On multivariate minimal polynomials

By THOMAS BLOOM
Department of Mathematics, University of Toronto, M5S 3G3 Toronto, Ontario, Canada
e-mail: bloom@math.toronto.edu
and JEAN-PAUL CALVI
Laboratoire de Mathématiques E. Picard, Université Paul Sabatier, 31062 Toulouse Cedex, France
e-mail: calvi@picard.ups-tlse.fr

(Received 11 February 1999; revised 1 September 1999)

Abstract

Given compact sets E and F in $\mathbb{C}^{n}(n \geqslant 1)$ related by $F=q^{-1}(E)$ where q is a polynomial map, we are interested in the general problem of comparing minimal polynomials for E with minimal polynomials for F. Let α be an n-multi-index of length d. We define the classes of polynomials $\mathbb{P}(\alpha):=z^{\alpha}+\mathbb{C}_{d-1}[z]$ and $\mathscr{P}(\alpha):=$ $\left\{p: p(z)=z^{\alpha}+\sum_{\beta \prec \alpha} a_{\beta} z^{\beta}\right\}$ where \prec denotes the usual graded lexicographic order. Polynomials in $\mathbb{P}(\alpha)$ or in $\mathscr{P}(\alpha)$ of least deviation from zero on E (with respect to the supremum norm) are called minimal polynomials for E. We prove that if q is a simple (i.e. $\hat{q}_{i}(z)=z_{i}^{m}$) polynomial mapping of degree m and if p is minimal polynomial for E then $p \circ q$ is a minimal polynomial for $F=q^{-1}(E)$ and, using some algebraic machinery, we can also construct minimal polynomials for E from minimal polynomials for F. The result seems to be new even in the one-dimensional case.

1. Introduction

1. Let d be a positive integer and K be a compact set in the complex plane that contains at least $d+1$ points. It is a classical theorem of Tonelli that among the monic polynomials of degree d there exists one and only one polynomial T_{d} that minimizes the supremum norm on K, that is $\left\|T_{d}\right\|_{K}=\inf \left\{\left\|z^{d}+\sum_{i=0}^{d-1} a_{i} z^{i}\right\|_{K}\right\}$ where the infimum is taken with respect to $\left(a_{0}, a_{1}, \ldots, a_{d-1}\right) \in \mathbb{C}^{d}$ (see [7, p. 143]). In other words $T_{d}-z^{d}$ is the polynomial (of degree at most $d-1$) of best approximation to z^{d} on K. This polynomial is called the minimal (monic) polynomial of degree d. Very few explicit minimal polynomials are known. The most important comes from the Chebyshev polynomials of first kind (those defined by $\left.\nu_{d}(\cos \theta)=\cos (d \theta), \theta \in[0,2 \pi]\right)$. Indeed $2^{d-1} \nu_{d}$ is minimal of degree d for $K=[-1,1]$. In fact minimal polynomials are often called Chebyshev polynomials. Apart from their intrinsic interest, they are closely related to the main objects of potential theory. For example, if $\tau_{d}(K):=\left\|T_{d}\right\|_{K}$ (τ_{d} is called the d th Chebyshev constant) then, as d goes to $\infty, \tau_{d}(K)^{1 / d}$ converges to the
