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A CONTINUITY PROPERTY
OF MULTIVARIATE LAGRANGE INTERPOLATION

THOMAS BLOOM AND JEAN-PAUL CALVI

ABSTRACT. Let {Sd be a sequence of interpolation schemes in]Rn of degree d
(Le. for each St one has unique interpolation by a polynomiai of total degree
::; d) and total order ::; 1. Suppose that the points of St tend to 0 E ]Rn as t -+
00 and the Lagrange-Hermite interpolants, HSt, satisfy Iimt-oo HSt (XC»= 0
for aIl monomials xC>with lai = d + 1. Theorem: Iimt_oo HSt (1) = Td(l)
for aIl functions f of cIass CI-1 in a neighborhood of O. (Here Td(l) denotes
the Taylor series of f at 0 to order d.)

Specifie examples are given to show the optimality of this result.

1. INTRODUCTION

Let 0 be an open neighborhood of the origin in JR,a := (aO,..., ad) E Od+l and
f a function of class Cd+! on O. As is well known, if H[aO,. .. , ad](f) denotes the
Lagrange-Hermite interpolation polynomial with respect to the points aO,. .. , ad
(with the usual convention when some points coincide), then

lim H[aO,... ,ad] = Tdfa--+O

where Td f denotes the d-th Taylor polynomial of fat the origin. This follows quite
easily from the Newton representation formula for the interpolating polynomial,
that is

d

H[ao,... , ad](f, x) = f(ao) + Lf[ao,... ,ai](f,x)(x - aO)... (x - ai-l)
i=1

via the Hermite-Genocchi formula for the divided differences, namely
d

f[aO,... ,ai] = 1 . f(i)(aO + Ltjaj)dm(t)
fj.' j=1

where dm denotes Lebesgue measure on the simplex

Âi = {(tj)r::;j::;i: tj ::::0, Ltj :s;1}.
j=1

More generally, for fixed f of class Cd+k, one can prove similarly that the function
a -7 H[aO,. . . , ad](f) is of class Ck on Od+l (see also [N, Th. 2.5]).
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