, . . . , ek,tk
are linearly independant because they are or-

thogonal. We just have to prove that these vectors generate πk(kerS).
Suppose that ρ = (ρ1, . . . , ρs1+s2

) ∈ kerS. First, we clear the denominators
and we suppose that ρ ∈ Zs1+s2 instead of Qs1+s2 .
In a first time we explain the strategy of the proof for this item, and in a
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second time we will detail the proof.
We set

F1

F2
=

∏s1

i=1 F
ρj

1,j
∏s2

j=1 F
ρs1+j

2,j

,

where F1,F2 ∈ K[X] and F1/F2 is a reduced rational function.

Our goal is to get this kind of equality:

(E),
F1

F2
=

∏s1

j=1 F
ρj

1,j
∏s2

j=1 F
ρs1+j

2,j

=

∏2
k=1

∏

(i,k)∈Inum

(

∏k
j=1 F

ek,i,j

k,j

)muk,i

∏2
k=1

∏

(i,k)∈Iden

(

∏k
j=1 F

ek,i,j

k,j

)muk,i
,

where muk,i
∈ N, I = {(1, 1), . . . , (t1, 1), (1, 2), . . . , (t2, 2)}, Inum ⊂ I,

Iden ⊂ I and Inum ∩ Iden = ∅.

By the unicity of the factorization in irreducible factors we deduce:

π1(ρ) =
∑

(i,1)∈Inum

mu1,i
e1,i −

∑

(i,1)∈Iden

mu1,i
e1,i,

π2(ρ) =
∑

(i,2)∈Inum

mu2,i
e2,i −

∑

(i,2)∈Iden

mu2,i
e2,i.

We get: {ek,1, . . . , ek,tk
} generates πk(kerS), and this is the desired re-

sult.

Now we detail the proof with four steps:
(a) We remark:

F1

F2
=

u1

u2
(h) =

∏deg u
i=1 (h1 − µ1,ih2)

∏deg u
i=1 (h1 − µ2,ih2)

,

where µk,i are roots of uk.

(b) We have:

F1

F2
=

∏d1

j=1(h1 − λjh2)
mj

∏d1+d2

j=d1+1(h1 − λjh2)mj

.hκ
2 , with κ ∈ Z,mj ∈ N.

Indeed, as ρ ∈ kerS, we have
s1
∑

j=1

ρjGF1,j
−

s2
∑

j=1

ρs1+jGF2,j
= 0.

Thus
∏s1

j=1 F
ρj

1,j and
∏s2

j=1 F
ρs1+j

2,j are Darboux polynomials with the
same cofactor. By Proposition 7, we deduce:

DF1/F2

(

∏s1

j=1 F
ρj

1,j
∏s2

j=1 F
ρs1+j

2,j

)

= 0.

Then DF1/F2
(F1/F2) = 0 and thus F1/F2 = v1/v2(h) by Proposition

4. We denote by λj the roots of v1 and v2 and we get the desired
result.
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(c) We claim:

F1

F2
=

∏2
k=1

∏

(i,k)∈Inum

(

uk,i(h1/h2)h
deg uk,i

2

)muk,i

∏2
k=1

∏

(i,k)∈Iden

(

uk,i(h1/h2)h
deg uk,i

2

)muk,i
, where muk,i ∈ N.

Indeed, we have: for all j there exists δ(j) such that λj = µδ(j).
(To prove this remark we suppose the converse: There exists j0 such
that λj0 6= µk,i, for k = 1, 2 and i = 1, . . . ,deg u.
By definition of Fk and by step 3b, there exists (k1, j1) such that Fk1,j1

and h1−λj0h2 have a common factor in C[X]. We call P this common
factor.
By step 3a, there exists (k2, i2) such that P is a factor of h1−µk2,i2h2.
Thus h1 − λj0h2 and h1 − µk2,i2h2 have a common factor. As λj0 6=
µk2,i2 we deduce that P divides h1 and h2. This is absurd because
h1/h2 is reduced.)
Thus κ = 0, and for all j there exists k(j) ∈ {1, 2} and such that
uk(j)(λj) = 0.
As v1, v2 ∈ K[T ], by conjugation, we deduce that if λj and λj′ are
roots of the same irreducible polynomial uk,i ∈ K[T ] then mj = mj′ .
We denote by muk,i

this common value.
This gives the claimed equality with Inum ∩ Iden = ∅, because F1/F2

is reduced.
(d) Now we can prove equality (E).

F1

F2
=

∏2
k=1

∏

(i,k)∈Inum

(

uk,i(h1/h2)h
deg uk,i

2

)muk,i

∏2
k=1

∏

(i,k)∈Iden

(

uk,i(h1/h2)h
deg uk,i

2

)muk,i
, by step 3c,

=

∏2
k=1

∏

(i,k)∈Inum

(

∏k
j=1 F

ek,i,j

k,j

)muk,i

∏2
k=1

∏

(i,k)∈Iden

(

∏k
j=1 F

ek,i,j

k,j

)muk,i
, by the first item.

This gives the desired equality (E).
�

Now we describe our recombination algorithm:

Recombination for Decomposition

Input: f = f1/f2 ∈ K(X1, . . . ,Xn), such that (C) and (H) are satisfied.
Output: A decomposition of f if it exists, with f = u◦h, u = u1/u2 with deg u ≥ 2,
and h = h1/h2 non-composite.

(1) Compute F = F1/F2 := U(f) with the algorithm Good homography.
(2) For k=1, 2, factorize Fk =

∏sk

i=1 Fk,i in K[X] with Fk,i irreducible.
(3) For each Fk,i compute the corresponding cofactor GFk,i

:= DF1/F2
(Fk,i)/Fk,i.

(4) Build the system S and compute the basis in reduced row echelon form B1

of π1(kerS) and B2 of π2(kerS).
(5) For k=1, 2, find vk = (vk,1, . . . , vk,sk

) ∈ Bk such that:
∑sk

i=1 vk,i deg Fk,i = minw∈Bk

∑sk

i=1 wi deg Fk,i, where w := (w1, . . . , wsk
).

(6) For k=1, 2, compute Hk :=
∏sk

i=1 F
vk,i

k,i .
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(7) Set H := H1/H2.
(8) Compute u such that u(H) = f .
(9) Return H, and u.

Proposition 17. The algorithm Recombination for Decomposition is correct.

Proof. Consider F1/F2 := U(f). As we want to decompose f1/f2, we just have to
decompose F1/F2, because deg U = 1 and then U is invertible.
As F1/F2 comes from the algorithm Good Homography we can suppose, see Remark
15, that uk,1(T ) = (T − αk) with αk ∈ K, and k = 1, 2. Furthermore, by Lemma
12 we can also suppose that deg u1 = deg u2.
Then by Proposition 16, the basis Bk of πk(kerS) are {ek,1, . . . , ek,tk

}.

The vector ek,i gives the polynomial Hk,i =
∏sk

j=1 F
ek,i,j

k,j = uk,i(h)h
deg uk,i

2 .

Furthermore degHk,i =
∑sk

j=1 ek,i,j deg Fk,j = deg uk,i deg h. Thus in Step 5

min
w∈Bk

sk
∑

i=1

wi deg Fk,i = deg h,

because this minimum is reached with ek,1 ∈ Bk. Hence vk in Step 6 gives Hk =

uk,i(k)(h)h
deg uk,i(k)

2 with deg uk,i(k) = 1.
It follows H = (h1−αh2)/(h1−βh2) with α, β ∈ K. Thus H = v(h) with deg v = 1,
then the algorithm is correct.

�

Proposition 18. The algorithm Recombination for Decomposition can be performed
with Õ(rdn+ω−1) arithmetic operations over Q and two factorizations of univariate
polynomials of degree d with coefficients in K.

We recall that in our complexity analysis the number of variables is fixed and
the degree d tends to infinity.

Proof. Step 1 uses Õ(dn) arithmetic operations over K by Proposition 14, thus it

uses Õ(rdn) arithmetic operations over Q.

Step 2 uses Õ(dn+ω−1) arithmetic operations over K because we can use Lecerf’s

algorithm, see [Lec07]. Thus we use Õ(rdn+ω−1) arithmetic operations over Q and
two factorizations of univariate polynomials of degree d with coefficients in K.
In Step 3, we compute DF1/F2

(Fk,i), thus we perform 2(n − 1) multiplications of
multivariate polynomials. We can do this with a fast multiplication technique,
and then this computation costs Õ(nrdn) arithmetic operations over Q. Then we
divide DF1/F2

(Fk,i) by Fk,i. We have to perform n− 1 exact divisions, thus with a
Kronecker subsitution we reduce this problem to n−1 univariate divisions, and the
cost of one such division belongs then to Õ(rdn). As s1 and s2 are smaller than d,

Step 3 costs Õ(nrdn+1) arithmetic operations over Q.

Step 4 needs Õ(nrdndω−1) arithmetic operations over Q with Storjohann’s method,
see [Sto00, Theorem 2.10]. Indeed, S has O((n − 1)rdn) equations and s1 + s2

unknowns, thus at most 2d unknowns.
Step 5 has a negligeable cost because dimQ πk(kerS) = tk is smaller than d and sk

is also smaller than d.
In Step 6, we use a fast multiplication technique and we compute Hk with Õ(rdn)
arithmetic operations over Q.
Step 8 can be done with Õ(rdn) arithmetic operations over Q, see [Chè10].
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Thus the global cost of the algorithm belongs to Õ(rdn+ω−1) arithmetic operations
over Q. �

4. Examples

In this section we show the behavior of the algorithm Recombination for Decom-

position with two examples. We consider bivariate rational functions with rational
coefficients. Thus hypothesis (C) is satisfied.

4.1. f is non-composite. We set:

f1 =
(

1 + X + Y 2
)

(X + Y ) = X + X2 + XY 2 + Y + Y X + Y 3,

f2 = f1 −
(

Y 2 − X − 1
)

(Y − 2X + 1) = −X2 + 3XY 2 + 2Y + 2Y X − Y 2 + 1

We have deg(f1 + Λf2) = degY (f1 + Λf2) = 3, and

ResY

(

f1(0, Y )+Λf2(0, Y ), ∂Y f1(0, Y )+Λ∂Y f2(0, Y )
)

= −4−24Λ−92Λ2−64Λ3+8Λ4.

Thus hypothesis (H) is satisfied.
The algorithm Good homography gives:
λa = f1(0, 0)/f2(0, 0) = 0 and λb = f1(0, 1)/f2(0, 1) = 1.

Then

F1 =
(

1 + X + Y 2
)

(X + Y ) ,

F1,1 = 1 + X + Y 2,

F1,2 = X + Y

F2 =
(

Y 2 − X − 1
)

(Y − 2X + 1) ,

F2,1 = Y 2 − X − 1

F2,2 = Y − 2X + 1

The cofactors are:

GF1,1
= 3X2 + 8Y X2 + 2X − 2Y X + 7XY 2 − 1 + 3Y 2 − 6Y 3 − 6Y 4 + 2Y

GF1,2
= 3X2 + 8Y X2 + 4Y X + 6X − 6Y 2 − 4Y + 3 − 3Y 4 − 2Y 3

GF2,1
= 3X2 + 8Y X2 + XY 2 − 6Y X + 2X − 1 − 2Y − 6Y 4 − 11Y 2 − 6Y 3

GF2,2
= 3X2 + 8Y X2 + 6XY 2 + 8Y X + 6X − 3Y 4 + 8Y 2 − 2Y 3 + 3
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The linear system S is the following:






































































−1 3 −1 3

2 6 2 6

3 3 3 3

0 0 0 0

0 0 0 0

2 −4 −2 0

−2 4 −6 8

8 8 8 8

0 0 0 0

3 −6 −11 8

7 0 1 6

0 0 0 0

−6 −2 −6 −2

0 0 0 0

−6 −3 −6 −3







































































A basis of ker(S) is given by: {(−1,−1, 1, 1)}.
Then it follows that f1/f2 is non-composite.

4.2. f is composite. Here we set:

h1 =
(

1 + X + Y 2
)

(X + Y )

h2 = h1 −
(

Y 2 − X − 1
)

(Y − 2X + 1)

u1 = T.(T − 1)

u2 = T 2 + 1

f1/f2 = u1/u2(h1/h2).

We have constructed a composite rational function f1/f2 and now we illustrate
how our algorithm computes a decomposition. We can already remark that in the
previous example we have shown that h1/h2 is non-composite.

In this situation the hypothesis (H) is satisfied and the algorithm Good Homog-

raphy gives:
λa = f1(0, 0)/f2(0, 0) = 0 and λb = f1(0, 2)/f2(0, 2) = 90/101.
Then:

F1,1 = 1 + X + Y 2

F1,2 = 2X − Y − 1

F1,3 = Y 2 − X − 1

F1,4 = X + Y

F2,1 = 2X2 + 11X + 9 + 29XY + 29Y + 38XY 2 − 9Y 2 + 11Y 3

F2,2 = 11X2 + X − 10 − 19Y X − 19Y − 29XY 2 + 10Y 2 + Y 3
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The basis in reduced row echelon form of π1(kerS) (resp. π2(kerS)) is {(1, 0, 0, 1); (0, 1, 1, 0)}
(resp. {(1, 0); (0, 1)}).
Step 5 in the algorithm Recombination for Decomposition gives: v1 = (1, 0, 0, 1) and
v2 = (1, 0).
Then we have H1 := F1,1.F1,4 and H2 := F2,1.
We remark that H1 = h1 and that H2 = 11h1 + 9h2. Then H1/H2 = w(h1/h2),
where w(T ) = T/(11T + 9). As h1/h2 is non-composite and deg w = 1, we get a
correct output.

5. Conclusion

In conclusion, we summarize our algorithm with a “derivation point of view”.
In order to decompose f1/f2, we have computed with Darboux method a rational
first integral of Df1/f2

with minimum degree. That is to say we have computed
h1/h2 ∈ K(X1, . . . ,Xn) such that Df1/f2

(h1/h2) = 0 and deg(h1/h2) is minimum.
In a general setting, Darboux method works as follows: If we want to compute a ra-
tional first integral of a derivation D, first we compute all the Darboux polynomials
Fi and their associated cofactors GFi

, second we solve the linear system
∑

i

eiGFi
= 0.

Then thanks to Proposition 8, we deduce that
∏

i F ei

i is a first integral, i.e. D(
∏

i F ei

i ) = 0.

When we consider the derivation Df1/f2
the computation of Darboux polynomi-

als is reduced to the factorization of f1+λf2. Thus this step can be done efficiently.
In the general setting, we can also reduce the computation of Darboux polynomials
to a factorization problem, see [Chè11].
During the second step, we compute the kernel of

∑

i eiGFi
= 0. It is actually a

recombination step. Indeed, this system explains how we have to recombine Fi in
order to get a rational first integral. Furthermore, the cofactor GFi

= D(Fi)/Fi can
be viewed as a logarithmic derivative.
In conclusion, the recombination scheme used in this paper is called nowadays the
logarithmic derivative method, but this method is Darboux original method.

Appendix A. Convex-dense bivariate decomposition

In this appendix we give complexity results for the decomposition of sparse bivari-
ate rational functions. These results rely on a strategy proposed by J. Berthomieu
and G. Lecerf in [BL10].

Given a polynomial f(X,Y ) ∈ K[X,Y ], its support is the set Sf of integer points
(i; j) such that the monomial XiY j appears in f with a non zero coefficient. The
convex hull, in the real space R2 of Sf is denoted by N(f) and called the Newton’s
polygon of f . We denote by |N(f)| the number of integral points of N(f). We
called |N(f)| the convex-size of f .

Roughly speaking, the transformation proposed in [BL10] consists in a monomial
transformation that preserves the convex-size but decreases the dense size. The
considered transformation T can be described in the following way:

T = B ◦ L, where
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B(XiY j) = Xi+b1Y j+b2 , b1, b2 ∈ Z,

L(XiY j) = Xa1i+a2jY a3i+a4j , a1a4 − a2a3 = ±1.

T can be defined on K[X,Y,X−1, Y −1], and we define: T (
∑

i,j fi,jX
iY j) =

∑

i,j fi,jT (XiY j).

The transformation L corresponds to the linear map: (i, j) 7→ A t(i, j), where

A =

(

a1 a2

a3 a4

)

.

We denote by L−1 the transformation corresponding to A−1.
If f(X,Y ) ∈ K[X,Y ], then L(f) ∈ K[X,Y,X−1, Y −1] and L(f) can be written
L(f) = cL(f).L0(f), where L0(f) ∈ K[X,Y ] and cL(f) = XiY j ∈ K[X,Y,X−1, Y −1].
Furthermore, we also have L(F1.F2) = L(F1).L(F2).

Let S be a finite subset of Z2. Set S is said to be normalized if it belongs to
N2 and if it contains at least one point in {0} × N, and also at least one point in
N × {0}. For such a normalized set, we write dx (resp. dy) for the largest abscissa
(resp. ordinate) involved in S, so that the bounding rectangle is R = [0, dx]×[0, dy].
The following result is proved in [BL10, Theorem 2]:
For any normalized finite subset S of Z2, of cardinality σ, convex-size π, and bound-
ing rectangle [0, dx]×[0, dy], and dense size δ = (dx+1)(dy+1), one can compute an

affine map T = B◦L, with O(σ log2 δ) bit-operations, such that T (S) is normalized
of dense size at most 9π.

We are going to use this transformation in order to prove:

Theorem 19. Let f1/f2(X,Y ) ∈ K(X,Y ) such that deg(f1/f2) = d, N(f1) ⊂ N ,
N(f2) ⊂ N and N is normalized. Then

(1) If K is field with characteristic 0 or at least d(d−1)+1 and (H) is satisfied,
then there exists a probabilistic algorithm which computes the decomposition
of f1/f2 with at most Õ(|N |1,5) operations in K and two factorizations of
a univariate polynomial of degree at most 9|N | over K.

(2) If (C) and (H) are satisfied, then there exists a deterministic algorithm

which computes the decomposition of f1/f2 with at most Õ(r.|N |(ω+1)/2)
operations over Q and two factorizations of an univariate polynomials of
degree at most 9|N | over Q[α].

Now, we explain how we use the transformation T in the decomposition setting.

Proposition 20. If f1/f2 = u(h1/h2) then T (f1)/T (f2) = u
(

L(h1)/L(h2)
)

.

If T (f1)/T (f2) = u(H1/H2) then f1/f2 = u
(

L−1(H1)/L
−1(H2)

)

.

Proof. We prove the first item, the second can be proved in a similar way.

We have:
f1

f2
=

∏

i(h1 − µ1,ih2)
∏

j(h1 − µ2,jh2)
, where µk,i are roots of uk. Then,

T (f1)

T (f2)
=

B ◦ L(f1)

B ◦ L(f2)
=

Xb1Y b2L(f1)

Xb1Y b2L(f2)

=
L(f1)

L(f2)
=

∏

i

(

L(h1) − µ1,iL(h2)
)

∏

j

(

L(h1) − µ2,jL(h2)
)

=
u1

(

L(h1)/L(h2)
)

u2

(

L(h1)/L(h2)
) = u

(

L(h1)/L(h2)
)
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�

This gives the following algorithm:

Convex bivariate decomposition

Input: f = f1/f2 ∈ K(X,Y ), where N(f1) ⊂ N , N(f2) ⊂ N and N is normalized.
Output: A decomposition of f if it exists, with f = u◦h, u = u1/u2 with deg u ≥ 2,
and h = h1/h2 non-composite.

(1) Compute F = T (f1)/T (f2).
(2) Decompose F = u(H).

(3) Return f = u(h), where h =
L−1(H1)

L−1(H2)
=

cL−1(H1).L
−1
0 (H1)

cL−1(H2).L
−1
0 (H2)

∈ K(X,Y ).

Proposition 21. The algorithm Convex bivariate decomposition is correct.

Proof. This follows from Proposition 20. �

Proposition 22. The algorithm Convex bivariate decomposition uses one decompo-
sition of a rational function of degree at most 9|N | and O(σ2δ) bit operations.

Proof. We apply [BL10, Theorem 2] to N . �

The proof of Theorem 19 comes from Proposition 21 and Proposition 22 and
complexity results given in Theorem 1 and [Chè10, Theorem 2].
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