A CONTINUITY PROPERTY OF MULTIVARIATE LAGRANGE INTERPOLATION

THOMAS BLOOM AND JEAN-PAUL CALVI

Abstract

Let $\left\{S_{t}\right\}$ be a sequence of interpolation schemes in \mathbb{R}^{n} of degree d (i.e. for each S_{t} one has unique interpolation by a polynomial of total degree $\leq d)$ and total order $\leq l$. Suppose that the points of S_{t} tend to $0 \in \mathbb{R}^{n}$ as $t \rightarrow$ ∞ and the Lagrange-Hermite interpolants, $H_{S_{t}}$, satisfy $\lim _{t \rightarrow \infty} H_{S_{t}}\left(x^{\alpha}\right)=0$ for all monomials x^{α} with $|\alpha|=d+1$. Theorem: $\lim _{t \rightarrow \infty} H_{S_{t}}(f)=T^{d}(f)$ for all functions f of class C^{l-1} in a neighborhood of 0 . (Here $T^{d}(f)$ denotes the Taylor series of f at 0 to order d.)

Specific examples are given to show the optimality of this result.

1. Introduction

Let O be an open neighborhood of the origin in $\mathbb{R}, a:=\left(a^{0}, \ldots, a^{d}\right) \in O^{d+1}$ and f a function of class C^{d+1} on O. As is well known, if $H\left[a^{0}, \ldots, a^{d}\right](f)$ denotes the Lagrange-Hermite interpolation polynomial with respect to the points a^{0}, \ldots, a^{d} (with the usual convention when some points coincide), then

$$
\lim _{a \rightarrow 0} H\left[a^{0}, \ldots, a^{d}\right]=\mathcal{T}^{d} f
$$

where $\mathcal{T}^{d} f$ denotes the d-th Taylor polynomial of f at the origin. This follows quite easily from the Newton representation formula for the interpolating polynomial, that is

$$
H\left[a^{0}, \ldots, a^{d}\right](f, x)=f\left(a^{0}\right)+\sum_{i=1}^{d} f\left[a^{0}, \ldots, a^{i}\right](f, x)\left(x-a^{0}\right) \ldots\left(x-a^{i-1}\right)
$$

via the Hermite-Genocchi formula for the divided differences, namely

$$
f\left[a^{0}, \ldots, a^{i}\right]=\int_{\Delta^{i}} f^{(i)}\left(a^{0}+\sum_{j=1}^{d} t_{j} a^{j}\right) d m(t)
$$

where $d m$ denotes Lebesgue measure on the simplex

$$
\Delta^{i}=\left\{\left(t_{j}\right)_{1 \leq j \leq i}: t_{j} \geq 0, \sum_{j=1}^{i} t_{j} \leq 1\right\}
$$

More generally, for fixed f of class C^{d+k}, one can prove similarly that the function $a \rightarrow H\left[a^{0}, \ldots, a^{d}\right](f)$ is of class C^{k} on O^{d+1} (see also [N, Th. 2.5]).

[^0]
[^0]: Received by the editor January 30, 1996 and, in revised form, August 21, 1996.
 1991 Mathematics Subject Classification. Primary 41A05, 41A63.
 Key words and phrases. Multivariable Lagrange interpolants, interpolation schemes in \mathbb{R}^{n}, Kergin interpolation.

 The first author was supported by NSERC of Canada.

